九年级数学上册 1.3 正方形的性质与判定 第1课时 正方形的性质讲练优质课件 (新版)北师大版

合集下载

九年级数学上册1.3正方形的性质与判定第一课时全国公开课一等奖百校联赛微课赛课特等奖PPT课件

九年级数学上册1.3正方形的性质与判定第一课时全国公开课一等奖百校联赛微课赛课特等奖PPT课件
第一章 特殊平行四边形
1.3 正方形性质与判定 第1课时
1/5
1.掌握正方形概念、性质,并会用它们进行相关论证和计算. பைடு நூலகம்.能说出正方形与平行四边形、矩形、菱形联络和区分.
2/5
如图,给出一张矩形纸片,要求折叠出一个最大正方 形.小明把矩形上一个角沿折痕AE翻折上去,使AB与AD边上 AF重合,则四边形ABEF是正方形吗?为何?
4/5
由条件可知有三个等腰三角形,分别是△PAD,△PCB,△PDC. 由已知可得∠PAB=∠PBA=60°, 推出∠DAP=30°,∠ADP=∠APD=75°, 即可求出∠PDC=90°-75°=15°.
5/5
3/5
1.试着回答“问题导引”中问题. 四边形ABEF是正方形.因为一组邻边相等矩形是正方形.
2.在解关于正方形题目时,要充分利用正方形边和角 特殊性质.
比如:如图,在正方形ABCD中,以AB为边作等边△PAB,连接 DP,PC,则图中有多少个等腰三角形(△PAB除外)?分别是哪些? ∠PDC度数是多少?

