高一年级期中考试
广东深圳中学2023-2024学年高一上学期期中考试数学试题(解析版)

深圳中学2023-2024学年度第一学期期中考试试题年级:高一科目:数学考试用时:120分钟 卷面总分:150分注意事项:答案写在答题卡指定的位置上,写在试题卷上无效.选择题作答必须用2B 铅笔. 参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以e(e 2.71828)= 为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{3P x x =∈≥N 或0}x ≤,{}2,4Q =,则()P Q =N ()A.{}1 B.{}2 C.{}1,2 D.{}1,2,4【答案】D 【解析】【分析】根据补集的定义和运算可得{}1,2P =N ,结合并集的定义和运算即可求解. 【详解】由题意知,{}1,2P =N ,{}2,4Q =,所以(){}1,2,4P Q =N ,故选:D .2.命题“()()31,,1,x x ∞∞∃∈+∈+”的否定是( )A.()1,x ∀∈+∞,都有()31,x ∞∉+B.()1,x ∀∉+∞,都有()31,x ∞∉+C.()1,x ∀∈+∞,都有()31,x ∞∈+D.()1,x ∀∉+∞,都有()31,x ∞∈+【答案】A 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得命题命题“()()31,,1,x x ∞∞∃∈+∈+ ”的否定是“()1,x ∀∈+∞,都有()31,x ∞∉+.故选:A. 3.函数()f x =的定义域是( ) A. (,1)(1,0)−∞−∪− B. [1,)−+∞ C. [1,0)− D. [1,0)(0,)−+∞【答案】D 【解析】【分析】根据根式与分式的定义域求解即可. 【详解】()f x =的定义域满足1020x x +≥ ≠ ,解得[1,0)(0,)x ∈−+∞ . 故选:D4. ()f x x 1x 2=−+−的值域是 A. ()0,∞+ B. [1,)+∞C. ()2,∞+D. [2,)+∞【答案】B 【解析】【分析】对x 的范围分类,把(f x 的表达式去绝对值分段来表示,转化成各段函数值域的并集求解.【详解】()32,1121,1223,2x x f x x x x x x −≤=−+−=<< −≥,作出函数()f x 的图像如图所以()12f x x x =−+−的值域为[)1,+∞, 故选B.【点睛】本题主要考查了绝对值知识,对x 的范围进行分类,可将含绝对值的函数转化成初等函数类型来解决5. 已知幂函数的图象经过点()8,4P ,则该幂函数在第一象限的大致图象是( )A. B. C. D.【答案】B 【解析】【分析】根据求出幂函数的解析式,再根据幂函数的性质即可得出答案. 【详解】设()af x x =,则328422a a =⇔=,所以32a =,所以23a =,所以()23f x x ==,因为2013<<, 因为函数()f x 在()0,∞+上递增,且增加的速度越来越缓慢, 故该幂函数在第一象限的大致图象是B 选项. 故选:B .6. 函数31()81ln 803x f x x -⎛⎫ ⎪=-- ⎪⎝⎭的零点位于区间( )A. (1,2)B. (2,3)C. (3,4)D. (4,5)【答案】B 【解析】【分析】根据函数的单调性及函数零点的存在性定理选择正确选项即可.【详解】因为函数81ln y x =与31803x y − =−−在()0,∞+上均为增函数,所以()f x 在()0,∞+上为增函数.因为()281ln 2830f =−<,()381ln 3810f =−>, 所以函数()f x 的零点位于区间()2,3内. 故选:B7. 已知不等式220ax bx ++>的解集为{}21x x −<<,则不等式220x bx a −+<的解集为( )A. 11,2 −B. 1,12−C. 1,12D. ()2,1−【答案】A 【解析】【分析】根据不等式解集,求得参数,a b ,再求不含参数的一元二次不等式即可.【详解】根据题意方程220ax bx ++=的两根为2,1−,则221,2b a a−+=−−=,解得1,1a b =−=−, 故220x bx a −+<,即2210x x +−<,()()2110x x −+<,解得11,2x ∈−. 即不等式220x bx a −+<的解集为11,2 −. 故选:A .8. 已知()f x 和()g x 分别是定义在R 上的奇函数和偶函数,且()()e x g x f x −=,则(1)(1)f g =( ) A. 22e 1e 1+− B. 22e 1e 1−+C. 221e 1e −+D. 221e 1e +−【答案】C 【解析】【分析】根据奇函数与偶函数的性质即可代入1x =和=1x −求解.