郑州市2013—2014学年高一上学期期末考试——数学
河南省郑州市高一上学期数学期末考试试卷

河南省郑州市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·广安模拟) 已知集合A={x|(x﹣1)2≤3x﹣3,x∈R},B={y|y=3x+2,x∈R},则A∩B=()A . (2,+∞)B . (4,+∞)C . [2,4]D . (2,4]2. (2分) (2016高一上·黑龙江期中) 函数f(x)= 的定义域为()A . (0,1)B . (1,2)C . (0,1)∪(1,2)D . (0,2)3. (2分) (2016高一下·周口期末) 已知α、β都是锐角,tanα=2,tanβ=3,那么α+β等于()A .B .C .D .4. (2分) (2016高一上·周口期末) 已知x=ln π,y=log52,z=log e则()A . x<y<zB . z<x<yC . z<y<xD . y<z<x5. (2分) (2019高一上·郁南月考) 已知指数函数y=(a+2)x,则实数a的取值范围是().A . (-2,+∞)B . [-2,+∞)C . (-2,-1) (-1,+∞)D . (1,2)∪(2,+∞)6. (2分)已知向量与的夹角为120°,且||=2,||=3,若=λ+,且⊥,则实数λ的值为()A .B . 13C . 6D .7. (2分)已知函数f,若f(x+θ)是周期为2π的偶函数,则θ的一个可能值是()A .B .C . πD .8. (2分)已知角的终边与单位圆交于,则()A .B . 1C .D .9. (2分) (2016高一下·延川期中) 若,则tanα=()A . 1B . ﹣1C .D .10. (2分) (2015高一下·松原开学考) 设函数f(x)= ,若f(f())=4,则b=()A . 1B .C .D .11. (2分) (2019高一上·阜阳月考) 下列四个图象中,表示函数的图象的是()A .B .C .D .12. (2分) (2016高一上·会宁期中) 已知f(x)=ax3+bx﹣4,其中a,b为常数,若f(﹣2)=2,则f(2)的值等于()A . ﹣2B . ﹣4C . ﹣6D . ﹣10二、填空题 (共4题;共4分)13. (1分) (2016高一上·余杭期末) 已知某扇形的周长是16,圆心角是2弧度,则该扇形的面积是________14. (1分) (2016高一下·榆社期中) 已知0<α<π,﹣sinα=2cosα,则2sin2α﹣sinαcosα+cos2α的值为________.15. (1分)(2017·大同模拟) 已知P为△ABC内一点,且,若,则点P到△ABC三边的距离的最大值为________.16. (1分)函数y=x2与函数y=xlnx在区间(1,+∞)上增长较快的一个是________.三、解答题 (共6题;共55分)17. (10分) (2015高三上·福建期中) 已知是非零向量,f(x)= .(1)若,证明f(x)为奇函数(2)若f(0)=3,f(x+2)=f(2﹣x),求| |.18. (5分)定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M 成立,则称f(x)是D上的有界函数,其中M称为函f(x)的一个上界.已知函数f(x)=1+a+, g(x)=.(1)若函数g(x)为奇函数,求实数a的值;(2)在(1)的条件下,求函数g(x),在区间[, 3]上的所有上界构成的集合;(3)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.19. (10分) (2016高一上·玉溪期中) 设函数f(x)= + 的图象关于y轴对称,且a>0.(1)求a的值;(2)求f(x)在[0,2]的值域.20. (15分)已知函数.(1)用五点法作图作出f(x)在x∈[0,π]的图象;(2)求f(x)在的最大值和最小值;(3)若不等式|f(x)﹣m|<2在上恒成立,求实数m的取值范围.21. (5分)如图所示,某市拟在长为的道路的一侧修建一条运动赛道,赛道的前一部分为曲线段,该曲线段为函数,的图象,且图象的最高点为;赛道的后一部分为折线段 .为保证参赛运动员的安全,限定,求,的值和,两点间的距离.22. (10分) (2015高一上·雅安期末) 设函数f(x)=(1)当时,求函数f(x)的值域;(2)若函数f(x)是(﹣∞,+∞)上的减函数,求实数a的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分) 17-1、17-2、18-1、19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、第11 页共11 页。
河南省郑州市2014-2015学年高一上学期期末数学试卷 (Word版含解析)

河南省郑州市2014-2015学年高一上学期期末数学试卷一、选择题(本大题共14个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)80﹣lg100的值为()A.2B.﹣2 C.﹣1 D.2.(5分)点(1,2)到直线y=2x+1的距离为()A.B.C.D.23.(5分)过点(1,0)且与直线x﹣2y﹣2=0平行的直线方程是()A.x﹣2y﹣1=0 B.x﹣2y+1=0 C.2x+y﹣2=0 D.x+2y﹣1=04.(5分)一个几何体的三视图如图所示,其中主(正)视图是边长为2的正三角形,俯视图是正方形,那么该几何体的左(侧)视图的面积是()A.2B.C.4D.25.(5分)若函数f(x)=,则f(f(e))(其中e为自然对数的底数)=()A.0B.1C.2D.e ln26.(5分)两圆x2+y2﹣1=0和x2+y2﹣4x+2y﹣4=0的位置关系是()A.内切B.相交C.外切D.外离7.(5分)在同一坐标系中,当0<a<1时,函数y=a﹣x与y=log a x的图象是()A.B.C.D.8.(5分)三个数20.3,0.32,log0.32的大小顺序是()A.0.32<log0.32<20.3B.0.32<20.3<log0.32C.l og0. 32<20.3<0.32D.log0.32<0.32<20.39.(5分)函数y=log2(x2﹣3x+2)的递减区间是()A.(﹣∞,1)B.(2,+∞)C.(﹣∞,)D.(,+∞)10.(5分)函数y=的值域是()A.C.(0,4)D.,则函数y=f(x)的定义域为(﹣∞,0);③函数y=在(﹣∞,0)上是增函数;④方程2|x|=log2(x+2)+1的实根的个数是2.所有正确命题的序号是(请将所有正确命题的序号都填上)三、解答题:本大题共5小题,满分64分,解答应写出文字说明、证明过程或演算步骤19.(12分)已知集合A={x|3≤x<6},B={x|2<x<9}(1)求A∩B,(∁R B)∪A;(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值的集合.20.(12分)已知函数.(Ⅰ)若g(x)=f(x)﹣a为奇函数,求a的值;(Ⅱ)试判断f(x)在(0,+∞)内的单调性,并用定义证明.21.(13分)如图,正四棱锥S﹣ABCD的底面是边长为a的正方形,侧棱长是底面边长为倍,O为底面对角线的交点,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)F为SD的中点,若SD⊥平面PAC,求证:BF∥平面PAC.22.(13分)某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产意见“玉兔”需要增加投入100元,根据初步测算,总收益(单位:元)满足分段函数φ(x),其中φ(x)=,x是“玉兔”的月产量(单位:件),总收益=成本+利润(1)试将利用y元表示为月产量x的函数;(2)当月产量x为多少件时利润最大?最大利润是多少?23.