七年级二元一次方程组知识点总结

合集下载

初中二元一次方程知识归纳

初中二元一次方程知识归纳

初中二元一次方程知识归纳一、二元一次方程的定义二元一次方程是指只含有两个未知数x和y,且每个未知数的最高次数均为一次的方程,其一般形式为ax+by=c,其中a,b,c为已知实数,且a,b不全为零。

二、二元一次方程的解的表示方法求解二元一次方程ax+by=c的过程是求出x,y使得ax+by=c成立。

解(x,y)构成了方程ax+by=c的解集。

用一个有序数对表示解集就是该方程的解的表示方法。

解集表示为(x,y),其中x是方程的解,y是对应x的解。

三、二元一次方程的解法1. 常用消元法将二元一次方程的两个方程中,所包含相同的未知数,消去该未知数的系数,即可得到一个未知数的一元一次方程。

解出未知数的值,再带入另外一个方程,求出另一个未知数的值。

最终得出方程的解。

2. 代入法先把一个方程中的一个未知量用另一个未知量表示,再将它代入另一个方程中,并把未知量表示成同一个未知量,此时得到一个一元一次方程,解出这个未知量。

然后再代回即可求出另一个未知量。

3. 公式法设ax+by=c为二元一次方程,$D=\\begin{vmatrix} a&b\\\\c&d\\end{vmatrix}$,则有:$$x=\\frac{\\begin{vmatrix} c&b\\\\d&e\\end{vmatrix}}{D},y=\\frac{\\begin{vmatrix} a&c\\\\b&d\\end{vmatrix}}{D}$$4. 矩阵法(高斯消元法)把二元一次方程的系数和常数用矩阵表示出来,然后用高斯消元法化为行阶梯矩阵,再回带求解即可。

四、二元一次方程的分析解1. 无解无解的情况是因为方程组表示的两个直线平行,不可能相交。

2. 唯一解唯一解的情况是因为方程组表示的两个直线相交于一点,有且仅有一个交点。

3. 无数解无数解的情况是因为方程组表示的两个直线重合,方程中含有自由变量,取不同的自由变量,得到无穷多个解。

七年级二元一次方程组知识点总结

七年级二元一次方程组知识点总结

七年级二元一次方程组知识点总结本文介绍了二元一次方程及其解以及二元一次方程组及其解。

二元一次方程是指含有两个未知数(x和y),并且含有未知数的项的次数都是1的整式方程。

一般形式为ax+by=c(a≠0,b≠0)。

二元一次方程的解是指能够使方程左右两边相等的两个未知数的值。

而二元一次方程组是指含有两个未知数(x和y),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组。

二元一次方程组的解是指二元一次方程组中的几个方程的公共解。

举例来说,对于方程x+3y=10,它在正整数范围内有三组解,分别是{x=1,y=3},{x=4,y=2}和{x=7,y=1}。

而对于方程组{2x-3m=1,ny-mx=-5},当x=2时,它有解,解为{m=1,n=-1}。

在解题过程中,需要注意二元一次方程组的解可能有无数组,也可能没有解。

因此,需要具体问题具体分析,采用合适的方法求解。

已知二元一次方程$(2m-6)x(n+1)+(n+2)y(m-8)=0$,当$y=-2$时,求$x$的值。

知识点1:二元一次方程及其解1.下列各式是二元一次方程的是(A。

$6x-y=7$)2.若$\begin{cases}x=3\\y=2\end{cases}$是关于$x$、$y$的二元一次方程$3x-ay=$的一个(组)解,则$a$的值为(B。

$4$)3.对于二元一次方程$x-2y=1$有无数个解,下列四组值不是该方程的解的一组是(D。

$\begin{cases}x=1\\y=-1\end{cases}$)4.二元一次方程$x+2y=7$在正整数范围内的解有(B。

两个)5.若$x+2y=6$是二元一次方程,则$m=n=3$。

6.关于$x$、$y$的方程$(m+1)x+(m-1)y=0$,当$m=2$时,是一元一次方程;当$m=3$时,是二元一次方程。

7.已知在方程$3x-5y=2$中,若用含有$x$的代数式表示$y$,则$y=\frac{3x-2}{5}$,用含有$y$的代数式表示$x$,则$x=\frac{5y+2}{3}$。