(名师整理)最新北师大版数学九年级上册第1章第3节《正方形的性质与判定》市优质课一等奖教案

(名师整理)最新北师大版数学九年级上册第1章第3节《正方形的性质与判定》市优质课一等奖教案

1.3 正方形的性质与判定第1课时正方形的定义和性质1.理解正方形的概念和性质定理,通过由一般到特殊的研究方法,分析平行四边形、矩形、菱形、正方形的概念及性质之间的区别与联系.2.在探索正方形的性质定理的过程中,发展学生的合情推理能力.3.培养学生勇于探索、团结协作交流的精神,激发学生学习的积极性与主动性.1/ 20重点理解正方形的定义和性质.难点选择适当的方法解决有关正方形的问题.一、情境导入教师:大家小时候都做过风车吗?在准备材料的时候,我们往往会先折一张正方形的纸片.那么大家能用一张长方形的纸片折出一个正方形吗?2/ 20学生动手操作,引导学生在动手操作中对正方形产生感性认识,并感知正方形与矩形的关系.教师:结合菱形和矩形的定义,想一想,什么样的四边形是正方形?学生思考后回答,教师点评,并归纳:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.说明:其定义包括了两层意思:①有一组邻边相等的平行四边形 (菱形);②有一个角是直角的平行四边形 (矩形).所以说正方形既是菱形又是矩形.教师:这节课我们就来深入地了解正方形.(板书课题)二、探究新知教师:正方形都具有哪些性质呢?学生:由正方形的定义可知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.所以它应该具备菱形和矩形的所有性质.3/ 20教师:你能详细说一说正方形的性质吗?学生:正方形的四个角都是直角,四条边都相等.正方形的两条对角线相等并且互相垂直平分.由学生的回答归纳出:正方形的性质定理1:正方形的四个角都是直角,四条边相等.正方形的性质定理2:正方形的对角线相等且互相垂直平分.教师:同学们能尝试完成这两个定理的证明吗?学生独立完成,并相互交流,教师点评.教师:正方形有几条对称轴?学生思考或者画图验证.三、举例分析4/ 20例1 如图,在正方形 ABCD 中,E 为 CD 边上一点,F 为 BC 延长线上一点,且 CE = CF.BE 与 DF 之间有怎样的关系?请说明理由.解:BE = DF,且BE⊥DF.理由如下:(1)∵ 四边形 ABCD 是正方形,∴ BC = DC,∠ BCE = 90°(正方形的四条边相等,四个角都是直角).∴∠ DCF = 180°-∠ BCE = 180°- 90°= 90°.∴∠ BCE =∠ DCF.又∵ CE = CF,∴△BCE ≌△DCF.∴ BE = DF.(2)延长 BE 交 DF 于点 M(如图).5/ 20∵△BCE ≌△DCF,∴∠ CBE =∠ CDF.∵∠ DCF = 90°,∴∠ CDF +∠ F = 90°.∴∠ CBE +∠ F = 90°.∴∠BMF= 90°.∴ BE⊥DF.例2 平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流.学生尝试画图,教师点评,并进一步讲解,课件出示如下图:6/ 20四、练习巩固1.如图,在正方形ABCD中,对角线AC与BD相交于点O,图中有多少个等腰三角形?第1题图第2题图2.如图,在正方形ABCD中,点F为对角线BD上一点,连接AF,CF.你能找出图中的全等三角形吗?选择其中一对进行证明.五、小结7/ 20通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?六、课外作业教材第22页习题1.7第1~4题.本节课教学的主要内容是探究并证明正方形的性质定理.教材只是提供了最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整.让学生通过搜集材料亲自去感受数学在实际生活中的应用,体会数学的实际价值.培养学生善于观察生活、搜集数学信息、对信息进行整理的能力.第2课时正方形的判定8/ 201.掌握正方形的判定定理,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关的证明和计算.2.经历探究正方形的判定定理的过程,发展学生综合推理的能力、主动探究的学习习惯,逐步掌握说理的基本方法.3.理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点.重点掌握正方形的判定定理.9/ 20难点合理恰当地利用特殊平行四边形的性质与判定进行有关的证明和计算.一、复习导入1.我们学习了平行四边形、矩形、菱形、正方形,那么思考一下,它们之间有怎样的包含关系?2.让学生回答以下问题:(1)怎样判断一个四边形是矩形?10/ 20(2)怎样判断一个四边形是菱形?(3)怎样判断一个四边形是平行四边形?(4)怎样判断一个平行四边形是矩形、菱形?教师:你有什么方法判定一个四边形是正方形?这就是本节课要探究的内容.二、探究新知1.正方形的判定定理课件出示教材第22页图1-20,提出问题:将一张长方形纸对折两次,然后剪下一个角,打开.怎样剪才能剪出一个正方形?学生动手操作,教师巡视指导,并讲解:因为正方形的两条对角线把它分成四个全等的等腰直角三角形,把折痕作对角线,这时只需剪一个等腰直角三角形,打开即是正方形,因此只要保证剪口线与折痕成45°角即可.11/ 20教师:满足什么条件的矩形是正方形?满足什么条件的菱形是正方形?引导学生总结出正方形的判定定理:对角线相等的菱形是正方形.对角线垂直的矩形是正方形.有一个角是直角的菱形是正方形.教师:平行四边形、矩形、菱形、正方形之间有什么关系?教师:同学们能尝试完成这3个定理的证明吗?学生独立完成,教师点评.2.中心四边形学生以小组的形式,在平行四边形、矩形、菱形、正方形、等腰梯形、梯形和直角梯形中选择一种自己感兴趣的四边形来研究中点四边形,并验证结论的正确性.12/ 20平行四边形矩形13/ 20菱形正方形14/ 20等腰梯形直角梯形15/ 20梯形引导学生得出结论:平行四边形的中点四边形是平行四边形;矩形的中点四边形是菱形;菱形的中点四边形是矩形;正方形的中点四边形是正方形;等腰梯形的中点四边形是菱形;直角梯形的中点四边形是平行四边形;梯形的中点四边形是平行四边形.三、举例分析16/ 20例如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.证明:∵BF∥CE,CF∥BE,∴四边形BECF是平行四边形.∵四边形ABCD是矩形,∴∠ABC=90°,∠DCB=90°.又∵BE平分∠ABC,CE平分∠DCB,∴∠EBC=12∠ABC=45°,∠ECB=12∠DCB=45°.∴∠EBC=∠ECB.∴EB=EC.∴▱BECF是菱形(菱形的定义).在△EBC中,∵∠EBC=45°,∠ECB=45°,∴∠BEC=90°.17/ 20∴菱形BECF是正方形(有一个角是直角的菱形是正方形).四、练习巩固1.教材第24页“随堂练习”.2.完成下列问题:图①图②18/ 20图③(1)如图①,在△ABC中,EF为△ABC的中位线.①若∠BEF=30°,则∠A=________.②若EF=8 cm,则AC=________.(2)如图②,在AC的下方取一点D,连接AD,CD.取CD和AD的中点G、H,问EF和GH有怎样的关系?EH和FG呢?(3)如图③,四边形EFGH的形状有什么特征?五、小结1.通过本节课的学习,你有哪些收获?2.正方形的判定定理有哪些?六、课外作业教材第25页习题1.8第1~4题.19/ 20本节课采用了多媒体辅助教学,为学生创建了一个学习情境,通过图形的变换,使学生很容易发现问题的规律、找出解决方法,并且学生在老师的启发下,一步一步地探索、归纳、学习,在探索的过程中培养了学生的创新精神和意识.在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.20/ 20。