(14分)已知圆C过坐标原点O,且与x轴,y轴分别交于点A,B,圆心坐标C(t,)(t∈R,t≠0)(1)求证:△AOB的面积为定值;(2)直线2x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.河南省郑州市2014-2015学年高一上学期期末数学试卷参考答案与试题解析一、选择题(本大题共14个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)80﹣lg100的值为()A.2B.﹣2 C.﹣1 D.考点:对数的运算性质.专题:计算题.分析:根据指数幂的性质以及对数的运算性质进行计算即可.解答:解;80﹣lg100=1﹣2=﹣1,故选:C.点评:本题考查了对数的运算性质,是一道基础题.2.(5分)点(1,2)到直线y=2x+1的距离为()A.B.C.D.2考点:点到直线的距离公式.专题:直线与圆.分析:利用点到直线的距离公式即可得出.解答:解:由点到直线的距离公式d==,故选:A.点评:本题考查了点到直线的距离公式,属于基础题.3.(5分)过点(1,0)且与直线x﹣2y﹣2=0平行的直线方程是()A.x﹣2y﹣1=0 B.x﹣2y+1=0 C.2x+y﹣2=0 D.x+2y﹣1=0考点:两条直线平行的判定;直线的一般式方程.专题:计算题.分析:因为所求直线与直线x﹣2y﹣2=0平行,所以设平行直线系方程为x﹣2y+c=0,代入此直线所过的点的坐标,得参数值解答:解:设直线方程为x﹣2y+c=0,又经过(1,0),∴1﹣0+c=0故c=﹣1,∴所求方程为x﹣2y﹣1=0;故选A.点评:本题属于求直线方程的问题,解法比较灵活.4.(5分)一个几何体的三视图如图所示,其中主(正)视图是边长为2的正三角形,俯视图是正方形,那么该几何体的左(侧)视图的面积是()A.2B.C.4D.2考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由题意可知左视图与主视图形状完全一样是正三角形,可得结论.解答:解:由题意可知左视图与主视图形状完全一样是正三角形,因为主(正)视图是边长为2的正三角形,所以几何体的左(侧)视图的面积S==故选:B.点评:本题考查由三视图求面积、体积,求解的关键是根据所给的三视图判断出几何体的几何特征.5.(5分)若函数f(x)=,则f(f(e))(其中e为自然对数的底数)=()A.0B.1C.2D.eln2考点:函数的值.专题:函数的性质及应用.分析:根据分段函数的解析式,求出函数值即可.解答:解:∵函数f(x)=,∴f(e)=lne=1,∴f(f(e))=f(1)=21=2.故选:C.点评:本题考查了分段函数的求值问题,是基础题目.6.(5分)两圆x2+y2﹣1=0和x2+y2﹣4x+2y﹣4=0的位置关系是()A.内切B.相交C.外切D.外离考点:圆与圆的位置关系及其判定.专题:计算题.分析:由已知中两圆的方程:x2+y2﹣1=0和x2+y2﹣4x+2y﹣4=0,我们可以求出他们的圆心坐标及半径,进而求出圆心距|O1O2|,比较|O1O2|与R2﹣R1及R2+R1的大小,即可得到两个圆之间的位置关系.解答:解:圆x2+y2﹣1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆;圆x2+y2﹣4x+2y﹣4=0表示以O2(2,﹣1)点为圆心,以R2=3为半径的圆;∵|O1O2|=∴R2﹣R1<|O1O2|<R2+R1,∴圆x2+y2﹣1=0和圆x2+y2﹣4x+2y﹣4=0相交故选B.点评:本题考查的知识点是圆与圆的位置关系及其判定,若圆O1的半径为R1,圆O2的半径为R2,(R2≤R1),则当|O1O2|>R2+R1时,两圆外离,当|O1O2|=R2+R1时,两圆外切,当R2﹣R1<|O1O2|<R2+R1时,两相交,当|O1O2|=R2﹣R1时,两圆内切,当|O1O2|<R2﹣R1时,两圆内含.7.(5分)在同一坐标系中,当0<a<1时,函数y=a﹣x与y=log a x的图象是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据指数函数和对数函数的图象即可得到答案解答:解:当0<a<1时,y=a﹣x是过(0,1)点的增函数,y=log a x是过(1,0)点的减函数,综上答案为C.故选:C点评:本题考查了指数函数和对数函数的图象,属于基础题8.(5分)三个数20.3,0.32,log0.32的大小顺序是()A.0.32<log0.32<20.3B.0.32<20.3<log0.32C.l og0.32<20.3<0.32D.l og0.32<0.32<20.3考点:对数值大小的比较.专题:函数的性质及应用.分析:利用指数函数与对数函数的单调性即可得出.解答:解:∵20.3>1,0<0.32<1,log0.32<0,∴log0.32<0.32<20.3,故选:D.点评:本题考查了指数函数与对数函数的单调性,属于基础题.9.(5分)函数y=log2(x2﹣3x+2)的递减区间是()A.(﹣∞,1)B.(2,+∞)C.(﹣∞,)D.(,+∞)考点:复合函数的单调性.专题:函数的性质及应用.分析:设t=x2﹣3x+2,根据复合函数单调性之间的关系进行求解即可.解答:解:由x2﹣3x+2>0,得x<1或x>2,设t=x2﹣3x+2,则y═log2t为增函数,则根据复合函数单调性之间的关系知要求函数y=log2(x2﹣3x+2)的递减区间,即求函数t=x2﹣3x+2的递减区间,∵t=x2﹣3x+2的递减区间为(﹣∞,1),∴函数y=log2(x2﹣3x+2)的递减区间是(﹣∞,1),故选:A.点评:本题主要考查函数单调性的求解,根据复合函数单调性之间的关系是解决本题的关键.10.(5分)函数y=的值域是()A.C.(0,4)D.故选:B.点评:本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.12.(5分)偶函数f(x)的定义域为R,当x∈,则函数y=f(x)的定义域为(﹣∞,0);③函数y=在(﹣∞,0)上是增函数;④方程2|x|=log2(x+2)+1的实根的个数是2.所有正确命题的序号是③④(请将所有正确命题的序号都填上)考点:命题的真假判断与应用.专题:计算题;函数的性质及应用;集合.分析:当k=0时,A={﹣1},即可判断①;由函数的定义域的定义,以及指数函数的单调性即可解得f(x)的定义域,即可判断②;通过函数y=的图象的平移和单调性即可判断③;运用函数与方程的转换,作出函数的图象,通过观察即可判断方程根的个数,即可判断④.解答:解:对于①,当k=0时,A={﹣1},也符合题意,则①错;对于②,函数y=f(3x)的定义域为,即有﹣1≤x≤1,则,则y=f(x)的定义域应该是,则②错;对于③,y=的图象可由函数y=的图象向右平移1个单位得到,由于y=在(﹣∞,0)递增,则y=在(﹣∞,1)递增,则③对;对于④,在同一坐标系中作出y=2|x|,y=log2(x+2)+1的图象,由图可知有两个交点.故方程的实根的个数为2.则④对.故答案:③④.点评:本题考查函数的定义域的求法和单调性的判断,以及函数与方程的转化思想,考查集合的化简,属于基础题和易错题.三、解答题:本大题共5小题,满分64分,解答应写出文字说明、证明过程或演算步骤19.(12分)已知集合A={x|3≤x<6},B={x|2<x<9}(1)求A∩B,(∁R B)∪A;(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值的集合.考点:集合的包含关系判断及应用;交、并、补集的混合运算.专题:计算题;集合.分析:(1)显然A∩B={x|3≤x<6},再求∁R B={x|x≤2或x≥9},从而求(∁R B)∪A={x|x≤2或3≤x<6或x≥9};(2)C⊆B,作数轴辅助,应有,从而解得.解答:解:(1)显然A∩B={x|3≤x<6},又∵B={x|2<x<9},∴∁R B={x|x≤2或x≥9},∴(∁R B)∪A={x|x≤2或3≤x<6或x≥9};(2)∵C⊆B,如图,应有解得2≤a≤8,故实数a的取值的集合为.点评:本题考查了集合的化简与运算,属于基础题.20.