高斯投影坐标正算1 (version 1)

合集下载

高斯投影正反算

高斯投影正反算

高斯投影正反算学院:资源与环境工程工程学院专业:测绘工程 学号:X51414012:超一、高斯投影概述想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线相切,椭圆柱的中心轴通过椭球体的中心,然后用一定投影方法,将中央子午线两侧各一定经差围的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。

高斯投影由于是正形投影,故保证了投影的角度不变性,图形的相似性以及在某点各方向上长度比的同一性。

由于采用了同样法则的分带投影,这即限制了长度变形,又保证了在不同投影带中采用相同的简便公式和数表进行变形引起的各项改正的计算,并且带与带间的互相换算也能用相同的公式和方法进行。

高斯投影的这些优点必将使它得到广泛的推广和具有国际意义。

二、高斯投影坐标正算公式1.高斯投影必须满足以下三个条件 1)中央子午线投影后为直线 2)中央子午线投影后长度不变 3)投影具有正形性质,即正形投影条件2.高斯正算公式推导1)由第一个条件可知,由于地球椭球体是一个旋转椭球体,所以高斯投影必然有这样一个性质,即中央子午线东西两侧的投影必然对称于中央子午线。

2)由于高斯投影是换带投影,在每带经差l是不大的,lρ是一个微小量,所以可以将X=X (l,q ),Y=Y (l ,q )展开为经差为l 的幂级数,它可写成如下的形式X=m 0+m 2l 2+m 4l 4+…Y=m 1l+m 3l 2+m 5l 5+…式中m 0,m1,m2,…是待定系数,他们都是纬度B 的函数。

3)由第三个条件:∂y ∂l =∂x ∂q 和∂x ∂l =-∂y∂q ,将上式分别对l 和q 求偏导2340123423401234...........x m m l m l m l m l y n n l n l n l n l =+++++=+++++可得到下式0312123403121234111,,,, 234111,,,,234dm dm dm dm n n n n dq dq dq dq dn dn dn dn m m m m dq dq dq dq ⎧====⎪⎪⎨⎪=-=-=-=-⎪⎩经过计算可以得出232244524632235242225sin cos sin cos (594)224 sin cos (6158)720cos cos (1)6cos (5181458)120N N x X B B l B B t l NB B t t l Ny N B l B t l NB t t t l ηηηηη=+⋅+-+++-+=⋅+-++-++-三、高斯投影坐标反算公式推导1.思路:级数展开,应用高斯投影三个条件,待定系数法求解。

高斯坐标正反算

高斯坐标正反算

正形投影的一般条件基本出发点:在正形投影中,长度比与方向无关。

1、长度比的通用公式如图4-42,在微分直角三角形P1P2P3及P1′P2′P3′中有:其中l=L-L0,L0通常是中央子午线的经度,L是P点的经度令:()()222222d=d cos dd=d dS M B N B ls x y++(1)m平方可为:()()()22222222222d d d d dd d cos d dcos dcoss x y x ymS M B N B l M BN B lN B++⎛⎫===⎪⎡⎤⎝⎭+⎛⎫+⎢⎥⎪⎝⎭⎢⎥⎣⎦(2)为简化公式,令:ddcosM BqN B=dc o sB M BqN B=⎰(3) q称为等量纬度,因为它只与纬度B有关。

这样,式(2)可表示为:()()222222d dd dx ymr q l+=⎡⎤+⎣⎦(4)我们投影的目的是:建立平面坐标xy和大地坐标BL之间的函数关系,由式(3)可知,即建立xy和bl的函数关系。

