八年级第十七章勾股定理
八年级数学下册第十七章勾股定理17-1勾股定理第1课时认识勾股定理新版新人教版

②如图②,AD在△ABC外部.
在Rt△ACD中,由勾股定理得CD=5,
在Rt△ABD中,由勾股定理得DB=16,
∴CB=BD-CD=16-5=11,
∴S△ABC= ·
BC·
AD= ×11×12=66.
综上所述,△ABC的面积为66或126.
利用勾股定理求作图中线段的长
9.[2023·天津]如图,在△ABC中,分别以点A和点C为圆心,
若AC=3,BC=4,则CD的长为( A )
(第2题)
A.2.4
B.2.5
C.4.8
D.5
【点拨】
∵∠ACB=90°,AC=3,BC=4,
∴AB2=AC2+BC2=32+42=52,∴AB=5.
∵CD⊥AB,∴S△ABC= AB·
CD= AC·
BC.
∴CD=
· ×
= =2.4.
∵BD=CD,
∴BD=AD.
∴∠B=∠BAD.
∵∠B+∠BAD+∠C+∠DAC=180°,
∴2∠BAD+2∠DAC=180°.
∴∠BAD+∠DAC=90°.
∴∠BAC=90°.
在Rt△ABC中,BC=BD+CD=2AD=10,AC=8,
∴AB= − = − =6.
故选D.
3.[2023·随州]如图,在Rt△ABC中,∠C=90°,AC=8,
BC=6,D为AC上一点,若BD是∠ABC的平分线,则AD
=
5
.
(第3题)
【点拨】
如图,过点D作DE⊥AB于点E.
∵∠C=90°,∴CD⊥BC,
∵BD是∠ABC的平分线,
人教版初中数学八下第十七章 勾股定理 17.1 勾股定理 第2课时 勾股定理的应用

17.1 勾股定理 第2课时 勾股定理的应用
知识点 勾股定理的应用
1.如图,某公园有一块长方形草坪,有极少数人为了避开拐角∠AOB而走“捷 径”,在草坪内走出了一条“路”AB.他们踩伤草坪,仅仅少走了( A )
A.4 m
B.6 m
C.8 m
D.10 m
第1题图
2.如图,一艘轮船以16 n mile/h的速度从港口A出发向东北方向航行,另一艘轮船以 12 n mile/h的速度同时从港口A出发向东南方向航行,离开港口2 h后两船相距 (C)
第4题图
5.如图,若河岸的两边平行,河宽AC=800 m,河岸上B,C两点之间的距离为600 m.一只船由河岸的A处沿直线方向开往对岸的B处,船的速度为200 m/min,求船从 A处到B处所需的时间.
答:船从A处到B处所需的时间为5 min.
7.(教材P25例2变式)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时, 梯子底端B到左墙脚C的距离为0.7 m,顶端A距离地面2.4 m.如果保持梯子底端位置 不动,将梯子斜靠在右墙时,顶端A'距离地面2 m,求小巷的宽度.
答:小巷的宽度为2.2 m.
8.如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,则至少需要地毯( A ) A.17 m B.18 m C.25 m D.26 m
9.如图,小明将一张长为20 cm,宽为15 cm的长方形纸(AE>DE)剪去了一角,量 得AB=3 cm,CD=4 cm,则剪去的直角三角形的斜le
C.40 n mile
D.50 n mile
第2题图
3.已知一根竹子原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地, 抵地处离竹子底部6尺远,则折断处离地面的高度为 3.2 尺.
第十七章 勾股定理 单元解读课件

学习目标
教学内容
学习目标
1.了解互逆命题、互逆定理之间的联系与区别, 并能写出一个命题的逆命题. 2.掌握勾股定理的逆定理,会运用勾股定理的 逆定理判断一个三角形是不是直角三角形,能 17.2 勾股定理的逆定理 够理解勾股定理及其逆定理的区别与联系. 3.了解勾股数,会判断三个数是不是勾股数. 4.经历勾股定理的逆定理的探索过程,体验用 全等三角形证明勾股定理的逆定理的过程.