北师大版数学九年级上册1.3正方形的性质与判定(第一课时)优秀教学案例

北师大版数学九年级上册1.3正方形的性质与判定(第一课时)优秀教学案例
2.鼓励学生提出自己的疑问,如“正方形的对角线为什么相等?”;
3.引导学生通过观察、操作、猜想、验证等方法,自主探究正方形的性质。
问题导向教学策略能够激发学生的好奇心,培养学生独立思考和解决问题的能力,使学生在探究过程中更深入地理解和掌握正方形的性质。
(三)小组合作
1.组织学生进行小组合作,让每个学生都参与到正方形性质的探究中来;
二、教学目标
(一)知识与技能
1.让学生掌握正方形的性质,包括边长、对角线、四边形等特征;
2.培养学生能够运用数学语言描述和判定正方形的能力;
3.使学生了解正方形与其他四边形的关系,提高学生的图形认知能力。
为实现这一目标,我将在课堂上引导学生观察、操作、猜想、验证等环节,通过小组合作、师生互动等方式,让学生在实践中掌握正方形的性质。同时,我将设计具有层次性的练习题,让学生在巩固知识的过程中,提高运用数学语言描述和判定正方形的能力。
2.通过示例和讲解,让学生了解正方形的判定方法,如四条边相等或对角线互相垂直平分等;
3.结合实例,讲解正方形性质在实际问题中的应用,如正方形面积的计算等。
(三)学生小组讨论
1.组织学生进行小组讨论,让学生分享自己对于正方形性质的理解和判定方法;
2.引导学生通过操作、观察、猜想、验证等方法,探索正方形的性质;
(一)导入新课
1.利用多媒体展示正方形在生活中的应用,如正方形地毯、正方形桌面等,引导学生关注正方形的存在;
2.提出问题:“你们知道正方形有哪些特点吗?”让学生思考正方形与其他四边形的不同;
3.总结正方形的特点,引出正方形是一种特殊的长方形,进而导入新课。
(二)讲授新知
1.介绍正方形的定义和性质,如边长相等、对角线相等、四个角都是直角等;