(12分)已知函数.(Ⅰ)若g(x)=f(x)﹣a为奇函数,求a的值;(Ⅱ)试判断f(x)在(0,+∞)内的单调性,并用定义证明.考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:(I)根据f(x)表达式,得g(x)=,再根据奇函数的定义采用比较系数法即可求出实数a的值.(II)设0<x1<x2,将f(x1)与f(x2)作差、因式分解,得f(x1)<f(x2),结合函数奇偶性的定义得到函数f(x)在(0,+∞)内是单调增函数.解答:解:(Ⅰ)∵∴g(x)=f(x)﹣a=,…(2分)∵g(x)是奇函数,∴g(﹣x)=﹣g(x),即,解之得a=1.…(5分)(Ⅱ)设0<x1<x2,则=.(9分)∵0<x1<x2,∴x1﹣x2<0,x1x2>0,从而,(11分)即f(x1)<f(x2).所以函数f(x)在(0,+∞)内是单调增函数.(12分)点评:本题给出含有分式的基本初等函数,讨论函数的单调性与奇偶性质.着重考查了函数的奇偶性的定义和用定义法证明单调性等知识,属于基础题.21.(13分)如图,正四棱锥S﹣ABCD的底面是边长为a的正方形,侧棱长是底面边长为倍,O为底面对角线的交点,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)F为SD的中点,若SD⊥平面PAC,求证:BF∥平面PAC.考点:直线与平面垂直的性质;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:(Ⅰ)连接SO,可证SO⊥AC,又SO∩BD=O,可证明AC⊥平面SBD,又SD⊂平面SBD,即可证明AC⊥SD.(Ⅱ)连接OP,可证OP⊥SD,又△SBD中,BD==SB,且F为SD中点,可证BF⊥SD,由OP,BF⊂平面BDF,可证OP∥BF,又OP⊂平面ACP,BD⊄平面ACP,BF⊄平面PAC,即可证明BF∥平面PAC.解答:证明:(Ⅰ)连接SO,∵四边形ABCD为正方形,∴AC⊥BD且O为AC中点,又∵SA=SC∴SO⊥AC又∵SO∩BD=O,∴AC⊥平面SBD,(5分)又∵SD⊂平面SBD,∴AC⊥SD.(7分)(Ⅱ)连接OP,∵SD⊥平面ACP,OP⊂平面ACP,∴OP⊥SD,(9分)又△SBD中,BD==SB,且F为SD中点,∴BF⊥SD,因为OP,BF⊂平面BDF,所以OP∥BF,(11分)又∵OP⊂平面ACP,BD⊄平面ACP,BF⊄平面PAC,∴BF∥平面PAC.(13分)点评:本题主要考查了直线与平面平行的判定,以及直线与平面垂直的性质,涉及到的知识点比较多,知识性技巧性都很强,属于中档题.22.(13分)某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产意见“玉兔”需要增加投入100元,根据初步测算,总收益(单位:元)满足分段函数φ(x),其中φ(x)=,x是“玉兔”的月产量(单位:件),总收益=成本+利润(1)试将利用y元表示为月产量x的函数;(2)当月产量x为多少件时利润最大?最大利润是多少?考点:根据实际问题选择函数类型.专题:应用题;函数的性质及应用.分析:(Ⅰ)依题设总成本为20000+100x,从而由分段函数写出y=;(Ⅱ)当<x≤400时,y=﹣(x﹣300)2+25000,则当x=300时,y max=25000;当x>400时,y<60000﹣100×400=20000,从而求最值.解答:解:(Ⅰ)依题设,总成本为20000+100x,则y=;(Ⅱ)当<x≤400时,y=﹣(x﹣300)2+25000,则当x=300时,y max=25000;当x>400时,y=60000﹣100x是减函数,则y<60000﹣100×400=20000,所以,当x=300时,有最大利润25000元.点评:本题考查了分段函数在实际问题中的应用,属于中档题.23.(14分)已知圆C过坐标原点O,且与x轴,y轴分别交于点A,B,圆心坐标C(t,)(t∈R,t≠0)(1)求证:△AOB的面积为定值;(2)直线2x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.考点:直线和圆的方程的应用;直线与圆的位置关系.专题:直线与圆.分析:(1)根据圆的方程求出A,B的坐标即可证明△AOB的面积为定值;(2)根据直线2x+y﹣4=0与圆C交于点M,N,结合|OM|=|ON|,建立条件关系即可,求圆C的方程;(3)根据直线和圆相交以及点的对称性即可得到结论.解答:(1)证明:由题设知,圆C的方程为(x﹣t)2+(y﹣)2=t2+,化简得x2﹣2tx+y2﹣y=0,当y=0时,x=0或2t,则A(2t,0);当x=0时,y=0或,则B(0,),∴S△AOB=|OA|•|OB|=|2t|•||=4为定值.解:(2)∵|OM|=|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率k===,∴t=2或t=﹣2.∴圆心为C(2,1)或C(﹣2,﹣1),∴圆C的方程为(x﹣2)2+(y﹣1)2=5或(x+2)2+(y+1)2=5,由于当圆方程为(x+2)2+(y+1)2=5时,直线2x+y﹣4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去,∴圆C的方程为(x﹣2)2+(y﹣1)2=5.(3)点B(0,2)关于直线x+y+2=0的对称点为B′(﹣4,﹣2),则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又B′到圆上点Q的最短距离为|B′C|﹣r=﹣=3﹣=2.故|PB|+|PQ|的最小值为2,直线B′C的方程为y=x,则直线B′C与直线x+y+2=0的交点P的坐标为(﹣,﹣).点评:本题主要考查直线和圆的方程的综合应用,根据条件建立方程关系是解决本题的关键.综合性较强,运算量较大.薄雾浓云愁永昼,瑞脑消金兽。
2014-2015学年河南省郑州市高一(上)期末数学试卷

2014-2015学年河南省郑州市高一(上)期末数学试卷一、选择题(本大题共14个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)80﹣lg100的值为()A.2 B.﹣2 C.﹣1 D.2.(5分)点(1,2)到直线y=2x+1的距离为()A.B.C.D.23.(5分)过点(1,0)且与直线x﹣2y﹣2=0平行的直线方程是()A.x﹣2y﹣1=0 B.x﹣2y+1=0 C.2x+y﹣2=0 D.x+2y﹣1=04.(5分)一个几何体的三视图如图所示,其中主(正)视图是边长为2的正三角形,俯视图是正方形,那么该几何体的左(侧)视图的面积是()A.2 B.C.4 D.25.(5分)若函数f(x)=,则f(f(e))(其中e为自然对数的底数)=()A.0 B.1 C.2 D.eln26.(5分)两圆x2+y2﹣1=0和x2+y2﹣4x+2y﹣4=0的位置关系是()A.内切 B.相交 C.外切 D.外离7.(5分)在同一坐标系中,当0<a<1时,函数y=a﹣x与y=log a x的图象是()A.B.C.D.8.(5分)三个数20.3,0.32,log0.32的大小顺序是()A.0.32<log0.32<20.3B.0.32<20.3<log0.32C.log0.32<20.3<0.32D.log0.32<0.32<20.39.(5分)函数y=log2(x2﹣3x+2)的递减区间是()A.(﹣∞,1)B.(2,+∞)C.(﹣∞,)D.(,+∞)10.(5分)函数y=的值域是()A.[0,+∞)B.[0,4]C.(0,4)D.[0,4)11.(5分)已知互不相同的直线l,m,n与平面α,β,则下列叙述错误的是()A.若m∥l,n∥l,则m∥n B.若m∥α,n∥α,则m∥nC.若m⊥α,n∥β,则α⊥βD.若m⊥β,α⊥β,则m∥α或m⊂α12.(5分)偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则不等式f (x)>f(1)的解集是()A.