二元一次方程组知识点总结及单元复习练习

合集下载

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。

定义2:把两个方程合在一起,就组成了方程组。

定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。

定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

这种方法叫做加减消元法,简称加减法。

三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。

认真读题,分析题中各个量之间的关系。

第2步:设未知数。

根据题意及各个量的关系设未知数。

第3步:列方程(组)。

根据题中各个量的关系列出方程(组)。

第4步:解方程(组)。

根据方程(组)的类型采用相应的解法。

第5步:答。

专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。

二元一次方程组复习(带解析)

二元一次方程组复习(带解析)

二元一次方程组复习一、知识要点 1、二元一次方程组的有关概念I .二元一次方程(1)概念:含有______未知数,并且未知数的项的次数都是____,这样的整式方程叫做二元一次方程.(2)一般形式:ax +by =c(a≠0,b≠0).(3)使二元一次方程两边的值______的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.由这些解组成的集合,叫做这个二元一次方程的解集.II .二元一次方程组(1)概念:具有相同未知数的______二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a (a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解:一般地,二元一次方程组的两个方程的________,叫做二元一次方程组的解.2、二元一次方程组的解法解二元一次方程组的基本思想是______,即化二元一次方程组为一元一次方程,主要__________消元法.不要漏掉括号x (或y )的代数式表示出y (或x ),即变成y =ax +b (或x =ay +b )的形式;(2)将y =ax +b (或x =ay +b )代入另一个方程,消去y (或x ),得到关于x (或y )的一元一次方程;(3)解这个一元一次方程,求出x (或y )的值;y =ax +b (或x =ay +b )中,求y (或x )的值.不要漏乘在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可以直接相减(或相加),消去一个未知数;(2)在二元一次方程组中,若不存在(1)中的情况,可选一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数;(3)解这个一元一次方程;(4)将求出的一元一次方程的解代入原方程组中系数比较简单的方程内,求出另一个未知数.二、典型例题考点一 :二元一次方程概念与解法例1.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m -n= .例2.小明和小佳同时解方程组⎩⎨⎧=-=+1325ny x y mx ,小明看错了m ,解得⎪⎩⎪⎨⎧-==227y x ,小华看错了n ,解得⎩⎨⎧-==73y x ,你能知道原方程组正确的解吗总结分析:灵活学会“方程解”概念解题.【巩固】已知方程组⎩⎨⎧-=--=+4652by ax y x 和方程组⎩⎨⎧-=+=-81653ay bx y x 的解相同,求2017)2(b a +的值.【变式】已知关于x ,y 的二元一次方程组⎩⎨⎧=+=+f by ex c by ax 的解为⎩⎨⎧==13y x ,你能求得关于x ,y 的二元一次方程组⎩⎨⎧=++-=++-f y x b y x e c y x b y x a )()()()(的解吗★剖析总结★:灵活学会“方程解”概念解题,利用解相同,可以将方程重新组合,换位联立;在解题过程中,常常运用类比的思想【巩固2】.考点二:解决实际问题列方程(组)解应用题的一般步骤1、审:有什么,求什么,干什么;2、设:设未知数,并注意单位;3、找:等量关系;4、列:用数学语言表达出来;5、解:解方程(组);6、验:检验方程(组)的解是否符合实际题意.7、答:完整写出答案(包括单位).列方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.列二元一次方程----解决实际问题类型:(1)方案问题:(2)行程问题;(3)工程问题;(4)数字问题;(5)年龄问题;(6)分配问题;(7)销售利润问题;(8)和差倍分问题; (9)几何问题; (10)表格或图示问题; (11)古代问题;(12)优化方案问题. 题型一 二元一次方程组的应用 - 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。

(完整版)二元一次方程组知识点及典型例题

(完整版)二元一次方程组知识点及典型例题

二元一次方程组小结与复习一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。

2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。

任何一个二元一次方程都有无数个解。

3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。

(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。

4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。

(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。

(二)二元一次方程组的解法: 1.代入消元法 2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。

二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成0=++c by ax (a,b,c 为已知数,且a ≠0,b ≠0)的形式,这种形式叫二元一次方程的一般形式。

练习1、下列方程,哪些是二元一次方程,哪些不是?12).().(711)(6526)(=++-=++=-y x xy D y x C yx B x z x A练习2、若方程的值。