九年级数学上册 1.3 正方形的性质与判定(第一课时)课件 (新版)北师大版

九年级数学上册 1.3 正方形的性质与判定(第一课时)课件 (新版)北师大版
第七页,共17页。
想一想:
正方形有几条对称轴
解析: 正方形有4条对称轴. 经验层面:可通过折叠. 分析层面:正方形具有矩形、菱形的所有 性质(xìngzhì),所以必然具有矩形过每 组对边中点的对称轴和菱形过对角线的对 称轴.
第八页,共17页。
性质(xìngzhì)应用
例1:如图1-18,在正方形ABCD中,E为CD上 一点(yī diǎn),F为BC边延长线上一点 (yī diǎn),且CE=CF.BE与DF之间有怎样 的关系?请说明理由.
么关系?你能用一个你喜欢的方式直观地 示它们之间的关系吗 ?与同伴交流.
这是老师(lǎoshī)的,你 的呢?
第十二页,共17页。
1:如图,在正方形ABCD中,对角线AC与BD相 交于点O,图中有多少个等腰三角形?
2:如图,在正方形ABCD中,点F为对角线AC上 一点,连接BF,DF。你能找出图中的全等三 角形吗?选择其中一对(yī duì)进行证明.
第十七页,共17页。
第十三页,共17页。
1:解:图中共(zhōnɡ ɡònɡ)有8个等腰三角形. 2:解:图中的全等三角形共有3对,
分别是△ADC与ABC, △FCD与FCB, △FAD与△FAB.
第十四页,共17页。
选择(xuǎnzé)△FAD≌△FAB证明,过程如下: ∵正方形ABCD, ∴AD=AB,∠DAF=∠BAF, 又∵AF=AF ∴△FAD≌△FAB.
解:BE=DF,且BE⊥DF.理由 (lǐyóu)如下:
第九页,共17页。
(1)∵四边形ABCD是正方形. ∴BC=DC,∠BCE=90°(正方形的四条 边都相等(xiāngděng),四个角都是 直角). ∴∠DCF=180°-∠BCE=180°90°=90°. ∴∠BCE=∠DCF. 又∵CE=CF. ∴△BCE≌△DCF. ∴BE=DF.

1.3正方形的性质与判定第1课时正方形的性质(教案)2022秋九年级上册初三数学北师大版(安徽)

1.3正方形的性质与判定第1课时正方形的性质(教案)2022秋九年级上册初三数学北师大版(安徽)
三、教学难点与重点
1.教学重点
-正方形性质的掌握:包括正方形的定义、四条边相等、四个角为直角、对角线互相垂直平分且相等、对边平行且相等等性质。
-性质的运用:能够运用正方形的性质解决具体问题,如求正方形对角线长度、面积等。
-逻辑推理能力培养:通过性质推导,培养学生严密的逻辑推理能力。
举例:在讲解正方形对角线性质时,重点强调对角线互相垂直平分且相等的特点,并通过实际例题演示如何应用这一性质求解相关问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“正方形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正方形的基本概念。正方形是四边相等且四个角为直角的四边形。它在几何图形中具有特殊地位,因为具有多种图形的性质,如矩形、菱形等。
2.案例分析:接下来,我们来看一个具体的案例。通过分析正方形的特点,了解它在实际中的应用,以及如何帮助我们解决问题。
同时,我也发现学生们在解决问题的过程中,对于正方形性质的运用还不够熟练。这说明我在教学过程中需要加强对重点难点的讲解和练习,让学生在实际操作中更好地掌握正方形性质。
最后,通过今天的课堂总结,我发现学生们对于正方形的应用有了更深入的认识。但在回顾环节,我没有给予学生充分的提问机会,这是我在以后的教学中需要改进的地方。我会更加关注学生的需求,给他们提供更多的思考和提问空间。
2.正方形的性质:

北师大版九年级数学上册《正方形的判定与性质(一)》优质课课件

北师大版九年级数学上册《正方形的判定与性质(一)》优质课课件

(2)延长BE交DE于点M,(如图1-19). ∵△BCE≌△DCF. ∴∠CBE=∠CDF. ∵∠DCF=90°. ∴∠CDF+∠F=90°. ∴∠CBE+∠F=90°. ∴∠BMF=90°. ∴BE⊥DF.
议一议:
平行四边形、菱形、矩形、正方形之间有 么关系?你能用一个你喜欢的方式直观地 示它们之间的关系吗 ?与同伴交流.