(1,+∞)B.(﹣∞,﹣1)∪(1,+∞).C.(﹣∞,)D.(,+∞)13.(5分)函数f(x)=x﹣的零点所在的区间是()A.(0,) B.(,)C.(,)D.(,1)14.(5分)已知圆C的圆心是直线x+y+1=0与直线x﹣y﹣1=0的交点,直线3x+4y﹣11=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为()A.x2+(y+1)2=18 B.x2+(y﹣1)2=3C.(x﹣1)2+y2=18 D.(x﹣1)2+y2=3二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卷的横线上..15.(4分)已知直线l在y轴上的截距为1,且垂直于直线y=x,则l的方程是.16.(4分)已知圆锥的母线长是10,侧面展开图是半圆,则该圆锥的侧面积为.17.(4分)已知各顶点都在同一球面上的正四棱柱高为4,体积为16,则这个球的体积为.18.(4分)下列命题中:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;②已知函数y=f(3x)的定义域为[﹣1,1],则函数y=f(x)的定义域为(﹣∞,0);③函数y=在(﹣∞,0)上是增函数;④方程2|x|=log2(x+2)+1的实根的个数是2.所有正确命题的序号是(请将所有正确命题的序号都填上)三、解答题:本大题共5小题,满分64分,解答应写出文字说明、证明过程或演算步骤19.(12分)已知集合A={x|3≤x<6},B={x|2<x<9}(1)求A∩B,(∁R B)∪A;(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值的集合.20.(12分)已知函数.(Ⅰ)若g(x)=f(x)﹣a为奇函数,求a的值;(Ⅱ)试判断f(x)在(0,+∞)内的单调性,并用定义证明.21.(13分)如图,正四棱锥S﹣ABCD的底面是边长为a的正方形,侧棱长是底面边长为倍,O为底面对角线的交点,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)F为SD的中点,若SD⊥平面PAC,求证:BF∥平面PAC.22.(13分)某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元,根据初步测算,总收益(单位:元)满足分段函数φ(x),其中φ(x)=,x是“玉兔”的月产量(单位:件),总收益=成本+利润(1)试将利润用y元表示为月产量x的函数;(2)当月产量x为多少件时利润最大?最大利润是多少?23.(14分)已知圆C过坐标原点O,且与x轴,y轴分别交于点A,B,圆心坐标C(t,)(t∈R,t≠0)(1)求证:△AOB的面积为定值;(2)直线2x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.2014-2015学年河南省郑州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2014秋•郑州期末)80﹣lg100的值为()A.2 B.﹣2 C.﹣1 D.【分析】根据指数幂的性质以及对数的运算性质进行计算即可.【解答】解;80﹣lg100=1﹣2=﹣1,故选:C.【点评】本题考查了对数的运算性质,是一道基础题.2.(5分)(2014秋•郑州期末)点(1,2)到直线y=2x+1的距离为()A.B.C.D.2【分析】利用点到直线的距离公式即可得出.【解答】解:由点到直线的距离公式d==,故选:A.【点评】本题考查了点到直线的距离公式,属于基础题.3.(5分)(2010•安徽)过点(1,0)且与直线x﹣2y﹣2=0平行的直线方程是()A.x﹣2y﹣1=0 B.x﹣2y+1=0 C.2x+y﹣2=0 D.x+2y﹣1=0【分析】因为所求直线与直线x﹣2y﹣2=0平行,所以设平行直线系方程为x﹣2y+c=0,代入此直线所过的点的坐标,得参数值【解答】解:设直线方程为x﹣2y+c=0,又经过(1,0),∴1﹣0+c=0故c=﹣1,∴所求方程为x﹣2y﹣1=0;故选A.【点评】本题属于求直线方程的问题,解法比较灵活.4.(5分)(2014秋•郑州期末)一个几何体的三视图如图所示,其中主(正)视图是边长为2的正三角形,俯视图是正方形,那么该几何体的左(侧)视图的面积是()A.2 B.C.4 D.2【分析】由题意可知左视图与主视图形状完全一样是正三角形,可得结论.【解答】解:由题意可知左视图与主视图形状完全一样是正三角形,因为主(正)视图是边长为2的正三角形,所以几何体的左(侧)视图的面积S==故选:B.【点评】本题考查由三视图求面积、体积,求解的关键是根据所给的三视图判断出几何体的几何特征.5.(5分)(2014秋•郑州期末)若函数f(x)=,则f(f(e))(其中e为自然对数的底数)=()A.0 B.1 C.2 D.eln2【分析】根据分段函数的解析式,求出函数值即可.【解答】解:∵函数f(x)=,∴f(e)=lne=1,∴f(f(e))=f(1)=21=2.故选:C.【点评】本题考查了分段函数的求值问题,是基础题目.6.(5分)(2015春•抚州期末)两圆x2+y2﹣1=0和x2+y2﹣4x+2y﹣4=0的位置关系是()A.内切 B.相交 C.外切 D.外离【分析】由已知中两圆的方程:x2+y2﹣1=0和x2+y2﹣4x+2y﹣4=0,我们可以求出他们的圆心坐标及半径,进而求出圆心距|O1O2|,比较|O1O2|与R2﹣R1及R2+R1的大小,即可得到两个圆之间的位置关系.【解答】解:圆x2+y2﹣1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆;圆x2+y2﹣4x+2y﹣4=0表示以O2(2,﹣1)点为圆心,以R2=3为半径的圆;∵|O1O2|=∴R2﹣R1<|O1O2|<R2+R1,∴圆x2+y2﹣1=0和圆x2+y2﹣4x+2y﹣4=0相交故选B.【点评】本题考查的知识点是圆与圆的位置关系及其判定,若圆O1的半径为R1,圆O2的半径为R2,(R2≤R1),则当|O1O2|>R2+R1时,两圆外离,当|O1O2|=R2+R1时,两圆外切,当R2﹣R1<|O1O2|<R2+R1时,两相交,当|O1O2|=R2﹣R1时,两圆内切,当|O1O2|<R2﹣R1时,两圆内含.7.(5分)(2014秋•郑州期末)在同一坐标系中,当0<a<1时,函数y=a﹣x与y=log a x的图象是()A.B.C.D.【分析】根据指数函数和对数函数的图象即可得到答案【解答】解:当0<a<1时,y=a﹣x是过(0,1)点的增函数,y=log a x是过(1,0)点的减函数,综上答案为C.故选:C【点评】本题考查了指数函数和对数函数的图象,属于基础题8.(5分)(2015秋•抚顺期末)三个数20.3,0.32,log0.32的大小顺序是()A.0.32<log0.32<20.3B.0.32<20.3<log0.32C.log0.32<20.3<0.32D.log0.32<0.32<20.3【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵20.3>1,0<0.32<1,log0.32<0,∴log0.32<0.32<20.3,故选:D.【点评】本题考查了指数函数与对数函数的单调性,属于基础题.9.(5分)(2014秋•郑州期末)函数y=log2(x2﹣3x+2)的递减区间是()A.(﹣∞,1)B.(2,+∞)C.(﹣∞,)D.(,+∞)【分析】设t=x2﹣3x+2,根据复合函数单调性之间的关系进行求解即可.【解答】解:由x2﹣3x+2>0,得x<1或x>2,设t=x2﹣3x+2,则y═log2t为增函数,则根据复合函数单调性之间的关系知要求函数y=log2(x2﹣3x+2)的递减区间,即求函数t=x2﹣3x+2的递减区间,∵t=x2﹣3x+2的递减区间为(﹣∞,1),∴函数y=log2(x2﹣3x+2)的递减区间是(﹣∞,1),故选:A.