的二元一次方程,求、是关于)(n n mm y x y xm 43195=+--练习3、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。

(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例题、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)⎩⎨⎧=+=-1023724y x y x(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩(三)、选择适当的方法解下列方程组 (1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---=题型三:代数式的变形 1、在方程=5中,用含的代数式表示为:= ,当=3时,= 。

《二元一次方程组》知识清单含例题、期末专题复习试卷有答案

《二元一次方程组》知识清单含例题、期末专题复习试卷有答案

2018年七年级数学下册二元一次方程组知识清单+经典例题+专题复习试卷1.二元一次方程的定义:含有未知数,并且未知数的项的次数都是,像这样的方程叫做二元一次方程。

2.二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组,方程组中含有_________未知数,含有每个未知数的都是,并且一共有方程。

3.二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程有个解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的.叫做二元一次方程组的解。

5.代入消元法解二元一次方程组:(1)基本思路:未知数由多变少。

(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。

(3)代入消元法:把二元一次方左组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程.实现消元.进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

(4)代入法解二元一次方程组的一般步骤:①,从方程组中选出一个系数比校简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来.即写成y=ax+b的形式。

②・将尸=3乂+1)代入到另一个方程中,消去y,得到一个关于x的一元一次方程,解出这个一元一次方程,求出x的值。

③.把求得的x值代入y=ax+b中求出y的值。

④•把x、y的值用“ {”联立起来。

6.加减消元法解二元一次方程组(1)两个二元一次方程中同一个未知数的系数或时,把这两个方程的两边分别或,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

(2)用加减消元法解二元一次方程组的解①方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等。

②把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程。

胡先锋二元一次方程组单元复习

胡先锋二元一次方程组单元复习

二元一次方程组单元复习 一、【知识点一:二元一次方程组定义】例1 下列方程组中,不是二元一次方程组的是( )。

A 、B 、C 、D 、【巩固练习】1、下列方程组:(1)32x y y =⎧⎨=-⎩,(2)324x y y z +=⎧⎨-=⎩,(3)1310x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,(4)30x y x y +=⎧⎨-=⎩, 其中属于二元一次方程组的个数为( )A .1 B. 2 C . 3 D . 4 【知识点二:二元一次方程组的解定义】 例2、方程组⎩⎨⎧=+=-422y x y x 的解是( )A .⎩⎨⎧==21y x B .⎩⎨⎧==13y x C .⎩⎨⎧-==2y x D .⎩⎨⎧==02y x 【巩固练习】1、 当1-=m x ,1+=m y 满足方程032=-+-m y x ,则=m _________.2、 下面几个数组中,哪个是方程7x+2y=19的一个解( )。