于是我们得到了正方形的两条定理: 定理 正方形的四个角都是直角,四条边都相等 定理Z x xk 正方形的对角线相等且互相垂直平分
想一想: 正方形有几条对称轴
解析: 正方形有4条对称轴. 经验层面:可通过折叠. 分析层面:正方形具有矩形、菱形的 所有性质,所以必然具有矩形过每组 对边中点的对称轴和菱形过对角线的 对称轴.
分别是△ADC与ABC, △FCD与FCB, △FAD与△FAB.
选择△FAD≌△FAB证明,过程如下:
∵正方形ABCD, ∴AD=AB,∠DAF=∠BAF, 又∵AF=AF ∴△FAD≌△FAB.
课堂小结
1:正方形的性质:包括边、角、对角线以及 对称性.
2:将平行四边形、矩形、菱形、正方形之间 的联系.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/7/292021/7/292021/7/292021/7/297/29/2021
• 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年7月29日星期四2021/7/292021/7/292021/7/29
• 10、阅读一切好书如同和过去最杰出的人谈话。2021/7/292021/7/292021/7/297/29/2021 7:50:07 AM

北师大版九年级数学上册正方形的性质与判定第1课时课件

北师大版九年级数学上册正方形的性质与判定第1课时课件
习题1.7 第1,2,3题.
第一章
1.3
特殊平行四边形
正方形的性质与判定
第1课时
正方形的性质
第1课时
正方形的性质
一组邻边
1. 定义:有
知识梳理
相等,并且
有一个角
课时学业质量评价
是直角的
平行四边

形 叫做正方形.
2. 性质:①对称性:正方形既是
形,正方形有
四条
③角:四个角都是

相等
中心对称
对称轴;②边:
菱形
当堂训练
1. 如图4,在正方形ABCD中,对角线AC与BD相交于点O,
图中有多少个等腰三角形?
解:图中共有8个等腰三角形 .
图4
当堂训练
2. 如图5,在正方形ABCD中,点F为对角线AC上一点,连接BF,DF.
你能找出图中的全等三角形吗?选择其中一对进行证明 .
图5
当堂训练
解:图中的全等三角形共有3对,分别是 △ADC 与△ABC,
菱形过对角线的对称轴.
典例精讲
例1 如图2,在正方形ABCD中,E为CD上一点,F为BC边延长线
上 一点,且CE=CF. BE与DF之间有怎样的关系?请说明理由.
图2
典例精讲
解:BE=DF,且BE⊥DF . 理由如下:
(1)∵ 四边形ABCD是正方形,
∴ BC=DC,∠BCE=90°(正方形的四条边
直角
图形,又是
四条边


都相等且 对边平行 ;

;④对角线:两条对角线互相
,并且每一条对角线平分
轴对称
一组对角
.

垂直平分

1.3正方形的性质与判定(第一课时)课件北师大版九年级数学上册

1.3正方形的性质与判定(第一课时)课件北师大版九年级数学上册
答图
返回目录
数学 九年级上册 BS版
∴△ ABE ≌△ EHF (AAS). ∴ AB = EH , BE = HF . ∴ EH = BC . ∴ BE = CH . ∴ CH = FH . ∴∠ FCH =∠ CFH =45°. ∴∠ ECF =135°.
答图
返回目录
数学 九年级上册 BS版
返回目录
数学 九年级上册 BS版
(2022·恩施)如图,已知四边形 ABCD 是正方形,点 G 为线段 AD 上任意一点, CE ⊥ BG 于点 E , DF ⊥ CE 于点 F . 求证: DF = BE + EF .
返回目录
数学 九年级上册 BS版
【思路导航】先证出△ BCE ≌△ CDF ,即可求得 BE = CF , CE = DF ,最后根据线段的和差、等量代换即可得证.
(1)求证: EF = BE + DF ; (1)证明:如答图,将△ ADF 绕点 A 按顺时针方 向旋转90°,得到△ ABF ', 则∠1=∠2,∠ ABF '=∠ D , AF '= AF , BF '= DF . ∵四边形 ABCD 为正方形,
答图
返回目录
数学 九年级上册 BS版
答图
返回目录
返回目录
数学 九年级上册 BS版
证明:∵四边形 ABCD 是正方形, ∴ BC = CD ,∠ BCD =90°. ∴∠ BCE +∠ DCF =90°. ∵ CE ⊥ BG , DF ⊥ CE , ∴∠ BEC =∠ CFD =90°. ∴∠ BCE +∠ CBE =90°. ∴∠ CBE =∠ DCF .
返回目录
数学 九年级上册 BS版
返回目录
数学 九年级上册 BS版
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档