【点评】本题主要考查函数单调性的求解,根据复合函数单调性之间的关系是解决本题的关键.10.(5分)(2014秋•郑州期末)函数y=的值域是()A.[0,+∞)B.[0,4]C.(0,4)D.[0,4)【分析】首先易知4x恒大于0,再用观察分析法求值域即可.【解答】解:当x=2时,函数有最小值0,当x趋向于﹣∞时,y趋向于4,函数y=的值域是[0,4)故选:D.【点评】本题考查简单函数的值域问题,属基础题.11.(5分)(2014秋•郑州期末)已知互不相同的直线l,m,n与平面α,β,则下列叙述错误的是()A.若m∥l,n∥l,则m∥n B.若m∥α,n∥α,则m∥nC.若m⊥α,n∥β,则α⊥βD.若m⊥β,α⊥β,则m∥α或m⊂α【分析】利用空间中线线、线面、面面间的位置关系求解.【解答】解:若m∥l,n∥l,则由平行公理得m∥n,故A正确;若m∥α,n∥α,则m与n相交、平行或异面,故B错误;若m⊥α,n∥β,则由平面与平面垂直的判定定理得α⊥β,故C正确;若m⊥β,α⊥β,则由平面与平面垂直的性质得m∥α或m⊂α,故D正确.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.12.(5分)(2014秋•郑州期末)偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则不等式f(x)>f(1)的解集是()A.(1,+∞)B.(﹣∞,﹣1)∪(1,+∞).C.(﹣∞,)D.(,+∞)【分析】根据偶函数的性质:f(|x|)=f(x),再由函数的单调,可将不等式进行等价转化,运用绝对值不等式的解法即可得到.【解答】解:∵f(x)是偶函数有f(|x|)=f(x),∴不等式f(x)>f(1)可转化为f(|x|)>f(1),又当x∈[0,+∞)时,f(x)是增函数,∴|x|>1,即x>1或x<﹣1,则解集为(﹣∞,﹣1)∪(1,+∞).故选B.【点评】本题考查函数的奇偶性和单调性的运用:解不等式,考查运算能力,属于基础题和易错题.13.(5分)(2014秋•郑州期末)函数f(x)=x﹣的零点所在的区间是()A.(0,) B.(,)C.(,)D.(,1)【分析】函数f(x)=x﹣的零点化为方程的根,再化简得x=,再令g(x)=x ﹣,从而求零点所在的区间.【解答】解:若f(x)=x﹣=0,则x=,得x=,令g(x)=x﹣,可得g()=﹣<0,g()=﹣>0,因此f(x)零点所在的区间是(,).故选C.【点评】本题考查了函数的零点与方程的根的关系应用,属于基础题.14.(5分)(2014秋•郑州期末)已知圆C的圆心是直线x+y+1=0与直线x﹣y﹣1=0的交点,直线3x+4y﹣11=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为()A.x2+(y+1)2=18 B.x2+(y﹣1)2=3C.(x﹣1)2+y2=18 D.(x﹣1)2+y2=3【分析】求出两直线的交点坐标即圆心坐标,根据相交弦的弦长公式求解半径即可.【解答】解:直线x+y+1=0与直线x﹣y﹣1=0的交点为(0,﹣1),∴所以圆C的圆心为C(0,﹣1),设半径为r,由题意可得+32=r2,即解得r2=18,故圆C的方程为x2+(y+1)2=18.故选:A.【点评】本题主要考查圆的方程的求解根据条件求出圆心和半径是解决本题的关键.考查直线和圆相交的弦长公式的应用.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卷的横线上.. 15.(4分)(2014秋•郑州期末)已知直线l在y轴上的截距为1,且垂直于直线y=x,则l的方程是y=﹣2x+1.【分析】要求的直线垂直于直线y=x,可得要求直线的斜率为﹣2,利用斜截式即可得出.【解答】解:∵要求的直线垂直于直线y=x,∴要求直线的斜率为﹣2,由斜截式可求得l的方程为:y=﹣2x+1.故答案为:y=﹣2x+1.【点评】本题考查了相互垂直的直线斜率之间的关系、斜截式,属于基础题.16.(4分)(2014秋•郑州期末)已知圆锥的母线长是10,侧面展开图是半圆,则该圆锥的侧面积为50π.【分析】圆锥的侧面展开图半圆的面积即为该圆锥的侧面积,通过半圆的半径即为圆锥的母线长,求解即可.【解答】解:圆锥的侧面展开图半圆的面积即为该圆锥的侧面积,该半圆的半径即为圆锥的母线长10,所以圆锥的侧面积为=50π.故答案为:50π.【点评】本题考查圆锥的侧面积的求法,注意圆锥的母线就是扇形的半径是解题的关键,考查计算能力.17.(4分)(2015秋•肇庆期末)已知各顶点都在同一球面上的正四棱柱高为4,体积为16,则这个球的体积为.【分析】先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其体积.【解答】解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2,正四棱柱的对角线长即球的直径为2 ,∴球的半径为,球的体积是V==,故答案为:【点评】本题考查学生空间想象能力,四棱柱的体积,球的体积,容易疏忽的地方是几何体的体对角线是外接球的直径,导致出错.18.(4分)(2014秋•郑州期末)下列命题中:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;②已知函数y=f(3x)的定义域为[﹣1,1],则函数y=f(x)的定义域为(﹣∞,0);③函数y=在(﹣∞,0)上是增函数;④方程2|x|=log2(x+2)+1的实根的个数是2.所有正确命题的序号是③④(请将所有正确命题的序号都填上)【分析】当k=0时,A={﹣1},即可判断①;由函数的定义域的定义,以及指数函数的单调性即可解得f(x)的定义域,即可判断②;通过函数y=的图象的平移和单调性即可判断③;运用函数与方程的转换,作出函数的图象,通过观察即可判断方程根的个数,即可判断④.【解答】解:对于①,当k=0时,A={﹣1},也符合题意,则①错;对于②,函数y=f(3x)的定义域为[﹣1,1],即有﹣1≤x≤1,则,则y=f(x)的定义域应该是[,3],则②错;对于③,y=的图象可由函数y=的图象向右平移1个单位得到,由于y=在(﹣∞,0)递增,则y=在(﹣∞,1)递增,则③对;对于④,在同一坐标系中作出y=2|x|,y=log2(x+2)+1的图象,由图可知有两个交点.故方程的实根的个数为2.则④对.故答案:③④.【点评】本题考查函数的定义域的求法和单调性的判断,以及函数与方程的转化思想,考查集合的化简,属于基础题和易错题.三、解答题:本大题共5小题,满分64分,解答应写出文字说明、证明过程或演算步骤19.(12分)(2014秋•郑州期末)已知集合A={x|3≤x<6},B={x|2<x<9}(1)求A∩B,(∁R B)∪A;(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值的集合.【分析】(1)显然A∩B={x|3≤x<6},再求∁R B={x|x≤2或x≥9},从而求(∁R B)∪A={x|x ≤2或3≤x<6或x≥9};(2)C⊆B,作数轴辅助,应有,从而解得.【解答】解:(1)显然A∩B={x|3≤x<6},又∵B={x|2<x<9},∴∁R B={x|x≤2或x≥9},∴(∁R B)∪A={x|x≤2或3≤x<6或x≥9};(2)∵C⊆B,如图,应有解得2≤a≤8,故实数a的取值的集合为[2,8].【点评】本题考查了集合的化简与运算,属于基础题.20.(12分)(2014秋•郑州期末)已知函数.(Ⅰ)若g(x)=f(x)﹣a为奇函数,求a的值;(Ⅱ)试判断f(x)在(0,+∞)内的单调性,并用定义证明.【分析】(I)根据f(x)表达式,得g(x)=,再根据奇函数的定义采用比较系数法即可求出实数a的值.(II)设0<x1<x2,将f(x1)与f(x2)作差、因式分解,得f(x1)<f(x2),结合函数奇偶性的定义得到函数f(x)在(0,+∞)内是单调增函数.【解答】解:(Ⅰ)∵∴g(x)=f(x)﹣a=,…(2分)∵g(x)是奇函数,∴g(﹣x)=﹣g(x),即,解之得a=1.