七年级二元一次方程组知识点总结

七年级二元一次方程组知识点总结

人教版七年级下册第八章第一课时认识二元一次方程组一、二元一次方程及其解(1)二元一次方程:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程,它的一般形式是(0,0)ax by c a b +=≠≠.(2)二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解. 【二元一次方程有无数组解】二、二元一次方程组及其解(1)、二元一次方程组:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组.(2)、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解.【二元一次方程组解的情况:①无解,例如:16x y x y +=⎧⎨+=⎩,1226x y x y +=⎧⎨+=⎩;②有且只有一组解,例如:122x y x y +=⎧⎨+=⎩;③有无数组解,例如:1222x y x y +=⎧⎨+=⎩.】 例1、若方程213257m n xy --+=是关于x y 、的二元一次方程,求m 、n 的值.解:∵方程213257m n x y --+=是关于x y 、的二元一次方程 ∴211321m n -=⎧⎨-=⎩解得11m n =⎧⎨=⎩ 例2、将方程102(3)3(2)y x --=-变形,用含有x 的代数式表示y .解:去括号得,106263y x -+=- 移项得,261063y x =-+-合并同类项得,223y x =- 系数化为1得,232x y -=例3、方程310x y +=在正整数范围内有哪几组解?解:有三组解,分别是147,,321x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩ 例4、若23x y =⎧⎨=⎩是方程组2315x m nx my -=⎧⎨-=-⎩的解,求m n 、的值. 解:∵23x y =⎧⎨=⎩是方程组2315x m nx my -=⎧⎨-=-⎩的解 ∴431235m n m -=⎧⎨-=-⎩解得11m n =⎧⎨=-⎩ 例5、已知(1)(1)1n m m x n y ++-=是关于x y 、的二元一次方程,求m n 的值. 解:∵(1)(1)1n m m x n y ++-=是关于x y 、的二元一次方程∴101101m m n n +≠⎧⎪=⎪⎨-≠⎪⎪=⎩ 解得11m n =⎧⎨=-⎩ ∴1(1)1m n =-=-(变式训练)已知218(26)(2)0n m m x n y +--++=是关于x y 、的二元一次方程,当2y =-时,求x 的值. 知识点1:二元一次方程及其解1、下列各式是二元一次方程的是( )..A 67x y -= .B 105x y-= .C 45x xy -= .D 210x x ++= 2、若32x y =⎧⎨=⎩是关于x y 、的二元一次方程30x ay -=的一个(组)解,则a 的值为( ) .A 3 .B 4 .C 4.5 .D 63、对于二元一次方程21x y -=有无数个解,下列四组值不是该方程的解的一组是( ).A 012x y =⎧⎪⎨=⎪⎩ .B 11x y =⎧⎨=⎩ .C 10x y =⎧⎨=⎩.D 11x y =-⎧⎨=-⎩ 4、二元一次方程27x y +=在正整数范围内的解有( )..A 无数个 .B 两个 .C 三个 .D 四个5、若226n m x y +=是二元一次方程,则m = n = .6、关于x y 、的方程11()()0,33m x m y ++-=当m = 时,是一元一次方程;当m = 时,是二元一次方程.7、已知在方程352x y -=中,若用含有x 的代数式表示y ,则y = ,用含有y 的代数式表示x ,则x =8、若5m n -=,则15m n -+=9、已知221(31)0x y ++-=,则2x y -= 10、在二元一次方程2(5)3(2)10x y ---=中,当0x =时,则y = ;当4y =时,则x = . 知识点2:二元一次方程组及其解1、有下列方程组:(1)30430x y x y +=⎧⎨-=⎩ (2)3049x y xy +=⎧⎨=⎩ (3)52m n =⎧⎨=-⎩ (4)1426x x y =⎧⎨+=⎩其中说法正确的是( ). .A 只有(1)、(3)是二元一次方程组 .B 只有(3)、(4)是二元一次方程组 .C 只有(4)是二元一次方程组 .D 只有(2)不是二元一次方程组2、下列哪组数是二元一次方程组324x y x +=⎧⎨=⎩的解( ) .A 30x y =⎧⎨=⎩ .B 12x y =⎧⎨=⎩ .C 52x y =⎧⎨=-⎩ .D 21x y =⎧⎨=⎩ 3、若方程组162ax y x by -=⎧⎨+=⎩有无数组解,则a 、b 的值分别为( ) .A 1,1a b == .B 2,1a b == .C 1,2a b ==- .D 2,2a b ==-4、写出一个以 ⎩⎨⎧-==24y x 为解的二元一次方程组 ;写出以12x y =⎧⎨=⎩为解的一个二元一次方程 . 5、已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 。