【详解】因为()f x 为奇函数,()g x 为偶函数,所以由()()111e g f −−−−=有()()111e g f −+=, 又()()11e g f −=,所以()121e e g −=+,()121e ef −=−, 所以()()12121e e 1e 1e e 1e f g −−−−==++.故选:C二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列各组函数中,两个函数是同一函数的有( )A. ()1f x x =+与21()1x g x x −=−B. ()1f t t =−与()1g x x =−C. ()ln e x f x =与()g x =D. ln ()e x f x =与()g x =【答案】BC 【解析】【分析】根据题意,由同一函数的定义,对选项逐一判断,即可得到结果.【详解】对于A ,()f x 定义域为R ,()g x 定义域为{}|1x x ≠,定义域不相同,不是同一函数,A 错误; 对于B ,函数()f x 与()g x 的定义域相同,对应关系也相同,所以是同一函数,故正确;对于C ,函数()()f x x x =∈R ,函数()()g x x x =∈R ,两函数的定义域与对应关系都一致,所以是同一函数,故正确;对于D ,()()0f x x x =>,()g x x =,所以对应关系不相同,定义域也不同,不是同一函数,D 错误. 故选:BC10. 下列说法正确的是( ) A. 函数1y x x=+的最小值为2 B. 若a ,b ∈R ,则“220a b +≠”是“0a b +≠”充要条件 C. 若a ,b ,m 为正实数,a b >,则a m ab m b+<+ D. “11a b>”是“a b <”的充分不必要条件 【答案】BC 【解析】【详解】根据基本不等式满足的前提条件即可判定A ,根据绝对值和平方的性质可判定B ,根据不等式的性质可判断CD.【分析】对于A ,当x 取负值时显然不成立,故A 错误, 对于B ,若,a b ∈R ,由220a b +≠,可知a ,b 不同时为0, 由0a b +≠,可知a ,b 不同时为0,所以“220a b +≠”是“0a b +≠”的充要条件,故B 正确;对于C ,()()()()()0b a m a b m m b a a m a b m b b b m b b m +−+−+−==<+++,所以a m ab m b+<+,故C 正确, 对于D ,①若11a b>,则当0a >,0b >时,则0a b <<, 当0a <,0b <时,则0a b <<, 当a ,b 异号时,0a b >>.的②若a b <,则当a ,b 同号时,则11a b >, 当a ,b 异号时,0a b <<,则11a b<, 所以“11a b>”是“a b <”的既非充分也非必要条件,D 选项错误.故选:BC11. 下列命题正确的是( )A. 函数212log (23)y x x =−−在区间(1,)+∞上单调递减 B. 函数e 1e 1x xy −=+在R 上单调递增C. 函数lg y x =在区间(,0)−∞上单调递减D. 函数13xy =与3log y x =−的图像关于直线y x =对称【答案】BCD 【解析】【分析】A 项,由复合函数的定义域可知错误;B 项分离常数转化为()21e 1x f x =−+,逐层分析单调性可得;C 项由偶函数对称性可知;D 项,两函数互为反函数可知图象关于直线y x =对称.【详解】对于A ,由2230x x −−>,解得1x <−,或3x >, 故函数定义域为(,1)(3,)−∞−∪+∞,由复合函数的单调性可知该函数的减区间为()3,+∞,故A 错; 对于B ,()21e 1x f x =−+, 由于e 1x y =+在x ∈R 单调递增,且e 10x +>, 所以1e 1x y =+在R 上单调递减,2e 1xy =−+在R 上单调递增, 因此()f x 在R 上单调递增,B 正确;对于C ,当0x >时,lg y x =(即lg y x =)在区间()0,∞+上单调递增, 又因为lg y x =为偶函数,其图象关于y 轴对称, 所以在区间(),0∞−上单调递减,C 正确;对于D ,由于函数13xy =与13log y x =(即3log y x =−)互为反函数.所以两函数图象关于y x =对称,D 正确. 故选:BCD.12. 德国数学家狄里克雷在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数.”