…(5分)(Ⅱ)设0<x1<x2,则=.(9分)∵0<x1<x2,∴x1﹣x2<0,x1x2>0,从而,(11分)即f(x1)<f(x2).所以函数f(x)在(0,+∞)内是单调增函数.(12分)【点评】本题给出含有分式的基本初等函数,讨论函数的单调性与奇偶性质.着重考查了函数的奇偶性的定义和用定义法证明单调性等知识,属于基础题.21.(13分)(2014秋•郑州期末)如图,正四棱锥S﹣ABCD的底面是边长为a的正方形,侧棱长是底面边长为倍,O为底面对角线的交点,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)F为SD的中点,若SD⊥平面PAC,求证:BF∥平面PAC.【分析】(Ⅰ)连接SO,可证SO⊥AC,又SO∩BD=O,可证明AC⊥平面SBD,又SD⊂平面SBD,即可证明AC⊥SD.(Ⅱ)连接OP,可证OP⊥SD,又△SBD中,BD==SB,且F为SD中点,可证BF⊥SD,由OP,BF⊂平面BDF,可证OP∥BF,又OP⊂平面ACP,BD⊄平面ACP,BF⊄平面PAC,即可证明BF∥平面PAC.【解答】证明:(Ⅰ)连接SO,∵四边形ABCD为正方形,∴AC⊥BD且O为AC中点,又∵SA=SC∴SO⊥AC又∵SO∩BD=O,∴AC⊥平面SBD,(5分)又∵SD⊂平面SBD,∴AC⊥SD.(7分)(Ⅱ)连接OP,∵SD⊥平面ACP,OP⊂平面ACP,∴OP⊥SD,(9分)又△SBD中,BD==SB,且F为SD中点,∴BF⊥SD,因为OP,BF⊂平面BDF,所以OP∥BF,(11分)又∵OP⊂平面ACP,BF⊄平面PAC,∴BF∥平面PAC.(13分)【点评】本题主要考查了直线与平面平行的判定,以及直线与平面垂直的性质,涉及到的知识点比较多,知识性技巧性都很强,属于中档题.22.(13分)(2014秋•郑州期末)某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元,根据初步测算,总收益(单位:元)满足分段函数φ(x),其中φ(x)=,x是“玉兔”的月产量(单位:件),总收益=成本+利润(1)试将利润用y元表示为月产量x的函数;(2)当月产量x为多少件时利润最大?最大利润是多少?【分析】(Ⅰ)依题设总成本为20000+100x,从而由分段函数写出y=;(Ⅱ)当<x≤400时,y=﹣(x﹣300)2+25000,则当x=300时,y max=25000;当x>400时,y<60000﹣100×400=20000,从而求最值.【解答】解:(Ⅰ)依题设,总成本为20000+100x,则y=;(Ⅱ)当<x≤400时,y=﹣(x﹣300)2+25000,则当x=300时,y max=25000;当x>400时,y=60000﹣100x是减函数,则y<60000﹣100×400=20000,所以,当x=300时,有最大利润25000元.【点评】本题考查了分段函数在实际问题中的应用,属于中档题.23.(14分)(2014秋•郑州期末)已知圆C过坐标原点O,且与x轴,y轴分别交于点A,B,圆心坐标C(t,)(t∈R,t≠0)(1)求证:△AOB的面积为定值;(2)直线2x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.【分析】(1)根据圆的方程求出A,B的坐标即可证明△AOB的面积为定值;(2)根据直线2x+y﹣4=0与圆C交于点M,N,结合|OM|=|ON|,建立条件关系即可,求圆C的方程;(3)根据直线和圆相交以及点的对称性即可得到结论.【解答】(1)证明:由题设知,圆C的方程为(x﹣t)2+(y﹣)2=t2+,化简得x2﹣2tx+y2﹣y=0,当y=0时,x=0或2t,则A(2t,0);当x=0时,y=0或,则B(0,),∴S△AOB=|OA|•|OB|=|2t|•||=4为定值.解:(2)∵|OM|=|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率k===,∴t=2或t=﹣2.∴圆心为C(2,1)或C(﹣2,﹣1),∴圆C的方程为(x﹣2)2+(y﹣1)2=5或(x+2)2+(y+1)2=5,由于当圆方程为(x+2)2+(y+1)2=5时,直线2x+y﹣4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去,∴圆C的方程为(x﹣2)2+(y﹣1)2=5.(3)点B(0,2)关于直线x+y+2=0的对称点为B′(﹣4,﹣2),则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又B′到圆上点Q的最短距离为|B′C|﹣r=﹣=3﹣=2.故|PB|+|PQ|的最小值为2,直线B′C的方程为y=x,则直线B′C与直线x+y+2=0的交点P的坐标为(﹣,﹣).【点评】本题主要考查直线和圆的方程的综合应用,根据条件建立方程关系是解决本题的关键.综合性较强,运算量较大.参与本试卷答题和审题的老师有:刘老师;沂蒙松;caoqz;刘长柏;742048;豫汝王世崇;whgcn;maths;zlzhan;双曲线;炫晨;qiss;minqi5;ywg2058;w3239003(排名不分先后)菁优网2017年1月3日。
河南省郑州市高一上学期数学期末联考试卷

河南省郑州市高一上学期数学期末联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·山东模拟) 若集合A={x|2 >1},集合B={x|y=lg },则A∩B=()A . {x|﹣5<x<1}B . {x|﹣2<x<1}C . {x|﹣2<x<﹣1}D . {x|﹣5<x<﹣1}2. (2分) (2018高一上·上海期中) 下列各组函数中,表示同一函数的是()A . 与B . 与C . 与D . ()与()3. (2分) (2017高一上·雨花期中) 下列四个函数中,在(0,+∞)上是增函数的是()A . f(x)=﹣B . f(x)=x2﹣3xC . f(x)=3﹣xD . f (x)=﹣|x|4. (2分) (2019高一上·上饶期中) 下列函数是奇函数的是()A .B .C .D .5. (2分)下列函数中,既是偶函数,又是在区间上单调递减的函数为()A .B .C .D .6. (2分)设函数在区间(1,2)内有零点,则实数a的取值范围是()A . (-1,log32)B . (0,log32)C . (log32,1)D . (1,log34)7. (2分) (2017高一上·湖州期末) 在平面直角坐标系中,如果不同的两点A(a,b),B(﹣a,b)同时在函数y=f(x)的图象上,则称(A,B)是函数y=f(x)的一组关于y轴的对称点((A,B)与(B,A)视为同一组),在此定义下函数f(x)= (e=2.71828…,为自然数的底数)图象上关于y轴的对称点组数是()A . 0B . 1C . 2D . 48. (2分) (2019高一上·长春期中) 设函数,若,则的取值范围是()A . (,1)B . (,)C . (,)(0,)D . (,)(1,)9. (2分)直线与圆交于两点,则(是原点)的面积为()A .B .C .D .10. (2分) (2020高一上·林芝期末) 圆与圆的位置关系为()A . 相离B . 相交C . 外切D . 内切11. (2分)已知是两条不同的直线,是两个不重合的平面,给出下列命题:①若,则;②若,则;③若,则;④若,,则;其中正确命题的个数为()A . 1个B . 2个C . 3个D . 4个12. (2分)若三棱锥的一条棱长为x,其余棱长均为1,体积是V(x),则函数V(x)在其定义域上为()A . 增函数且有最大值B . 增函数且没有最大值C . 不是增函数且有最大值D . 不是增函数且没有最大值二、填空题 (共4题;共6分)13. (2分)计算:= ________ ,= ________ 。
2013-2014年度高一上学期数学期末试卷参考答案