A 、 31x y =⎧⎨=-⎩B 、 31x y =⎧⎨=⎩C 、 31x y =-⎧⎨=⎩D 、 31x y =-⎧⎨=-⎩3、 下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩ B . 52313x y y x -=⎧⎪⎨+=⎪⎩ C . 20135x z x y +=⎧⎪⎨-=⎪⎩ D .5723z x y =⎧⎪⎨+=⎪⎩ 【综合练习题】 一、选择题:4、 下列方程组中,是二元一次方程组的是( )A .228423119 (237)54624x y x y a b x B C D x y b c y xx y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 5、 满足2x y 8=-的一对x ,y 的值是否是方程组2528x y x y +=⎧⎨-=⎩的解?知识点三、二元一次方程组的解法 方法一:代入消元法 【典型例题】例1: 用代入消元法解方程组27838100x y x y -=⎧⎨--=⎩【巩固练习】1、 方程x 4y 15-+=-用含y 的代数式表示,x 是( )A .x 4y 15-=-B .x 154y =-+C .x 4y 15=+D .x 4y 15=-+2、 把方程7x 2y 15-=写成用含x 的代数式表示y 的形式,得( ) A .x=215152715157 (7)722x x yx x B x C y D y ----===3、 用代入法解方程组252138x y x y +=-⎧⎨+=⎩较为简便的方法是( )A .先把①变形B .先把②变形C .可先把①变形,也可先把②变形D .把①、②同时变形 4、 将y 2x 4=--代入3x y 5-=可得( )A .3x 2x 45-+=B .3x 2x 45++=C .3x 2x 45+-=D .3x 2x 45--= 5、 判断正误:(1)方程3x 2y 22+=变形得y 13x =- ( ) (2)方程x 3y -=12x-写成含y 的代数式表示x 的形式是x 3y =+12x- ( )6、 把下列方程写成用含x 的代数式表示y 的形式: ①3x 5y 21+= ②2x 3y 11-=-;③4x 3y x y 1+=-+ ④2x y 3x y 1+=--()()7、 用代入消元法解下列方程组 (1)⎩⎨⎧+=-+=-)5(3)1(55)1(3x y y x(2)382101187x y x y +=⎧⎨-=⎩【综合训练】 8、 已知1331024x ax y y x by =--=⎧⎧⎨⎨=+=⎩⎩是方程组的解,求a 、b 的值. 9、 已知方程组43,322,x y x y +=⎧⎨+=⎩则x y -的值是( )A . 1B . -1C . 0D . 2 10、 已知31x y =⎧⎨=⎩和211x y =-⎧⎨=⎩都满足ax by 7+=,则a = ,b = 方法二:加减消元法 例1、方程组231534m n m n +=⎧⎨+=⎩中,n 的系数的特点是 ,所以我们只要将两式 ,•就可以消去未知数,化成一个一元一次方程,达到消元的目的. 例2、用加减法解341236x y x y +=⎧⎨-=⎩时,将方程①两边乘以 ,•把方程②两边乘以 ,可以比较简便地消去未知数 . 1、 用加减法解方程组326231x y x y +=⎧⎨+=⎩时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是966961896186412(1)(2)(3)(4)462462462693x y x y x y x y x y x y x y x y +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨+=-=+=+=⎩⎩⎩⎩A .(1)(2)B .(2)(3)C .(3)(4)D .(4)(1) 2、 对于方程组2353433x y x y -=⎧⎨+=⎩而言,你能设法让两个方程中x 的系数相等吗?你的方法是 ;若让两个方程中y 的系数互为相反数,你的方法是 .3、 用加减消元法解方程组23537x y x y -=⎧⎨=+⎩正确的方法是( )A .2x 5+=①②得B .3x 12+=①②得C .3x 75++=①②得D .x 3y 7x 2-=-=-先将②变为③,再①③得 4、 在方程组341236x y x y +=⎧⎨-=⎩中,若要消x 项,则①式乘以 得③;•②式可乘以 得④;然后再③④两式 即可.5、 方程组356234x y x y -=⎧⎨-=⎩,②×3-①×2得( )A .3y 2-=B .4y 10+=C .y 0=D .7y 8=- 6、 方程组1325y x x y +=⎧⎨+=⎩的解是( )A .3333 (2422)x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===-⎩⎩⎩⎩ 7、 用加减法解下列方程组:(1)383799215(2)(3)274753410x y m n x y x y m n x y +=+=+=⎧⎧⎧⎨⎨⎨-=-=+=⎩⎩⎩【提高练习】 8、 已知方程组22331x y kx y k +=⎧⎨+=-⎩的解x 和y 的和等于6,k=_______.9、 已知232x y a x y a+=⎧⎨-=⎩,求xy 的值.10、 如果二元一次方程组1532234ax by x ax by y -==⎧⎧⎨⎨+==⎩⎩的解是,则a b -=方法三、图像法解二元一次方程组例题:右图中的两条直线1l 、2l 的交点坐标是 , 可以看作方程组: 的解。

二元一次方程组知识点整理、典型例题练习总结

二元一次方程组知识点整理、典型例题练习总结

二元一次方程组(拓展与提优)1、二兀一次方程:含有两个未知数(x和y),并且含有未知数①项①次数都是1,像这样①整式方程叫做二元一次方程,它①一般形式是ax by c(a 0,b °).例1、若方程(2m-6)x|n|-1 +(n+2)y m2-8=1是关于x、y①二元一次方程,求m、n①值.2、二元一次方程①解:一般地,能够使二元一次方程①左右两边相等①两个未知数①值,叫做二元一次方程①解.【二元一次方程有无数组解】3、二元一次方程组:含有两个未知数(x和y),并且含有未知数①项①次数都是1,将这样①两个或几个一次方程合起来组成①方程组叫做二元一次方程组•4、二元一次方程组①解:二元一次方程组中①几个方程①公共解,叫做二元一次方程组①解•【二元一次方程组解x y 1 x y 1 x y1x y 1 O情况:①无解,例如:x y 6, 2x 2y 6;②有且只有一组解,例如:2x y 2;③有无数组解,例如:2x 2y 2】是关于x、y O二元一次方程组2x+(m-1)y=2nx+ y=1O解,试求(m+r)2016O值例3、方程x 3y 10在正整数范围内有哪几组解?5、二元一次方程组O解法:代入消元法和加减消元法。