勾股定理
单元教材解读
课标解读
教学内容
课标要求
17.1 勾股定理 17.2 勾股定理的逆定理
探索勾股定理及其逆定理,并能运用它们解决 一些简单的实际问题
学习目标
教学内容
学习目标
17.1 勾股定理
1.经历勾股定理的探索过程,了解关 于勾股定理的文化历史背景. 2.会运用勾股定理在数轴上确定无理 数对应的点. 3.能利用勾股定理解决一些简单问题.
教学建议
3.适当总结和定理、逆定理有关的内容 本章引出了逆定理的概念,为了让学生对这一概念掌握得更好,可
以在小结时结合已学过的一些结论来加深理解.如:“角的平分线上 的点到角的两边的距离相等”和“角的内部到角的两边的距离相等的 点在角的平分线上”.还可以举出其他的一些例子.这样就可以从定 理、逆定理的角度认识已学的一些结论.明确其中一些结论之间的关 系.对互逆命题、互逆定理的概念,学生理解它们通常困难不大.但 对那些不是以“如果……那么……”形式给出的命题,叙述它们的逆 命题有时就会有困难,可以尝试先把命题变为“如果……那么……” 的形式.当然,要注意把握教学要求,不宜涉及结构太复杂的命题.
互逆定理
一般的,如果一个定理的逆命题经过证明是正确的, 那么它也是一个定理,称这两个定理互为逆定理.
2024八年级数学下册第十七章勾股定理17.1勾股定理第2课时应用勾股定理解实际问题课件新版新人教版

【解】(1)如图,过点A作AE⊥CD于点E,
则∠AEC=∠AED=90°.
∵∠ACD=60°,∴∠CAE=90°-60°=30°.
∴CE= AC=
DE=
km.∴AE=
km,
km.
∴AE=DE.∴△ADE是等腰直角三角形.∴AD=
+ = = AE= ×
度为x尺,则可列方程为( D )
A.x2-3=(10-x)2
B.x2-32=(10-x)2
C.x2+3=(10-x)2
D.x2+32=(10-x)2
【点拨】
如图,已知折断处离地面的高度为x尺,即AC=x尺,
则AB=(10-x)尺,BC=3尺.在Rt△ABC中,AC2+BC2=
AB2,即x2+32=(10-x)2.故选D.
2.[2023·岳阳 新考向·传承数学文化]我国古代数学名著《九章
算术》中有这样一道题:“今有圆材,径二尺五寸,欲为
方版,令厚七寸,问广几何?”结合如图,其大意是:今
有圆形材质,直径BD为25寸,要做成方形板材,使其厚
度CD达到7寸,则BC的长是( C )
A. 寸
B.25寸
C.24寸
D.7寸
选B.
4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙
时,梯子底端到左墙脚的距离为0.7 m,顶端距离地面2.4
m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶
端距离地面2 m,那么小巷的宽度为( C )
A.0.7 m
B.1.5 m
C.2.2 m
D.2.4 m
【点拨】
如图,BC=2.4 m,AC=0.7 m,DE=
最新人教版数学八年级下册第十七章 -勾股定理

第十七章—勾股定理一、勾股定理1. 概念:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a2+b 2=c 2.2. 公式变形: ①:a2=c 2-b 2,b 2=c 2-a 2②:c=22b a + ,a=22b c - ,b=22a c -勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下: 方法一:4EFGH S S S ∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题.b acbac cabcab a bccbaED CBA5.勾股定理的常见类型:(1)勾股定理在实际问题中的应用一般情况下,遇到高度、长度、距离、面积等实际问题时,可以构造直角三角形、运用勾股定理求解。
第17章 勾股定理