这个定义较清楚地说明了函数的内涵:只要有一个法则,使得取值范围中的每一个x ,有一个确定的y 和它对应就行了,不管这个法则是用公式还是用图像、表格等形式表示,例如狄里克雷函数()D x ,即:当自变量取有理数时,函数值为1;当自变量取无理数时,函数值为0.下列关于狄里克雷函数()D x 的性质表述正确的是( ) A. ()D x 的解析式为()R 1,,0,.x Q D x x Q ∈ = ∈B. ()D x 的值域为[]0,1C. ()D x 的图像关于直线1x =对称D. (())1D D x = 【答案】ACD 【解析】【分析】根据题意,由狄里克雷函数的定义,对选项逐一判断,即可得到结果. 【详解】对于A ,用分段函数的形式表示狄里克雷函数,故A 正确. 对于B ,由解析式得()D x 的值域为{}0,1,故B 错误;过于C ,若x 为有理数,则2x −为有理数,则()()21D x D x =−=;若x 为无理数,则2x −为无理数.则()()20D x D x =−=;所以()D x 的图像关于直线1x =对称,即C 正确;对于D ,当x 为有理数,可得()1D x =,则()()1D D x =,当x 为无理数,可得()0D x =,则()()1D D x =,所以()()1D D x =,所以D 正确. 故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13.110.752356416(4)−−−++++=________.【答案】414##1104【解析】【分析】根据题意,结合指数幂的运算法则和运算性质,准确化简、运算,即可求解. 【详解】根据指数幂的运算法则和运算性质,可得:11111430.752364353355426416(4)[()](2)(2)22233−−−−+=+−+++⋅ 221141821033444=−+++==. 故答案:414. 14. 已知a ,b 是方程22(ln )3ln 10x x −+=的两个实数根,则log log a b b a +=________. 【答案】52##2.5 【解析】【分析】方法一:利用韦达定理结合换底公式求解;方法二:解方程可得e a =,b =,代入运算求解即可.【详解】方法一:因为a ,b 是方程()22ln 3ln 10x x −+=的两个实数根, 由韦达定理得1ln ln 2a b ⋅=,3ln ln 2a b +=, 则()()()()2222ln ln ln ln 2ln ln ln ln ln ln 5log log 2ln ln ln ln ln ln ln ln 2a b a b a b a ba b b a b a a ba ba ba b++−⋅++=+===−=⋅⋅⋅,即5log log 2a b b a +=;方法二:因为22310t t −+=的根为1t =或12t =, 不妨设ln 1a =,1ln 2b =,则e a =,b =,所以e 15log log log 222e a b b a +==+=.故答案为:52.15. 已知0,0x y >>且2x y xy +=,则2x y +的最小值是__________. 【答案】8 【解析】【分析】运用“1”的代换及基本不等式即可求得结果.为【详解】因为2x y xy +=,所以211x y+=,所以()214222248x y x y x y x y y x +=++=+++≥+=,当且仅当4x y y x =,即4,2x y ==时取等号.所以2x y +的最小值为8. 故答案为:8.16. 记(12)(12)T x y =−−,其中221x y +=,则T 的取值范围是________.【答案】3,32 −+ . 【解析】【分析】根据基本不等式,结合换元法,将问题转化为213222T t =−− ,t ≤≤上的范围,由二次函数的性质即可求解.【详解】()124T x y xy =−++,设x y t +=,则212t xy −=, 所以221124212t T t t t −=−+⋅=−.因为22x y xy + ≤,所以22124t t −≤.所以t ≤≤又213222T t =−− ,所以当12t =时,T 有最小值32−,当t =T 有最大值3+.故答案为:3,32 −+ 四、解答题:本题共6小题,共20分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}(,)|1Ax y y x ==−,{}2(,)|B x y y mx ax m ==++.(1)若1a =−,0m =,求A B ∩;(2)若1a =,且A B ∩≠∅,求实数m 的取值范围.【答案】(1)11,22A B=−(2)[]2,1−. 