令()(),,x x l q y y l q==(5) 对上式进行全微分可得:d d dd d dx xx q lq ly yy q lq l∂∂⎧=+⎪∂∂⎪⎨∂∂⎪=+⎪∂∂⎩(6)将上式代入式(1)中第二项,并令:2222x yEq qx x y yFq l q lx yGl l⎧⎛⎫⎛⎫∂∂=+⎪ ⎪ ⎪∂∂⎪⎝⎭⎝⎭⎪∂∂∂∂⎪=+⎨∂∂∂∂⎪⎪∂∂⎛⎫⎛⎫⎪=+⎪ ⎪∂∂⎪⎝⎭⎝⎭⎩(7)可得: ()()()()222d d 2d d d s E q F q l G l =++ (8) 则式(4)可写为: ()()()()()()222222d 2d d d d d E q F q l G l m r q l ++=⎡⎤+⎣⎦ (9)2 柯西-黎曼条件在上式引入方向,如图4-42所示:2313d d cot d d P P M B q A PP r l l === (10) 即: d tan d l A q = (11)将式(11)代入式(9)可得:注意sec 1cos A A =()()()()()222222222222222d 2tan d tan d d tan d 2tan tan sec cos 2sin cos sin E q F A q G A q m r q A q E F A G A r AE AF A AG A r ++=⎡⎤+⎣⎦++=++=(12)要想让m 和A 无关,必须使F=0,E=G ,即22220x x y y q l q l x y x y q q l l ∂∂∂∂⎧+=⎪∂∂∂∂⎪⎨⎛⎫⎛⎫∂∂∂∂⎛⎫⎛⎫⎪+=+⎪ ⎪ ⎪ ⎪⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎩ (13) 由上式第一式可得:y y x q l x lq∂∂∂∂∂=-∂∂∂(14)代入第二式可得: 222222y x y y x lq q q q x q ∂⎛⎫⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂∂⎝⎭+=+⎢⎥ ⎪ ⎪ ⎪ ⎪∂∂∂∂⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫∂⎣⎦⎪∂⎝⎭(15) 消去公共项可得: 22x y q l ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (16)开方并代入式(13)的第一项:x y q l x y lq ∂∂⎧=⎪∂∂⎪⎨∂∂⎪=-⎪∂∂⎩ (17)高斯投影坐标正算高斯投影三条件:L0为直线;L0长度不变;正形投影 1、幂级数展开公式(x 偶y 奇)l /ρ微小量(ρ''=206265),可进行级数展开,可得:2402435135x m m l m l y m l m l m l ⎧=+++⎪⎨=+++⎪⎩(18) 式中mi 为待定系数,是q 、B 的函数。

高斯平面直角坐标与大地坐标的相互转换——高斯投影的正算与反算.

高斯平面直角坐标与大地坐标的相互转换——高斯投影的正算与反算.

昆明冶金高等专科学校测绘学院 (4)计算公式
3 2 2 2 4 ( 5 3 t 9 t ) y f f f f 2M f N f 2 4M f N 3 f tf 2 4 6 (6 1 9 0t f 4 5t f ) y 7 2 0M f N 5 f 1 1 2 2 3 l y (1 2t f f ) y 3 N f co s B f 6 N f co s B f 1 2 5 (5 2 8t 2 t4 2 2 f 24 f 6 f 8 f t f )y 5 1 2 0N f co s B f B Bf tf y2 tf
式中:

2 e 2 cos2 B
t 2 tan2 B l (L L0) X为B对应子午线弧长 N为卯酉圈曲率半径 20626 5
昆明冶金高等专科学校测绘学院
2
高斯投影坐标反算公式
(1)高斯投影反算:
已知某点 x, y ,求该点 L, B ,即 x, y ( L, B) 的坐标变换。 (2)投影变换必须满足的条件
昆明冶金高等专科学校测绘学院
二、高斯投影坐标正反算得实用公式及算例
1 高斯投影坐标正算公式 (1)高斯投影正算: 已知某点的 L, B ,求该点的 x, y ,即 (2)投影变换必须满足的条件: 中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。 (3)投影过程 在椭球面上有对称于中央子午线的两点 P1 和 P2 ,它们的大地坐标 分别为 ( L1 , B1 )或(l1 , B1)及 (L2 , B2)或(l2 , B2 ) 式中 l 为椭球面上点的经 度与中央子午线 ( L0 ) 的经度差:l L L0 ,点在中央子午线之东, l 为正,在西则为负,则投影后的平面坐标一定为P1 ( x1 , y1 ) 和 P2 ( x 2 , y 2 ) 。

高斯投影正反算原理

高斯投影正反算原理

高斯投影正反算原理高斯投影是一种常用于地图制图的投影方式,也被广泛应用于其他领域的空间数据处理。

高斯投影正反算是对于已知的地球坐标系上的位置(经纬度),通过计算得到该点的平面坐标(东、北坐标),或者对于已知的平面坐标(东、北坐标),通过计算得到该点的地球坐标系上的位置(经纬度)的过程。