二元一次方程组知识点整理、典型例题总结

二元一次方程组知识点整理、典型例题总结

二元一次方程组知识点整理、典型例题总结二元一次方程组一、知识点总结1、二元一次方程:含有两个未知数(x和y),并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0)。

2、二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解。

3、二元一次方程组:含有两个未知数(x和y),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组。

4、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解。

二元一次方程组解的情况:①无解,例如:{x+y=1,2x+2y=3};②有且只有一组解,例如:{x+y=1,2x+y=2};③有无数组解,例如:{x+y=1,2x+2y=2}。

5、二元一次方程组的解法:代入消元法和加减消元法。

6、列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数;(2)设:找出能够表示题意两个相等关系,并用字母表示其中的两个未知数;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。

二、典型例题分析例1:二元一次方程组{x=2.2x-3m=1}的解,求m、n的值。

例2:若{nx-my=-5.y=3},求m、n的值。

例3:方程x+3y=10在正整数范围内有哪几组解?例4:将方程10-2(3-y)=3(2-x)变形,用含有x的代数式表示y。

例5:已知{(m+1)x+(n-1)y}/nm=1是关于x、y的二元一次方程,求nm的值。

例6:若方程2m-13n-2x+5y=7是关于x、y的二元一次方程,求m、n的值。

例7:(1)用代入消元法解方程组{7x+5y=3.2x-y=-4}。

完整版)二元一次方程组知识点及典型例题

完整版)二元一次方程组知识点及典型例题

完整版)二元一次方程组知识点及典型例题二元一次方程组小结与复一、知识梳理一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。

2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。

任何一个二元一次方程都有无数个解。

3.方程组和方程组的解1) 方程组:由几个方程组成的一组方程叫作方程组。

2) 方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。

4.二元一次方程组和二元一次方程组的解1) 二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。

2) 二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。

二)二元一次方程组的解法:1.代入消元法2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。

二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成ax+by+c=(a,b,c为已知数,且a≠0,b≠0)的形式,这种形式叫二元一次方程的一般形式。

练1:下列方程,哪些是二元一次方程,哪些不是?A) 6x-2=5z+6xB) m/11+yx=7C) x-yD) xy+2x+y=1练2:若方程(m-1)x+3y5n-9=4是关于x、y的二元一次方程,求mn的值。

练3:若方程(2m-6)x|n|-1+(n+2)ym-8=1是二元一次方程,则m=_______,n=__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。

一)代入消元法:1.直接代入例1:解方程组y=2x-3。

4x-3y=1.2.变形代入例2:解方程组x+y=90y=3x-75x+2y=8x=15-2y5x-y=9。

3x+4y=10.3.跟踪训练:1) {2x-y=-4。

4x-5y=-23.2) {3x+5y=13。

3x-2y=5.3) {3x+5y=20。

七年级下册数学二元一次方程组知识点

七年级下册数学二元一次方程组知识点

七年级下册数学二元一次方程组知识点一元一次方程是指只有一个未知数的一次方程,例如:2x - 3 = 7。

而二元一次方程是指含有两个未知数的一次方程,例如:2x + 3y= 7。

在七年级下册的数学课程中,我们将学习关于二元一次方程组的知识。

方程组是一个由多个方程组成的集合,其中每个方程都有相同的未知数。

接下来,我们将学习以下知识点:1.二元一次方程组的概念:二元一次方程组是由两个二元一次方程组成的集合。

一般形式为:a1x + b1y = c1a2x + b2y = c22.解二元一次方程组的方法:a.消元法:通过某种操作使得方程组中的一个未知数的系数相等,然后将方程相加或相减,从而消去该未知数。