2013-2014年度高一上学期数学期末试卷参考答案13.2 14. 0或2 15.16. 17. 45︒ 18. 到四个面的距离之和为定值 三、解答题(本大题共5小题,共66分)19、解:(1)因为直线l 的倾斜角的大小为60°,故其斜率为tan 60°=3,又直线l 经过点(0,-2),所以其方程为3x -y -2=0.(2)由直线l 的方程知它在x 轴、y 轴上的截距分别是32,-2,所以直线l 与两坐标轴围成三角形的面积S =21·32·2=332.20、(1)证明:因为D ,E 分别是AB ,PB 的中点,所以DE ∥P A .因为P A ⊂平面P AC ,且DE ⊄平面P AC ,所以DE ∥平面P AC .(2)因为PC ⊥平面ABC ,且AB ⊂平面ABC , 所以AB ⊥PC .又因为AB ⊥BC ,且PC ∩BC =C . 所以AB ⊥平面PBC . 又因为PB ⊂平面PBC ,所以AB ⊥PB .21 (1)已知圆C :()2219x y -+=的圆心为C (1,0),因直线过点P 、C ,所以直线l 的斜率为2,直线l 的方程为y=2(x-1),即 2x-y-20.(2)当弦AB 被点P 平分时,l ⊥PC, 直线l 的方程为12(2)2y x -=--, 即 x+2y-6=0 (3)当直线l 的倾斜角为45º时,斜率为1,直线l 的方程为y-2=x-2 ,即 x-y=0圆心C 到直线l ,圆的半径为3, 弦AB ACPBDE(第20题)OGEPDM CBA22.解:(1)4)1(22=++y x(2)设M 的坐标是),(y x ,点A 的坐标是),(00y x 由于点B 的坐标是)3,4(且点M 是线段AB 的中点,所以23,2400+=+=y y x x 即32,4200-=+=y y x x (1)A 在圆4)1(22=++y x 上运动,所以4)1(2020=++y x (2)将(1)代入(2)得4)32()142(22=-++-y x 整理得1)23()23(22=-+-y x所以点M 的轨迹方程是以)23,23(为圆心半径为1的圆23、(Ⅰ)证明:,,PD ABCD BC ABCD PD BC ⊥⊂∴⊥ 平面平面 又ABCD 为正方形,BC DC ∴⊥,,,,PD DC D BC PDC PC PDC PC BC =∴⊥⊂∴⊥ 平面平面 ————————————/4(Ⅱ)解:,PD ABCD PD PDC PDC ABCD ⊥⊂∴⊥ 平面平面平面平面 过E 作EF DC ⊥垂足为F ,则112EF ABCD EF PD ⊥==平面且 11122(2)133239C DEG E DCG DCG V V S EF --∆==⋅⋅=⋅⋅⋅⋅=即三棱锥C DEG -的体积为29————————————/8(Ⅲ)设存在点M AD ∈,使得//PA MEG 平面。
郑州市2013—2014学年高二上学期期末考试——数学文

2013—2014学年上期期末考试高二数学(文科) 参考答案一、选择题:本大题共12小题,每小题5分,二、填空题:本大题共4小题,每小题5分.13. 255;;15. ②; 1. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17、解:p 为真:22,042<<-<-=∆a a ;q 为真:014,1 5.a a <-<∴<< ………………………4分因为p q ∨为真命题,p ⌝为真,所以p 假q 真,所以22,2 5.15,a a a a ≤-≥⎧∴≤<⎨<<⎩或则a 的取值范围是[)2,5. ………………………10分 18.证明(I)因为两边同除以1+n a 得所以数列1{}na 是等差数列.………………………4分 (II ) 所以111111().2(22)4(1)41n n nb a a n n n n n n +====-+++ 所以1211111111(1)(1).42231414(1)n n n S b b b n n n n =++=-+-++-=-=+++ ……………12分19.解:(Ⅰ)由ca b b a c a -=++整理得))(()(b a a b c c a +-=+, 即222a b c ac -=+,∴2122cos 222-=-=-+=ac ac ac b c a B ,∵π<<B 0,∴32π=B .………………………6分 (Ⅱ)∵32π=B ,∴最长边为14=b ,∵C A sin 2sin =,∴c a 2=, ∴c 为最小边,由余弦定理得)21(224)14(222-⋅⋅⨯-+=c c c c ,解得22=c ,∴2=c ………………………12分20.解:(I)设建成n 个球场,则每平方米的购地费用为nn 28801000102884=⨯, 由题意知400)(,5==n f n ,则400)20551()5(=-+=a f ,所以400=a . 所以30020)2051(400)(+=-+=n n n f ,从而每平方米的综合费用为 780300144220300)144(202880)(=+⨯≥++=+=nn n n f y (元), 当且仅当n =12时等号成立.所以当建成12座球场时,每平方米的综合费用最省.…………8分(II )由题意得820300)144(20≤++nn ,即0144262≤+-n n , 解得:818,n ≤≤ 所以最多建 18个网球场.………………………12分21.解 (1)设椭圆C 的方程为22221(0)x y a b a b+=>>. 由题意得12,42,22===∴=b c a c ,所以椭圆C 的方程为1121622=+y x .……………………4分 (II )设直线的方程为2+=my x ,代入椭圆方程得(32m +4)y 2+12my -36=0.设),(),,(2211y x B y x A ,焦点)0,2(2F 则根据,222B F AF =,得(2-1x ,-1y )=2(2x -2,2y ),由此得-1y =22y ,解方程得:431126222,1++±-=m m m y ,所以1212221236,,3434m y y y y m m --+==++ 代入-1y =22y ,222221218,.3434m y y m m ==++ 得25m =4,故m =552±,所以直线的方程为20.x y -=………………………12分 22.解:(I)解:因为()ln f x ax x x =+,所以'()ln 1,f x a x =++因为函数()ln f x ax x x =+的图像在点e x =处取得极值, 所以2,01ln )(-=∴=++='a e a e f .………………………4分 (II )解:由(1)知,x x x x f ln 2)(+-=, 所以1)(+<x x f k 对任意2≥x 恒成立,即1ln 2++-<x x x x k 对任意2≥x 恒成立. 令1ln 2)(++-=x x x x x g ,则,21ln ().(1)x x g x x -+'=+ 因为2≥x ,所以0)1(ln 1)(2>++-='x x x x g , 所以函数1ln 2)(++-=x x x x x g 在2≥x 上为增函数, 则32ln 24)2()(min +-==g x g , 所以32ln 24+-<k .………………………12分。
2013-2014学年高一上学期期末数学试题_Word版含答案