本文将详细介绍高斯投影正反算的原理。

一、高斯投影简介高斯投影是一种圆锥投影,其投影面在地球表面的某个经线上,也就是说,投影面是以该经线为轴的圆锥面。

经过对圆锥体的调整后,使其切于地球椭球面,在该经线上进行投影,同时保持沿该经线方向的比例尺一致,从而达到地图上各点在包括该经线的垂直面上映射的目的。

这种投影方式在某一特定区域内得到高精度的结果,因此广泛应用于地图制图。

二、高斯投影数学模型对于高斯投影正反算,需要先建立高斯投影坐标系与地球坐标系的转换模型。

1.高斯投影坐标系的建立高斯投影坐标系的建立需要确定圆锥面的基本参数,首先需要确定其所处的中央子午线,再确定该子午线上的经度为零点,并利用该经线上某一点的经度和该点的高度来确定该点所在的圆锥体。

圆锥体的底面包括所有与地球椭球面相切的圆面,通过对这些圆面进行调整,使得圆锥体转动后能够在中央子午线上进行投影。

在此基础上,可建立高斯投影坐标系,其中投影面为圆锥面,且中央子午线与投影面的交点称为该投影坐标系的中心,投影面的上端点和下端点分别对应正北方向和正南方向。

2.地球坐标系的建立地球坐标系是以地球椭球体为基础建立的,其坐标系原点确定为地球椭球体上的一个特定点。

在已知该点经纬度和高度的前提下,可确定以该点为中心的地球椭球体,并可根据它与地球坐标系之间的转换关系得到平面坐标系。

3.高斯投影坐标系与地球坐标系之间的转换关系由于高斯投影坐标系与地球坐标系存在不同的坐标体系和基准面,因此需要通过数学关系式来建立它们之间的转换关系。

(1)高斯投影坐标系转地球坐标系:已知高斯投影坐标系中任意一点的东北坐标(N,E),以及所属的中央子午线经度λ0、椭球参数a和e,则可通过以下公式求出该点的地球坐标系经纬度(φ,λ)和高度H:A0为以地球椭球体中心为原点,高斯投影坐标系中心投影坐标为(0,0)的点到椭球面的距离。

高斯投影坐标计算

高斯投影坐标计算

B
d B dq
2

dX dq dq

c
(
cos B dV V dB
2
dB dq

sin B dB V dq
2
)
2
d B dq
2
cos B c ( tan B V
2 2
3
V
sin B cos B
)
N sin B cos B
同理得
d X dq
3

N cos B ( 1
3
3


2

0
l

L

L
0

高斯投影坐标正算的函数式:
x y
l 是以弧度为单位的经度差。
F B , l F B , l
1 2

一 高斯投影坐标正算公式计算

如图,椭球面上一点投影 到平面后为d点,椭球面上 该点的平行圈(B或q为一 常数)与中央子午线的交 点为e点,若将上式中的展 开点z0设为e处,则很据高 斯投影条件,中央子午线 的长度比m=1,且纵坐标x 等于从赤道起到该平行圈 间的子午线弧长X。此时 可以写出下列方程:
4 2
二、高斯投影坐标反算公式

最后得到坐标反算的公式为:
B B
f
2M
f
t
f
y N
f
2

t 24 M
2 f
f
f
f
N
4 f
3 f
5 3 t
6
2 f

2 f
9 f t
2
2 f
y
4

t

(整理)高斯投影坐标正反算公式

(整理)高斯投影坐标正反算公式

高斯投影坐标正反算公式未知2010-04-03 10:47:15 本站§高斯投影坐标正反算公式任何一种投影①坐标对应关系是最主要的;②如果是正形投影,除了满足正形投影的条件外( C-R 偏微分方程),还有它本身的特殊条件。

1.1 高斯投影坐标正算公式: B, x,y高斯投影必须满足以下三个条件:①中央子午线投影后为直线;②中央子午线投影后长度不变;③投影具有正形性质,即正形投影条件。