b.代入法:选取一个方程,将其中一个未知数表示成另一个未知数的式子,然后将其代入另一个方程,从而得到一个只含一个未知数的方程。

c.矩阵法:将方程组的系数分别放入矩阵中,计算矩阵的行列式,从而求得方程组的解。

3.解二元一次方程组的步骤:a.利用某种方法将方程组化简为易于求解的形式。

b.求解方程组中的一个未知数。

c.将求解得到的未知数代入另一个方程,求解另一个未知数。

d.检验所求解是否满足原方程组。

4.二元一次方程组的解的情况:a.唯一解:方程组有且仅有一个解。

b.无解:方程组没有解,即方程组的解不存在。

c.无穷多解:方程组有无数个解。

5.在解二元一次方程组时要注意的问题:a.方程组是否有解。

b.方程组是否有无穷多解。

c.是否可以进行消元操作。

d.是否正确地代入方程。

通过学习二元一次方程组的知识,我们可以解决一些实际问题,例如在解答题或应用题中,通过列方程组来求解问题。

希望以上简要介绍的二元一次方程组的知识点能对你的学习有所帮助!。

初中二元一次方程知识归纳

初中二元一次方程知识归纳

初中⼆元⼀次⽅程知识归纳 ⼆元⼀次⽅程是初中解⽅程的重要知识点,求解⼆元⼀次⽅程⾸先要明⽩其基础内容。

以下是店铺分享给⼤家的初中⼆元⼀次⽅程知识,希望可以帮到你! 初中⼆元⼀次⽅程知识 ⼀.⼆元⼀次⽅程(组)的相关概念 1.⼆元⼀次⽅程:含有两个未知数并且未知项的次数是1的⽅程叫做⼆元⼀次⽅程。

2.⼆元⼀次⽅程组:⼆元⼀次⽅程组两个⼆元—次⽅程合在⼀起就组成了⼀个⼆元⼀次⽅程组。

3.⼆元⼀次⽅程的解集: (1)⼆元⼀次⽅程的解 适合⼀个⼆元⼀次⽅程的每⼀对未知数的值.叫做这个⼆元⼀次⽅程的⼀个解。

(2)⼆元⼀次⽅程的解集 对于任何⼀个⼆元⼀次⽅程,令其中⼀个未知数取任意⼆个值,都能求出与它对应的另⼀个未知数的值.因此,任何⼀个⼆元⼀次⽅程都有⽆数多个解.由这些解组成的集合,叫做这个⼆元⼀次⽅程的解集。

4.⼆元⼀次⽅程组的解:⼆元⼀次⽅程组可化为 使⽅程组中的各个⽅程的左、右两边都相等的未知数的值,叫做⽅程组的解。

⼆.利⽤消元法解⼆元⼀次⽅程组 解⼆元(三元)⼀次⽅程组的⼀般⽅法是代⼊消元法和加减消元法。

1.解法: (1) 代⼊消元法是将⽅程组中的其中⼀个⽅程的未知数⽤含有另⼀个未知数的代数式表⽰,并代⼊到另⼀个⽅程中去,消去另⼀个未知数,得到⼀个解。

代⼊消元法简称代⼊法。

(2)加减消元法利⽤等式的性质使⽅程组中两个⽅程中的某⼀个未知数前的系数的绝对值相等,然后把两个⽅程相加或相减,以消去这个未知数,使⽅程只含有⼀个未知数⽽得以求解。

这种解⼆元⼀次⽅程组的⽅法叫做加减消元法,简称加减法。

⽤加减法消元的⼀般步骤为: ①在⼆元⼀次⽅程组中,若有同⼀个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去⼀个未知数; ②在⼆元⼀次⽅程组中,若不存在①中的情况,可选择⼀个适当的数去乘⽅程的两边,使其中⼀个未知数的系数相同(或互为相反数),再把⽅程两边分别相减(或相加),消去⼀个未知数,得到⼀元⼀次⽅程; ③解这个⼀元⼀次⽅程; ④将求出的⼀元⼀次⽅程的解代⼊原⽅程组系数⽐较简单的⽅程,求另⼀个未知数的值; ⑤把求得的两个未知数的值⽤⼤括号联⽴起来,这就是⼆元⼀次⽅程组的解。

七年级数学二元一次方程组(学生讲义)

七年级数学二元一次方程组(学生讲义)

第一章 二元一次方程组【知识要点】1.二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程。

①二元一次方程左右两边的代数式必须是整式;(不是整式的化成整式) ②二元一次方程必须含有两个未知数;③二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数的次数。

2.二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解任何一个二元一次方程都有无数解。

3.二元一次方程组:①由两个或两个以上的整式方程组成,常用“ ”把这些方程联合在一起; ②整个方程组中含有两个不同的未知数,且方程组中同一未知数代表同一数量; ③方程组中每个方程经过整理后都是一次方程, 4.二元一次方程组的解:注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。