【解析】【分析】(1)联立两方程,求出交点坐标,得到交集;(2)联立后得到210mx m +++=,分0m =与0m ≠两种情况,,结合根的判别式得到不等式,求出答案. 【小问1详解】 若1a =,0m =,则(){},|Bx y y x ==. 由1y x y x =−=− ,得1212x y= =− . 所以11,22A B =−. 【小问2详解】由()211x y y mx x m −==+++消去y,得210mx m +++=①. 因为A B ∩≠∅,所以方程①有解.当0m =时,方程①可化为1=−,解得x =,所以1y , 所以0m =符合要求.当0m ≠时,要使方程①有解,必须(()2Δ410m m =−+≥,即220m m +−≤,解得21m −≤≤, 所以21m −≤≤,且0m ≠. 综上所述,m 的取值范围是[]2,1−. 18. 设不等式2514x x −≤−的解集为A ,关于x 的不等式2(2)20x a x a −++≤的解集为B . (1)求集合A ;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.【答案】(1)[)1,4(2)[)1,4.【解析】【分析】(1)根据题意,结合分式不等式的解法,即可求解;(2)根据题意,转化为B A ,再结合一元二次不等式的解法,分类讨论,求得集合B ,进而求得a 取值范围.【小问1详解】 解:由不等式2514x x −≤−,可得2511044x x x x −−−=≤−−, 即()()140x x −−≤,且4x ≠,所以14x ≤<,所以[)1,4A =.【小问2详解】解:因为“x A ∈”是“x B ∈”的必要不充分条件,所以集合B 是A 的真子集,由不等式()2220x a x a −++≤,可得()()20x x a −−≤, 当2a <时,不等式的解集为2a x ≤≤,即[],2B a =,因为B A ,则12a ≤<;当2a =时,不等式为2(2)0x −≤,解得2x =,即{}2B =;B A 成立;当2a >时,不等式的解集为2x a ≤≤,即[]2,B a =,因为B A ,则24a <<,综上所述14≤<a ,即a 的取值范围是[)1,4.19. 已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()2f x x x =+,现已画出函数()f x 在y 轴左侧的图象,如图所示.(1)请将函数()f x 的图象补充完整,并求出()()f x x ∈R 的解析式;(2)求()f x 在区间[],0a 上的最大值.【答案】(1)作图见解析,()222,02,0x x x f x x x x +≤= −+>(2)答案见解析【解析】【分析】(1)根据函数奇函数的对称性,即可根据对称作出函数图象,进而可利用奇函数的定义求解解析式,(2)根据二次函数的性质,结合函数图象即可求解.【小问1详解】作出函数()f x 的图象,如图所示,当0x >时,0x −<,则()()22()22f x x x x x −=−+−=−, 因为()f x 为奇函数,所以()()22f x f x x x =−−=−+, 所以()222,02,0x x x f x x x x +≤= −+>. 【小问2详解】易如()()200f f −==,当2a <−时,()f x 在x a =处有最大值()22f a a a =+; 当20a −≤<时,()f x 在0x =处有最大值()00f =.20. 为了减少能源损耗,某建筑物在屋顶和外墙建造了隔热层,该建筑物每年节省的能源费用h (万元)与的隔热层厚度(cm)x 满足关系式:()()3232020h x x x k=−≤≤+.当隔热层厚度为1cm 时,每年节省费用为16万元,但是隔热层自身需要消耗能源,每年隔热层自身消耗的能源费用g (万元)与隔热层厚度(cm)x 满足关系:()2g x x =.(1)求k 的值;(2)在建造厚度为(cm)x 的隔热层后,每年建筑物真正节省的能源费用为()()()=−f x h x g x ,求每年该建筑物真正节省的能源费用的最大值.【答案】(1)1k =(2)18万元.【解析】【分析】(1)根据()116h =求解出k 值即可;(2)根据条件先表示出()f x ,然后利用基本不等式求解出最大值,注意取等条件.【小问1详解】由题知()116h =,所以3232161k −=+, 解得1k =;【小问2详解】由(1)知,()()32320201h x x x =−≤≤+, 所以()()323220201f x x x x =−−≤≤+, 所以()()()323232212342111f x x x x x −−++=−++= ++, 因为()3221161x x ++≥=+,当且仅当()32211x x =++,即3x =时取等号, 所以()341618f x ≤−=, 所以每年该建筑物真正节省的能源费用的最大值为18万元.21. 