例4、将方程10 2(3 y) 3(2 x)变形,用含有x O代数式表示y.例5、用适当O方法解二元一次方程组x+1+3 2例6、若方程组ax y 1有无数组解,则a、b O值分别为()6x by 2例2、已知x 2y 1B. a 2,b 1C.a=3,b=-2D. a 2,b 2 A. a=6,b=-16、三元一次方程组及其解法: 方程组中一共含有三个未知数,含未知数①项①次数都是1,并且方程组中一共有 两个或两个以上①方程,这样①方程组叫做三元一次方程组。

解三元一次方程组① 关键也是“消元”:三元T 二元T 元x y z 6 例10、3x 求解方程组y z 22x 3y z 117、二元 一次方程与一次函数关系:例11、一次函数y=kx+2①图像总过定点 _____________ ,二元一次方程kx-y=-2有无数组解,其中必有一个解为 ___________ 。

(完整)第七章二元一次方程组知识点整理及配套练习,推荐文档

(完整)第七章二元一次方程组知识点整理及配套练习,推荐文档

=x的方程组直接写出它的解.列方程组解应用题中常用的基本等量关系 1.行程问题: (1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。

这类问题比较直观,画线段,用图便于理解与分析。

其等量关系式是:两者的行程差=开始时两者相距的路程; ;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。

这类问题也比较直观,因而也画线段图帮助理解与分析。

这类问题的等量关系是:双方所走的路程之和=总路程。

 (3)航行问题:①船在静水中的速度+水速=船的顺水速度; ②船在静水中的速度-水速=船的逆水速度; ③顺水速度-逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题: (1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率; 打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价的十分之八即五分之四或者百分之八十) 4.储蓄问题: ①利息=本金×利率×期数 ②本息和=本金+利息=本金+本金×利率×期数=本金× (1+利率×期数) ③利息税=利息×利息税率=本金×利率×期数×利息税率。

④税后利息=利息× (1-利息税率) 。

 5.配套问题: 解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例。

 6.增长率问题: 解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量; 原量×(1-减少率)=减少后的量. 7.和差倍分问题: 解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量. 8.数字问题: 解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。

二元一次方程组知识点复习相关练习及答案

二元一次方程组知识点复习相关练习及答案

二元一次方程组知识点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为axbyc(a、b、c为常数,并且a0,b 0)。

使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有且只有一个解。

3、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

4、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

5、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

6、二元一次方程组应用题列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;找:找出能够表示题意两个相等关系;列:根据这两个相等关系列出必需的代数式,从而列出方程组;解:解这个方程组,求出两个未知数的值;答:在对求出的方程的解做出是否合理判断的基础上,写出答案§8.1二元一次方程组一、填空题1、二元一次方程 4x-3y=12,当x=0,1,2,3 时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2 ,当k=______时,方程为一元一次方程;当 k=______时,方程为二元一次方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x 2 ax y 3 是方程组 的解,则 a=__________,b=_________. y 3 bx ay 1
( D ) ) 5x=3y-1
一.选择题 2.下列各方程哪个是二元一次方程 A.xy=1 B
1 y3 x
C x2+y2=0
3.方程 3x-2y-2 的一个解是(
x 1 为解的二元一次方程组: 。 y 2
12.如果
13.写一个以
14.若 3x+y=4,则 x=y 时,x、y 的值是 。 三.解答题 17.已知 x<0,y<0,且 x-y=3,求∣x∣-∣y∣的值. 19.已知 2 x
b 1
3 y 3a b 16 10 是一个二元一次方程,则求 a , b 的值。
的解是(