2013-2014学年度第一学期高一级期末考试一.选择题(每小题5分,共50分,每小题只有一个选项是正确的) 1. 已知集合M ={x|x <3},N ={x |122x>},则M ∩N 等于( ) A ∅B {x |0<x <3}C {x |-1<x <3}D {x |1<x <3}2. 已知三条不重合的直线m 、n 、l 两个不重合的平面βα,,有下列命题 ①若αα//,,//m n n m 则⊂; ②若βαβα//,//,则且m l m l ⊥⊥; ③若βαββαα//,//,//,,则n m n m ⊂⊂;④若αββαβα⊥⊥⊂=⊥n m n n m 则,,,, ;其中正确的命题个数是( )A .1B .2C .3D .4 3. 如图,一个简单空间几何体的三视图中,其正视图与侧视图都是边长 为2的正三角形,俯视图轮廓为正方形,则其侧面积是( ) A .4. 函数()23xf x x =+的零点所在的一个区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,25. 如图,在正方体ABCD-A 1B 1C 1D 1中,异面直线A 1B 和AD 1所成角的大小是( ) A. 30° B. 45° C.90° D.60°6. 已知函()()21,1,log ,1.a a x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为( ) A . ()1,2B . ()2,3C . (]2,3D . ()2,+∞7. 如图在正三棱锥A-BCD 中,E 、F 分别是AB 、BC 的中点,EF ⊥DE ,且BC =1,则正三棱锥A-BCD的体积是 ( )243D. 123C. 242B. 122.A8. 函数y =log 2(1-x )的图象是( )俯视图正视图 侧视图9. 已知)(x f 是定义在R 上的函数,且)2()(+=x f x f 恒成立,当)0,2(-∈x 时,2)(x x f =,则当[]3,2∈x 时,函数)(x f 的解析式为 ( )A .42-x B .42+x C .2)4(+x D . 2)4(-x10. 已知)91(log 2)(3≤≤+=x x x f ,则函数[])()(22x f x f y +=的最大值为( )A .6B .13C .22D .33二.填空题(每小题5分,共20分)11. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .12. 已知函数()()223f x x m x =+++是偶函数,则=m .13. 已知直二面角βα--l ,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足, 若AB=2,AC=BD=1则C,D 两点间的距离是_______14. 若函数2()log (2)(0,1)a f x x x a a =+>≠在区间102⎛⎫ ⎪⎝⎭,恒有()0f x >,则()f x 的单调递增区间是三.解答题(本大题共6小题,共80分。
郑州市2013-2014学年高一下学期期末考试(扫描版)数学试题及答案

∴ cos t+1>1,∴cos t>0,…………8分
∴2kπ- < t<2kπ+ ,k∈Z,
即12k-3<t<12k+3,k∈Z.①…………10分
∵0≤t≤24,故可令①中k分别为0,1,2,
得0≤t<3或9<t<1 5或21<t≤24.
∴在规定时间上午8∶00至晚上 20∶00之间,有6个小时时间可供冲浪者运动,
所以前三组的频数之和为69,前四组的频数之和为114,
所以跳绳次数的中位数落在第四小组.…………12分
19.解:(Ⅰ)由表中数据知周期T=12,
∴ω= = = ,…………2分
由t=0,y=1.5,得A+b=1.5.
由t=3,y=1.0,得b=1.0.…………4分
∴A=0.5,b=1,∴y= cos t+1.…………6分
2013—2014学年下期期末学业水平测试
高中一年级数学参考答案
18.解:(Ⅰ)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,
因此第二小组的频率为: ,
…………2分
.…………4分
(Ⅱ)由图可估计该学校高一学生的达标率约为 .
…………8分
(Ⅲ)由已知可得各小组的频数依次为6,12,51,45,27,9,…………10分
(Ⅰ)基本事件共12个: .其中第一个数表示 的取值,第二个数表示 的取值.…………4分
事件 中包含9个基本事件,事件 发生的概率为 .…………6分
(Ⅱ)试验的全部结束所构成的区域为 .…………8分
构成事件 的区域为 .…………10分
所以所求的概率为P .…………12分
即上午9∶00至下午3∶00.…………12分
20.解:(Ⅰ) ,…………2分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013—2014学年上期期末考试
高中一年级 数学 参考答案
一、选择题
CCADC BCCAB DA
二、填空题
13. π12 14. -1 2
15. 3或7 16. x +2y -2=0或2x +y +2=0
三、解答题 17. 解:因为=
V 半球31423
R π⨯ …………2分 =314423π⨯⨯ 3134()cm ≈. …………4分
=V 圆锥213
r h π …………6分 214123
π=⨯⨯ 3
201()cm ≈. …………8分
因为V 半球<V 圆锥
所以,冰淇淋融化了,不会溢出杯子.…………10分
18. 解: (1)因为f (x )为一次函数,设y =ax +b ,解方程组 45b 27012a 5a b +=⎧⎨+=⎩
,, …………2分 得a =-3,b =162, …………4分
故y =162-3x 为所求的函数关系式,
又∵y ≥0,∴0≤x ≤54. …………6分
(2)依题意得:
P =(x -30)·y =(x -30)·(162-3x ) …………8分
=-3(x -42)2+432. …………10分
当x =42时,P 最大=432,
即销售单价为42元/件时,获得最大日销售利润. …………12分
19. 解:(1)由直线方程的点斜式,得
y-5=
3
4
-(x+2), …………2分
整理得所求直线方程为
3x+4y-14=0. …………4分
(2)由直线m与直线l平行,可设直线m的方程为3x+4y+C=0,…………6分
由点到直线的距离公式得
3
=, …………8分
即14C3
5
+
=
||,
解得C=1或C=-29,…………10分
故所求直线方程为
3x+4y+1=0或3x+4y-29=0.…………12分
20.解:已知长方体是直四棱柱,
设它的底面ADD1A1的面积为S,高为h,…………2分
则它的体积为V=Sh.…………4分
而棱锥C-A1DD1的底面积为
1
2
S,高为h,…………6分
故三棱锥C-A1DD1的体积:
11
C A DD
111
V Sh Sh
326
-
=⨯=,…………8分
余下部分体积为:
15
Sh Sh Sh
66
-=.…………10分所以棱锥C-A1DD1的体积与剩余部分的体积之比为1∶5.…………12分21.解:设圆心坐标为(3m,m).…………2分
∵圆C和y轴相切,得圆的半径为3|m|,…………4分
∴圆心到直线y=x
.…………6分
由半径、弦心距、半弦长的关系得9m2=7+2m2,…………8分
∴m=±1, …………10分
∴所求圆C的方程为
(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.…………12分
22. (1)证明:在()0,+∞上任取两个实数12,x x ,且12x x <,
则()()12121111f x f x x x ⎛
⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭2111x x =-1212
x x x x -=. …………2分 ∵120x x <<, ∴12120,0x x x x -<>.
∴1212
0x x x x -<, 即()()120f x f x -<. ∴()()12f x f x <. ∴函数()f x 在()0,+∞上单调递增. …………4分
(2) (ⅰ)当0x >时, 令()0f x =, 即110x
-=, 解得10x =>. ∴1x =是函数()f x 的一个零点. …………6分
(ⅱ)当0x ≤时, 令()0f x =, 即()110a x -+=.(※)
① 当1a >时, 由(※)得101x a =
<-, ∴11x a
=-是函数()f x 的一个零点; …………8分 ② 当1a =时, 方程(※)无解;
③ 当1a <时, 由(※)得101x a
=>-,(不合题意,舍去) …………10分 综上, 当1a >时, 函数()f x 的零点是1和11a
-; 当1a ≤时, 函数()f x 的零点是1. …………12分。