由第一条件知中央子午线东西两侧的投影必然对称于中央子午线,即 (8-10) 式中, x 为的偶函数, y 为的奇函数;,即,如展开为的级数,收敛。

( 8-33 )式中是待定系数,它们都是纬度 B 的函数。

由第三个条件知:(8-33) 式分别对和 q 求偏导数并代入上式(8-34)上两式两边相等,其必要充分条件是同次幂前的系数应相等,即(8-35)(8-35) 是一种递推公式,只要确定了就可依次确定其余各系数。

由第二条件知 : 位于中央子午线上的点,投影后的纵坐标 x 应等于投影前从赤道量至该点的子午线弧长 X ,即 (8-33) 式第一式中,当时有:(8-36)顾及 ( 对于中央子午线 )得:(8-37,38)(8-39)依次求得并代入 (8-33) 式,得到高斯投影正算公式(8-42)1.2 高斯投影坐标反算公式x,y B,投影方程:(8-43)满足以下三个条件:①x 坐标轴投影后为中央子午线是投影的对称轴;② x 坐标轴投影后长度不变;③投影具有正形性质,即正形投影条件。

高斯投影坐标反算公式推导要复杂些。

①由 x 求底点纬度 ( 垂足纬度 ), 对应的有底点处的等量纬度,求 x,y 与的关系式,仿照 (8-10) 式有,由于 y 和椭球半径相比较小 (1/16.37) ,可将展开为 y 的幂级数;又由于是对称投影, q必是 y 的偶函数,必是 y 的奇函数。

(8-45)是待定系数,它们都是 x 的函数 .由第三条件知:,, (8-21)(8-45) 式分别对 x 和 y 求偏导数并代入上式上式相等必要充分条件,是同次幂 y 前的系数相等,第二条件,当 y=0 时,点在中央子午线上,即 x=X ,对应的点称为底点,其纬度为底点纬度,也就是 x=X 时的子午线弧长所对应的纬度,设所对应的等量纬度为。

大地测量学第四章 7高斯投影坐标正反算

大地测量学第四章 7高斯投影坐标正反算
∂x E = ∂q ∂x F = ⋅ ∂q x G = ∂ ∂l ∂y ⋅ ∂l
2
∂y + ∂l
得长度比的通用公式: 得长度比的通用公式:
E ( dq ) 2 + 2 F ( dq )( dl ) + G ( dl ) 2 m = r 2 ( dq ) 2 + ( dl ) 2
m0 = X
高斯投影坐标正算( ) 高斯投影坐标正算(3)
dm0 dX dB N cos B c = =M =N cos B , m1 = N cos B = cos B dq dB dq M V
子午线曲率半径
m2 = N sin B cos B 2
等量纬度定义式
N c o s 3 B (1 − t 2 + η 2 ) m3 = b N m4 = s i n B c o s 3 B ( 5 − t 2 + 9η 2 ) 24 N cos5 B (5 − 18 t 2 + t 4 ) m5 = 120

上式为与方向有关的长度比的通用公式。 上式为与方向有关的长度比的通用公式。 长度比的通用公式 上式在什么条件下与方向无关? 上式在什么条件下与方向无关?
F = 0
E = G
柯西.黎曼条件( 柯西 黎曼条件(续) 黎曼条件
正形条件: 与 无关 即满足: 无关, 正形条件:m与A无关,即满足: F = 0
π ab 面积比:P = = ab π
地图投影的分类
• 按投影变形性质分类: 等角投影 a=b • 按投影面分类 : 圆锥面 圆柱(椭圆柱) 面 平面投影 等距投影 a=1 or b=1 等积投影 a·b=1

高斯正反算

高斯正反算

VB下高斯坐标变换的实现曾圣陈伟高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。

德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。

设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面.高斯-克吕格(Gauss-Kruger)投影是横轴墨卡托投影的变种,高斯-克吕格投影是“等角横切圆柱投影”,投影后中央经线保持长度不变,即比例系数为1。