第十七章 勾股定理知识点回顾:(1)直角三角形斜边上的中线等于斜边的一半;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半; 知识点一: 勾股定理 1.勾股定理的定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2,即直角三角形中两直角边的平方和等于斜边的平方.(注意:前提条件是直角三角形!!!) 例题:1.在Rt △ABC 中, 90=∠C ,中AC=3,BC=4,则AB=( )A.5B.7C.12D.25 2.(常考题)在直角三角形ABC 中,斜边AB =1,222AC BC AB ++的值是( ) A .2 B .4 C .6 D .8 3.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A.13B.8C.25D.64 4.(易错题)若△ABC 中,AB =13,AC =15,高AD =12,则BC 的长是( )A.14B.4C.10或18D.14或4 5.(常考题)等边三角形的边长为2,则该三角形的面积为( )8.已知直角三角形中30°角所对的直角边长是32cm ,则另一条直角边的长是( ) A .4cm B .34cm C . 6cm D . 36cm 9.在直角坐标系中,点P (2,3)到原点的距离是2.勾股定理的图形结合题(难点)例题:1.如图,在△ABC中,三边长a、b、c的大小关系是()3.(常考题,难)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5cm,则所有正方形A、B、C、D、E、F、G的面积之和为2cm.4.(必考题,难)如图,2002年8月在北京召开的国际数学家大会的会标,它是由四个相同的直角三角形与中间一个小正方形拼成的一个大正方形。
若大正方形边长是13cm,小正方形边长为7cm,则每个直角三角形较短的一条直角边的长是______cm.()A.169B.25C.19D.135.(常考题,难)如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=3,则图中阴影部分的面积为第1题第2题第3题第4题第5题6.(常考题)如图,数轴上点A表示的数是.7.8.(必考题)如图所示,正方形网格中的每个小正方形边长都是1,每个小格点的顶点叫格点,以格点作为顶点分别按下列要求画三角形.(1)使三角形为钝角三角形且面积为4.(在图①中画出一个即可) (2)使三角形的三边长分别为3,22,5;(在图②中画出一个即可)知识点二、勾股定理的逆定理 1.勾股定理的逆定理如果三角形的三边长a 、b 、c 满足22b a +=2c ,那么这个三角形是直角三角形。
人教版八年级数学下册第十七章第一节 第1课时 勾股定理

B
解:(1) 据勾股定理得
c a2 b2 52 52 50 5 2. C
A
(2) 据勾股定理得
b c2 a2 22 12 3.
【变式题1】在 Rt△ABC 中, ∠C = 90°. (1) 若 a∶b = 1∶2 ,c = 5,求 a ; (2) 若 b = 15,∠A = 30°,求 a,c. 解:(1) 设 a = x,b = 2x,根据勾股定理建立方程得 x2 + (2x)2 = 52,解得 x 5, ∴ a 5 . (2) ∵A 30°,b 15,∴c 2a . 因此设 a = x,c = 2x,根据勾股定理建立方程得 (2x)2 - x2 = 152,解得 x 5 3 . ∴ a 5 3 ,c 10 3 .
1 4
BC2.
勾股定理
内容 注意
在Rt△ABC 中,∠C = 90°,a,
b 为直角边,c 为斜边,则有 a2 + b2 = c2.
在直角三角形中
看清哪个角是直角
已知两边没有指明是直角边 还是斜边时一定要分类讨论
D
根据三角形面积公式,
3
∴ ∴
1 2
AC×BC
12
CD = 5 .
=
1 2
AB×CD.
C
4
B
归纳 由直角三角形的面积求法可知直角三角形两直角
边的积等于斜边与斜边上高的积,它常与勾股定理联
合使用.
练一练
求下列图中未知数 x、y 的值:
81 x
144
解:由勾股定理可得 81 + 144 = x2,
解得 x = 15.