5.会检验一对数值是不是一个二元一次方程组的解6.二元一次方程组的解法:(1) 代入消元法 (2)加减消元法 三、理解解二元一次方程组的思想转化消元一元一次方程二元一次方程组四、解二元一次方程组的一般步骤(一)、代入法一般步骤:变形——代入——求解——回代——写解 (二)、加减法一般步骤:变形——加减——求解——代入——写解1.1 二元一次方程组的解法(1)用代入法解二元一次方程组例:解方程组 ⎩⎨⎧=+=+1523y x y x※解题方法:①编号:将方程组进行编号;②变形:从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y=ax+b (或x=ay+b )的形式;③代入:将y=ax+b (或x=ay+b )代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;④求x (或y ):解这个一元一次方程,求出x (或y )的值;⑤求y (或x ):把x (或y )的值代入y=ax+b (或x=ay+b )中,求出y (或x )的值;⑥联立:用“{”联立两个未知数的值,就是方程组的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组解的情况:①无解,例如:⎧ x + y = 1 , ⎨ ;②有且只有一组解,例如:⎧ x + y =1 ;③有无数组解,例如:
⎩2x +2y =6 ⎩x + y = 6 ⎩2x + y = 2 ⎧ x + y =1 .】
⎩2x +2y =2
⎩3n -2=1 ⎩ n = 1
例 4、若 ⎧x = 2 是方程组 ⎧ 2x - 3m = 1 的解,求 m 、n 的值. ⎩nx - my = -5 解:∵ ⎧x = 2 是方程组 ⎧ 2x - 3m = 1 的解 ∴ ⎧⎨ 解得 ⎧ m = 1 ⎩2n -3m =-5 ⎩ y = 3 ⎩nx - my = -5 ⎩n = -1 ⎨ ⎨ ⎨ ⎨ ⎩n = -1
人教版七年级下册第八章第一课时认识二元一次方程组
一、二元一次方程及其解
(1)二元一次方程:含有两个未知数(x 和 y ),并且含有未知数的项的次数都是1,像这样的整式方程叫做二元 一次方程,它的一般形式是 ax + by = c(a ≠ 0, b ≠ 0) .
(2)二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的 解. 【二元一次方程有无数组解】
二、二元一次方程组及其解 (1)、二元一次方程组:含有两个未知数(x 和 y ),并且含有未知数的项的次数都是1,将这样的两个或几个一次
方程合起来组成的方程组叫做二元一次方程组.
(2)、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解.【二元一次方程
⎧ x +y =1 ⎨ ⎨

例 1、若方程 x 2m -1 + 5 y 3n -2 = 7 是关于 x 、y 的二元一次方程,求 m 、 n 的值.
解:∵方程 x 2m -1 + 5 y 3n -2 = 7 是关于 x 、y 的二元一次方程
∴ ⎧2m -1=1解得 ⎧m = 1
⎨ ⎨
例 2、将方程10 - 2(3 - y) = 3(2 - x) 变形,用含有 x 的代数式表示 y .
解:去括号得,10 - 6 + 2 y = 6 - 3x
移项得, 2 y = 6 - 10 + 6 - 3x
合并同类项得, 2 y = 2 - 3x
系数化为 1 得, y =
2 - 3x
2
例 3、方程 x + 3 y = 10 在正整数范围内有哪几组解?
解:有三组解,分别是 ⎧ x = 1 , ⎧ x = 4 , ⎧ x = 7
⎩ y = 3 ⎩ y = 2 ⎩ y = 1