高斯-克吕格投影的东伪偏移是500公里,投影北伪偏移为零。

高斯-克吕格投影正解公式:已知(B,L)值求解(X,Y),(原点纬度 0,中央经度L0)上面公式中东纬偏移FE = 500000米(本程序中中只设计加500000米的常数,如还要带号的话FE = 500000+ 带号 * 1000000米);高斯-克吕格投影比例因子k0 = 1高斯-克吕格投影反解公式:已知(X,Y)求解(B,L),(原点纬度 0,中央经度L0)a -- 椭球体长半轴b -- 椭球体短半轴f -- 扁率e -- 第一偏心率e’ -- 第二偏心率N -- 卯酉圈曲率半径R -- 子午圈曲率半径B -- 纬度,L -- 经度,单位弧度(RAD)X -- 纵直角坐标, Y -- 横直角坐标,单位米(M) 关于椭球体参数,我国常用的3个椭球体参数如下:程序实现:'高斯正算求XPublic Function X(ByVal B#, ByVal L#, ByVal L0#) As DoubleDim n#, T#, T2#, m#, m2#, ng2#Dim S#, C#X = A1 * B + A2 * Sin(2 * B) + A3 * Sin(4 * B) + A4 * Sin(6 * B)? '子午线弧长S = Sin(B)C = Cos(B)T = Tan(B)T2 = T * Tn = a / Sqr(1 - e12 * S * S)'卯酉圈曲率半径m = C * (L - L0)m2 = m * mng2 = C * C * e12 / (1 - e12)????X = X + n * T * ((0.5 + ((5 - T2 + 9 * ng2 + 4 * ng2 * ng2) / 24# + (61 - 58 * T2 + T2 * T2) * m2 / 720#) * m2) * m2)?End Function'高斯正算求YPublic Function Y(ByVal B#, ByVal L#, ByVal L0#) As DoubleDim n#, T#, T2#, m#, m2#, ng2#Dim S#, C#S = Sin(B)C = Cos(B)T = Tan(B)T2 = T * Tn = a / Sqr(1 - e12 * S * S)m = C * (L - L0)m2 = m * mng2 = C * C * e12 / (1 - e12)Y = n * m * (1 + m2 * ((1 - T2 + ng2) / 6# + m2 * (5 - 18 * T2 + T2 * T2 + 14 * ng2 - 58 * ng2 * T2) / 120#))Y = Y + Y0End Function'高斯反算求B(纬度)Public Function B(ByVal X#, ByVal Y#) As DoubleDim S#, C#, T#, T2#, n#, ng2#, V#, yN#Dim preB0#, B0#Dim eta#Y = Y - Y0B0 = X / A1DopreB0 = B0B0 = (X - (A2 * Sin(2 * B0) + A3 * Sin(4 * B0) + A4 * Sin(6 * B0))) / A1 If Abs(B0 - preB0) < 0.000000001 Then Exit DoLoopS = Sin(B0)C = Cos(B0)T = Tan(B0)T2 = T * Tn = a / Sqr(1 - e12 * S * S)ng2 = C * C * e12 / (1 - e12)V = Sqr(1 + ng2)yN = Y / nB = B0 - (yN * yN - (5 + 3 * T2 + ng2 - 9 * ng2 * T2) * yN * yN * yN * yN / 12# + (61 + 90 * T2 + 45 * T2 * T2) * yN * yN * yN * yN * yN * yN / 360#) * V * V * T / 2#End Function程序运行界面:检测数据:(1)、已知在北京坐标系下中央子午线:117度,纬度B:28度32分14.5秒,经度L:116度54分12.3秒正算求解北方向X、东方向Y值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cos B
0.756248013909
2
B(°′″)
29.35055817
L(°′″)
106.5159544
B(°)
29.58488381
L(°)
106.8665399
L(rad)
1.865172982
B (″)
106505.6
L (″)
384719.5
a
2
b
2
4.06806E+13
4.04083E+13
第一基本 纬度函数W
1 − e 2 sin
2
第二基本 纬度函数N
卯酉圈 曲率半径N
a W
6383347.1985
任意法截弧的 曲率半径R
子午圈 曲率半径M
a (1 − e W 3
6350977.9720
2 )
任意法截弧的曲 率半径Ra
2R R-e′cosBcos2A 2
正算系数
B
1 − e′2 cos2 B
1.40976E-07 0.322317522 L(°′″) H
0.005096731 2.59767E-05
Y=NcosBsinL
Z=N(1- e)sinB
2
x
y
H
B(°′″)
3274105.9770
99349.42329
29.35055817
106.5159544
111.06000134
-1610620.6053
125.36
4 -107.31
-2 -64.81 -2 97.12 -2 141.29 -2 116.44 -3 155.7
-107.27
-64.83
98.76
3 -17.92
-17.89
97.1
114.63
4 30.88
30.92
141.27
116.44
3 -0.63
-0.6
116.42
156.25
B (″)
106456.5
B (°′″)
29.34165112
B (°)
29.57125311
B (rad)
0.516115731
105629.9
0.509688404
η
=
点 号 1
观测角 (右角) 2
改正数 3
改正角 4=2+3
坐标方位角
距离D /m 6 Δx /m 7
增量计算值 Δy /m 8 Δx /m 9
改正后增量 Δy /m 10
α
5 236°44′28″
A B
205°36′48″ -13″ 205°36′35″
211°07′53″ 1 290°40′54″ -12″ 290°40′42″ 100°27′11″ 2 202°47′08″ -13″ 202°46′55″ 77°40′16″ 3 167°21′56″ -13″ 167°21′43″ 90°18′33″ 4 175°31′25″ -13″ 175°31′12″ 94°47′21″ C 214°09′33″ -13″ 214°09′20″ 60°38′01″ 1 256°07′44″ -77″ 1 256°06′25″
(
l ′ ′/ ρ′′ )
2
(
l ′ ′/ ρ ′′ )
3
(
l ′ ′ / ρ ′′ ) 4
(l
′ ′ /ρ ′′
5 )
(
l ′ ′/ ρ′′
)
6
6
2 t
t 4 0.103888585
X=NcosBcosL
η
2
η4
0.005204529 -0.00037547 2.70871E-05 -1.95413E-06
5 -13.05
-13
155.67
D