x=1 A. y=1
x=-1 B. y=-1
x=1 C. y=-1
x=-1 D. y=1
8,下列说法正确的是( ) (1)含有两个未知数的方程叫做二元一次方程。 (2)含有两个未知数,并且未知数的次数师的方程叫二元一次方程。 (3)含有两个未知数,并且未知项的次数使 1 的方程叫二元一次方程。 A. (1) B. (2) C. (3) D. (1) , (2) , (3) 二.填空题 9.在方程 3x-ay=8 中,如果 10.若 3 x 11.
x=1 A. y=3
x=3 B. y=5
x=2 C. y=4
x=4 D. y=2
x a 4.已知二元一次方程 3x+y=0 的一个解是 ,其中 a≠0,那么( y b
A.

b >0 a
B.
b =0 a
C.
b <0 a
k 1

2 y 1 是一个二元一次方程,求 k 的值。
例二.已知下面三对数值:
x 0, x 2, x 1, y 2. y 3. y 5.
(1)哪几对是方程 2x — y = 7 的解; (2)哪几对是方程 x + 2 y = —4 的解; 例三.如果
a b 2
x 3 是它的一个解,那么 a 的值为 y 1

4 y 3a b 6 11 是二元一次方程,则 a=________,b=___________。
x2 __________(是或不是)方程 3 x 2 y 8 的一个解. y 1 x 2 y 1, 2x 4 y 2 6x 9 y 那么 _______。 2 3 2 x 3 y 2.
二元一次方程组知识点总结及单元复习练习
一.二元一次方程一般形式是 ax by c( a 0, b 0) 二.二元一次方程组 1.方程组中含有两个未知数,并且每个方程未知项的次数都是 1,共有两个二元一次方程 2.使方程组的两个方程左右两边得值都相等的未知数得值,叫二元一次方程组的解。 3.求得方程组的解的过程,叫解方程组。图象法:两直线交点的坐标 代入消元法 加减消 元法 重点、难点例析 例一.已知 ( k 2) x

D.以上都不对
5.方程 2 x y 8 的正整数解的个数是( A.4 B。3 C。2 D。1
6.在方程 2(x+y)-3(y-x)=3 中,用含 x 的一次式表示 y,则( A. y=5x-3 B。 y=-x-3 C 。 y= 3x 2
2

D
y=-5x-3
7.方程组
2 x-3 y=5 2 x-3 y= 1
1 x+3y=2 中,当 x=4 时,y=_______;当 y=-1 时,x=______. 2
) ⑤x2-y2=2 ②4x+1=x-y;
7.下列各式,属于二元一次方程的个数有( ①xy+2x-y=7;
1 ③ +y=5; ④x=y; x
⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+x A.1 B.2 C.3 D.4 8.某年级学生共有 246 人,其中男生人数 y 比女生人数 x 的 2 倍少 2 人,则下面所列的 方程组中符合题意的有( ) A.
x y 246 2 y x 2
x y 246 B. 2 x y 2
x y 216 C. y 2x 2
x y 246 D. 2 y x 2
二、填空题 9.已知方程 2x+3y-4=0,用含 x 的代数式表示 y 为:y=_______;用含 y 的代数式表示 x 为:x=________. 10.在二元一次方程-
4 x 3 y 7, 的解中,x 和 y 的值相等,求 a 的值。 ax (a 1) y 3.
20.已知二元一次方程组
一、选择题: 1.下列方程中,是二元一次方程的是( A.3x-2y=4z B.6xy+9=0
) C.
1 +4y=6 x

D.4x=
y2 4
2.下列方程组中,是二元一次方程组的是(
x y 4 A. 2 x 3 y 7
2a 3b 11 B. 5b 4c 6
x2 9 C. y 2x
x y 8 D. 2 x y 4
3.二元一次方程 5a-11b=21 ( ) A.有且只有一解 B.有无数解 4.方程 y=1-x 与 3x+2y=5 的公共解是( A.
C.无解 )
D.有且只有两解
x 3 y 2
x 3 B. y 4
B.-2
x 3 C. y 2
) D. C.-3
x 3 D. y 2
3 2
5.若│x-2│+(3y+2)2=0,则的值是( A.-1 6.方程组
4 x 3 y k 的解与 x 与 y 的值相等,则 k 等于( ) 2 x 3 y 5
相关文档
最新文档