⎨ ⎩ y = 3
4-3m =1
⎨ ⎨ ⎨
例 5、已知 (m + 1)x n + (n - 1) y m = 1 是关于 x 、y 的二元一次方程,求 n m 的值.
⎧m + 1 ≠ 0
解:∵ (m + 1)x n + (n - 1) y m
= 1 是关于 x 、y 的二元一次方程∴ ⎪ m = 1 解得 ⎧ m = 1
⎨ ⎪ n -1 ≠ 0
⎪⎩ n = 1
∴ n m = (-1)1 = -1
2、若 ⎧⎨
A. ⎪
B. ⎧⎨
C. ⎧⎨
D. ⎧⎨
(m + ) x + (m - ) y = 0, 当 m
1、有下列方程组: )⎧ x +3y = 0 (2)⎧ x + 3 y = 0 (3)⎧ m = 5 (4)⎧ 其中说法正确的是( ).
(1
⎩4x -3y = 0 ⎩ 4 xy = 9 ⎩ n = - 2 ⎩4x + 2 y = 6
(变式训练)已知 (2m - 6)x n +1 + (n + 2) y m 2-8 = 0 是关于 x 、y 的二元一次方程,当 y = -2 时,求 x 的值.
知识点 1:二元一次方程及其解
1、下列各式是二元一次方程的是(
).
A. 6 x - y = 7
B. x - 1 = 0
C. 4 x - xy = 5
D. x 2 + x + 1 = 0
5 y
x = 3 是关于 x 、y 的二元一次方程 3x - ay = 0 的一个(组)解,则 a 的值为( )
⎩ y = 2
A. 3
B. 4
C. 4.5
D. 6
3、对于二元一次方程 x - 2 y = 1 有无数个解,下列四组值不是该方程的解的一组是(

⎧ x = 0
⎨ 1 ⎪⎩ y = 2
x = 1 ⎩ y = 1 x = 1 ⎩ y = 0 x = -1 ⎩ y = -1
4、二元一次方程 x + 2 y = 7 在正整数范围内的解有(
).
A. 无数个
B. 两个
C. 三个
D. 四个
n 5、若 x m + 2 y 2
= 6 是二元一次方程,则 m =
n =
.
6、关于 x 、y 的方程 1 1 3 3
= 时,是一元一次方程;当 m = 时,是二元一次方程.
7、已知在方程 3x - 5 y = 2 中,若用含有 x 的代数式表示 y ,则 y =
,用含有 y 的代数式表示 x ,则 x =
8、若 m - n = 5 ,则15 - m + n =
9、已知 2x + 1 + (3y -1)2 = 0 ,则 x 2 - y =
10、在二元一次方程 2(5 - x) - 3( y - 2) = 10 中,当 x = 0 时,则 y = ;当 y = 4 时,则 x =
.
知识点 2:二元一次方程组及其解
x = 1 ⎨ ⎨ ⎨ ⎨
A. 只有(1)、(3)是二元一次方程组
B. 只有(3)、(4)是二元一次方程组
C. 只有(4)是二元一次方程组
D. 只有(2)不是二元一次方程组
2、下列哪组数是二元一次方程组 ⎧ x + y = 3 的解(
⎩ 2x = 4 A. ⎧⎨ x = 3
⎩ y = 0
⎩ y = 2 ⎩ y = - 2
⎩ y = 1
3、若方程组 ⎨ 有无数组解,则 a 、 b 的值分别为(

4、写出一个以
⎨ x = 4
为解的二元一次方程组
;写出以 ⎧ x = 1
为解的一个二元一次方程
.

⎩ y = 2
5、已知 ⎨ ⎧ax + by = 7 是二元一次方程组 ⎨ 的解,则 a - b 的值为。





B. ⎧ x = 1
C. ⎧ x = 5
D. ⎧ x = 2
⎨ ⎨ ⎨
⎧ ax - y = 1 ⎩6 x + by = 2
A. a = 1,b = 1
B. a = 2, b = 1
C. a = 1,b = -2
D. a = 2, b = -2
y = -2
⎧ x = 2 ⎩ y = 1 ⎩ ax - by = 1
6、如果 4 x - 5 y = 0, 且 x ≠ 0, 那么 12 x - 5 y 12 x + 5 y
的值是 .
7、若 3x 2a +b +1 y 与 5 x y a -2b -1 是同类项,则 b - a =
8、已知 ⎧ x = -2 是方程组 ⎧(2 - m ) x - y = 6 的解,求 m 、 n 的值. ⎩ y = 1
⎩ x + ny = 3
9、已知关于
x, y 的方程组 ⎧3x + 5 y = m + 2 的解满足 x + y = -10, 求式子 m 2 - 2m + 1 的值.
⎩ 2x + 3 y = m 10、小花在家做家庭作业时,发现练习册上一道解方程组的题目被墨水污染⎨ (
)表示被污染的
⎧⎪3x - 2 y = ( ) ⎨

, ⎪⎩ 5x + y = ( )
内容,她着急地翻开书后面的答案,这道题目的解是⎧ x = 2 ,聪明的你能够帮她补上(
)的内容吗?
⎩ y = -1。

相关文档
最新文档