641.44
-108.03
445.74
-107.84
445.63
A
298.2572236
2 X=a(1-e) A − sin 2 B +
B ρ
0
B 2
C sin 4 B − 0.022 sin 6 B 4
f
N 5 4 2 3 sin B cos η 5
0.997448379
MN
6367142.0155
η=
e′cosB
A=1+ 3 2 e +
4
1.005052295
45 4 e 64
B=
3 4
15 e 2 + 16 e 4 C= 15 e
4
64
0.999183783
6360513.8573
0.071391393
0.0050627988 1.0503450809E-05
B f (°′″)
29.34165112
B (°)
29.57125311
B f (rad)
0.516115731
B f (″)
106456.5
A(°′″)
45.1324
A(°)
45.22333333
方位角A(rad)
0.789296065
A (″)
162804.0
B
0
校核X0 3274099.7280 X0
cos 3B 0.657652341
cos 5 B
cos B 7
sin3 B
sin 5B 0.029333941
sin B7 0.007150206
子午线弧长计算系数 6367447.8379 16037.5273
0.497348277 0.376118647 0.120343391
16.7481121 3274095.10773
5312328.2033
3130440.4098
高斯投影反算已知平面坐标
反算出的大地坐标 H B(°′″) L(°′″) H
X=NcosBcosL
-1610620.6053
反算空间坐标
Y=NcosBsinL
5312328.2033
Z=N(1- e)sinB 2
x
3273488.972
y
137082.377
椭球参数:
长半径(a)
6378137.0000
短半径(b)
6356752.31425
极曲率半径c
6399593.62576
地球曲率e
0.003352810665
e′
0.0820944379497
2
e
0.0066943799901
e′
2
e
4
地球曲率e
298.2572236
0.00673949674
4.48147E-05
3130440.4098
角度单位的相互转化
B (°′″)
29.2029944032
B (°)
29.34165112
B (rad)
0.512108420
B (″)
105629.9
B (°)
B (°′″)
B (″)
105629.9
B (rad)
0.509688404
29.34165112 29.2029944032 29.34165112 29.2029944032
2
L0
111
L (″) 0
399600
ρ′′
206265
L-L0 (″)
-14880.456200
l ′′ ρ′′ /
-0.07214242 B(rad)
0.516353631
t=tanB
0.567730149
sinB
0.493712453
cosB
0.869625215
sin 2 B
0.2437519861
′ ρ 720
6 4 2
η
坐标值

x /m
11
y /m
12
号 13 A
1 536.86
837.54
B
1 429.59
772.71 1
1 411.70
869.81 2
1 4442.02
1 127.50 4
1 429.02
1 283.17
C D
6356752.31425
相关文档
最新文档