已知23()21x x a f x −−=+, (1)若定义在R 上的函数()ln ()g x f x =是奇函数,求a 的值;(2)若函数()()h x f x a =+在(1,)−+∞上有两个零点,求a 的取值范围.的【答案】(1)13− (2)41,3【解析】【分析】(1)根据题意,结合()()0g x g x −+=,得出方程,进而求得实数a 的值; (2)令()0h x =,得到()23210x x a a −−++=,得到()222210x x a a −⋅+=,令2x t =,转化方程可化为2210at at −+=1,2 +∞上有两个不相等的根, 方法一:设()221p t at at =−+,结合二次函数的性质,列出不等式组,即可求解;方法二:把方程化为()211a t a −−=,求得1t =±,结合11,2 +∞,即可求解. 【小问1详解】 解:因为()g x 是奇函数,所以()()2323ln ln 02121x x x x a a g x g x −−−−−+=+=++, 可得232312121x x x x a a −−−−⋅=++,即()()2312291x x a a −++=−恒成立, 因为220x x −+≠,所以310a +=且2910a −=,所以13a =−. 【小问2详解】 解:由232()()1x x h a x f a a x −=+−=++,令()0h x =,可得23021x x a a −−+=+, 所以()23210x x a a −−++=, 两边同乘以2x 并整理,得()222210x x a a −⋅+=. 令2x t =,因为1x >−,所以12t >, 于是方程可化为2210at at −+=,(*) 问题转化为关于t 的方程(*)在1,2 +∞上有两个不相等的根,显然0a ≠, 方法一:设()221p t at at =−+,抛物线的对称轴为1t =,()01p =.若a<0,由()00p >知,()p t 必有一个零点为负数,不合题意; 若0a >,要使()p t 在1,2 +∞ 上有两个零点,由于对数轴112t =>, 故只需2102Δ440p a a > =−> ,即31044(1)0a a a −> −> ,解得413a <<. 综上可得,实数a 的取值范围是41,3. 方法二:方程(*)可化为()211a t a −=−,若0a =,则01=−,矛盾,故0a ≠,故()211a t a −−=, 所以10a a−>,即a<0或1a >,①此时,1t −=,即1t =±,其中11,2 +∞ ,则112−>12<,即114a a −<,可得340a a −<,解得403a << ② 由①②得a 的取值范围是41,3. 22. 定义在R 上函数()f x 满足如下条件:①()()()4f x y f x f y +=+−;②(2)6f =;③当0x >时,()4f x >.(1)求(0)f ,判断函数()f x 的单调性,并证明你的结论; (2)当[)0,x ∈+∞时,不等式()()()ln 3e 122ln 310x f a f x a −++−−≤ 恒成立,求实数a 的取值范围.【答案】(1)()04f =,函数()f x 在R 上为增函数,证明见解析 (2)[]1,3【解析】的【分析】(1)令2,0x y ==,求得()04f =,再根据函数单调性的定义和判定方法,证得函数()f x 在R 上为增函数;(2)根据题意,转化为不等式()ln 3e 12ln 30x a x a −+−−≤ (*)对于任意[)0,x ∈+∞成立,由对数函数的性质,求得03a <≤,再由不等式()23e 3e 10x x a a +−−≥成立,转化为max 1e x a ≥ 对于任意[)0,x ∈+∞成立,求得1a ≥,即可求得实数a 的取值范围.【小问1详解】解:令2x =,0y =,可得()04f =.