勾股定理有着悠久的历史:古巴比伦人和古代中国人 看出了这个关系,古希腊的毕达哥拉斯学派首先证明 了这关系,下面让我们一起来通过视频来了解吧:
新人教版八年级下册初二数学第十七章勾股定理(全章)优秀PPT课件

的正方形面积叫黄
b a
c
实,大正方形面积 叫弦实,这个图也 叫弦图。
赵爽弦图
大正方形面积怎么求?
c a
b c
b
a
(b a)2 4 1 ab c2 2
b2 2ab a2 2ab c2
结论:
a2 b2 c2
有趣的总统证法
美国第二十任总统伽菲尔德的证法在数学史 上被传为佳话人们为了纪念 他对勾股定理直观、简捷、 易懂、明了的证明,就把 这一证法称为“总统”证法。
3.猜想a、b、c 之间的关系? a2 +b2 =c2
用
拼 图 法 证
ab
b
ca
明
a c cb
ba
3.猜想a、b、c 之间的关系? a2 +b2 =c2
用
拼 图 法 证
ab
b
ca
明
a c cb
ba
3.猜想a、b、c 之间的关系? a2 +b2 =c2
用 拼
∵ S大正方形=4×S直角三角形+ S小正方形
∴ AC2+BC2=A
B
∴
B2
AB
AC2 BC 2
242 72
625 25
24
如果将题目变为:
在Rt△ABC中,AB=41, BC=40,求AC的长呢?
A7C
24
AC AB2 BC 2 412 402 81 9
结论:在直角三角形中,已知两边可以求第三边.
试一试:
常
1 .在Rt△ABC中,∠C=90°.
C
在Rt △ABE中, AB2=AE2+BE2
∴ AD2-AB2=(AE2+DE2)-(AE2+BE2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、同步知识梳理知识点1:勾股定理:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方.二、同步题型分析例1:已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c ,求证:a 2+b 2=c 2. (提示:利用下列三种图形的面积相等进行证明)分析:正方形的面积为C 2四个三角形加空白部分的正方形面积和为a 2+b 2 所以a 2+b 2=c 2.解答题过程(略)总结:通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。
变式练习:根据如图所示,利用面积法证明勾股定理。
c b a D CABb ccaa bDCAEB例2:在Rt ABC ∆,90C ∠=︒,a =8,b =15,则c = .( A ∠、B ∠、C ∠的对应边分别为a 、b 、c ) 答案:17三、课堂达标检测1、填空题:在Rt ABC ∆,90C ∠=︒,A ∠、B ∠、C ∠的对应边分别为a 、b 、c . ⑴如果a =7,c =25,则b = ; 答案:24⑵如果A ∠=30°,a =4,则b = ; 答案:23⑶如果A ∠=45°,a =3,则c = ; 答案:22⑷如果b =8,a :c =3:5,则c = . 答案:10⑸如果a 、b 、c 是连续整数,则a +b +c = ; 答案:12⑹已知直角三角形的两边长分别为3cm 和5cm ,则第三边长为 . 答案:4或34⑺如右图,Rt △ABC 中,∠C =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积和为 . 答案:15 cm 22、已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.小结:Rt ABC ∆的主要性质是:(90C ∠=︒,A ∠、B ∠、C ∠的对应边分别为a 、b 、c ,用几何语言表示)⑴两锐角之间的关系: ; ⑵若B ∠=30°,则B ∠的对边和斜边: ; ⑷三边之间的关系: . 能力提升1.若直角三角形的三边长分别为2,4,x ,则x 的值可能有( ).(A)1个(B)2个 (C)3个(D)4个答案:B2.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形的边长为 . 答案:53.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=______.答案:44.如图是一张直角三角形的纸片,两直角边AC =6cm 、BC =8cm ,现将ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( ). A. 4cm B. 5cm C. 6cm D. 10cm答案:B5.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,求BC 的长.6.如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1、S 2、S 3表示,则不难证明S 1=S 2+S 3.(1) 如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、2题图3题图A4题图BCDES3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2) 如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;(3) 若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?DC 2m1mBAC2m1mBA图1一、 同步知识梳理1.在直角三角形中,若已知任意两边,就可以运用勾股定理求出第三边.无直角时,可作垂线构造直角三角形. 2.勾股定理的作用:(1)计算;(2)证明带有平方的问题;(3)实际应用.3.利用勾股定理可以画出长度是无理数的线段,也就可以在数轴上画出表示无理数的点.二、同步题型分析例1:在长方形ABCD 中,宽AB 为1m ,长BC 为2m ,求AC长. AC=5①如图1,在长方形ABCD 中,求AB 、BC 、AC 的大小关系? 答案:AB 2+BC 2=AC 2②一个门框的尺寸如上题图所示. ⑴若有一块长3m ,宽0.8m 的薄木板,问怎样从门框通过? 答案:斜着通过⑵若薄木板长3m ,宽2.1m 呢?为什么? 答案:不能通过总结:明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。
变式训练:⑴甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两人相距______km .⑵如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m 路,却踩伤了花草.⑶一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,则1.5小时后两船相距海里.⑷有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 米。
⑵题图O ADBC图2答案:(1)5 km (2)2 (3)30 (4)22例2:如图2,一个2.5m 长的梯子AB ,斜着靠在竖直的墙AO 上,这是AO 的距离为2.4m . ① 你能从所给的图形中找到直角三角形吗?试试看,把它们写出来.②求梯子的底端B 距墙角O 是多少?③如果梯子的顶端A 沿墙下滑0.4米至C ,请同学们猜一猜,底端也 将滑动1米吗?算一算,底端滑动的距离. 答案:①AOB ②0.7m ③没有滑动1m 底端滑动的距离为0.8m 总结:熟练使用勾股定理,探究直角三角形三边的关系:保证一边不变,其它两边的变化;同时学会构造直角三角形。
变式训练:⑴如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m .⑵如图,从台阶的下端点B 到上端点A 的直线距离为( ).(A)212 (B)310 (C)56 (D)58(1) (2) 答案:(1)10 (2)A⑶在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?⑷某校把一块形状为直角三角形的废地开辟为生物园,如图7所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?例3:⑴数轴上的点表示什么数呢?⑵你能画出长为13的线段吗?⑶如何在数轴上描出表示13的点?答案:⑴全体实数⑵能⑶(1)做一个两直角边分别为2,3的直角三角形;(2)以原点为圆心,所画直角边的斜边为半径画弧,交数轴的正半轴于一点,这点就是所求的表示13的点.点评:无理数也可以在数轴上表示出来,但应先把它整理为有形的线段长.总结:会利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数⑷图一一对应的理论。
变式训练1. 在数轴上作出表示-5的点.答案:(1)做一个两直角边分别为1,2的直角三角形;(2)以原点为圆心,所画直角边的斜边为半径画弧,交数轴的正半轴于一点,这点就是所求的表示的点.-5三、课堂达标检测1、如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A 点,沿圆柱表面爬到与A 相对的上底面B 点,则蚂蚁爬的最短路线长约为______(π取3)2、长为4 m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了____________m .3、已知直角三角形的周长为62+,斜边为2,则该三角形的面积是( ). (A)41 (B)43 (C)21 (D)14、若等腰三角形两边长分别为4和6,则底边上的高等于( ).(A)7 (B)7或41 (C)24(D)24或7答案:1、25 2、32—22 3、D 4、D5、如图,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.1题图2题图6、小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,求河水的深度.7、如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形茶杯中,设筷子露在杯子外面的长为acm (茶杯装满水),则a 的取值范围是多少?8、如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.7图一、 能力培养例1 已知:在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,AD=1,CD=3,求线段AB 的长。
分析:在Rt △ADC 中 通过勾股定理求出 AC=2 利用30°特殊角的特殊性质 得出∠ACD=30° 从而得出∠B=30°,最后得到AB=4总结:“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学生能够灵活应用。
目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。
例2 已知:如图,△ABC 中,AC=4,∠A=45°,∠B=60°,根据题设可知什么?答案:AB=362+22 BC=62总结:注意所求结论的开放性,根据已知条件,作适当辅助线求出三角形中的边和角。
掌B ACDCA BD握解一般三角形的问题常常通过作高转化为直角三角形的问题。
作辅助线不能破坏已知角。
例3 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD 的面积。
分析:将AD 、BC 延长交于一点E 。
通过勾股定理分别求出BE 和CD 的长度。
算出两个三角形的面积。
四边形的面积为大三角形的面积减去小三角形的面积。