函数()f x 在R 上为增函数,证明如下:设12x x <,因为()()()4f x y f x f y +−=−,令1x y x +=,2x x =,则21y x x =−,可得()()()21214f x f x f x x −=−−, 因为210x x −>,所以()214f x x −>,所以()2140f x x −−>, 所以()()210f x f x −>,即()()21f x f x >, 所以函数()f x 在R【小问2详解】解:由条件有()()()4f x f y f x y +=++,则不等式可化为()()ln 3e 122ln 3410x f a x a −++−−+≤ ,即()()ln 3e 122ln 36x f a x a −++−−≤ , 又由()26f =,所以()()()ln 3e 122ln 32xf a x a f −++−−≤ , 因为函数()f x 在R 上为增函数,可得()ln 3e 122ln 32x a x a −++−−≤即()ln 3e 12ln 30x a x a −+−−≤ (*)对于任意[)0,x ∈+∞成立, 根据对数函数的性质,可得()3e 10x a −+>,30a >对于任意[)0,x ∈+∞成立,则13e 0x a a <+ >,因为0x ≥,则e 1x ≥,所以101e x <≤, 可得1334ex <+≤,所以03a <≤ ①, 又由(*)式可化为()()2ln 3e 12ln 3ln 3e x x a x a a −+≤+= , 即对于任意[)0,x ∈+∞,()23e 13e x xa a −+≤成立,即()23e 3e 10x x a a +−−≥成立, 即对于任意[)0,x ∈+∞,()()3e 1e 10x x a +−≥成立, 因为3e 10x +>,所以e 10x a −≥对于任意[)0,x ∈+∞成立, 即max1e x a ≥ 对于任意[)0,x ∈+∞成立,所以1a ≥ ②. 由①②,可得13a ≤≤,所以实数a 的取值范围为[]1,3.。
河南省南阳市六校2023-2024学年高一上学期期中考试 数学含解析

2023—2024学年(上)南阳六校高一年级期中考试数学(答案在最后)考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}33,2A x x B x x =-<<=<-,则()A B =R ð()A .(]2,3-B .[]2,3-C .[)2,3-D .()2,3-2.已知,a b ∈R ,则下列选项中,使0a b +<成立的一个充分不必要条件是()A .0a >且0b >B .0a <且0b <C .0a >且0b <D .0a <且0b >3.若关于x 的不等式0ax b ->的解集是(),1-∞-,则关于x 的不等式20ax bx +>的解集为()A .()(),01,-∞+∞ B .()(),10,-∞-+∞ C .()1,0-D .()0,14.已知幂函数()()21af x a a x =--在区间()0,+∞上单调递增,则函数()()11x ag x bb +=->的图象过定点()A .()2,0-B .()0,2-C .()2,0D .()0,25.已知函数()f x 的定义域为(]0,4,则函数()()21xf g x x =-的定义域为()A .()(]0,11,2B .(]1,16C .()(],11,2-∞ D .()(]0,11,166.设1231log 9,,23a b c -⎛⎫=== ⎪⎝⎭,则()A .c a b<<B .a c b<<C .b c a <<D .c b a<<7.已知函数()2f x x x x =-+,则()A .()f x 是偶函数,且在区间(),1-∞-和()1,+∞上单调递减B .()f x 是偶函数,且在区间()(),11,-∞-+∞ 上单调递减C .()f x 是奇函数,且在区间()(),11,-∞-+∞ 上单调递减D .()f x 是奇函数,且在区间(),1-∞-和()1,+∞上单调递减8.已知函数()12131xf x x+=-+,则使得()()21f x f x <+成立的x 的取值范围是()A .11,3⎛⎫-- ⎪⎝⎭B .1,13⎛⎫ ⎪⎝⎭C .()1,1,3⎛⎫-∞--+∞ ⎪⎝⎭ D .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知0a b <<,则()A .22a b>B .2ab b>C .11a b<D .11a b a>+10.下列各组中两个函数是同一函数的是()A .()f x =()2g x =B .()f x x =和()g x =C .()3112x f x +⎛⎫= ⎪⎝⎭和()3112t g t +⎛⎫= ⎪⎝⎭D .()211x f x x -=+和()1g x x =-11.若函数2xy =的图象上存在不同的两点,A B 到直线l 的距离均为1,则l 的解析式可以是()A .2x =-B .1y =C .1y =-D .y x=12.已知236ab==,则()A .ab a b=+B .4a b +>C .48a b<D .22log log 2a b +>三、填空题:本题共4小题,每小题5分,共20分.13.已知集合(){}(){}22,,,,25A x y x y B x y xy =∈=+=N ,则A B 中元素的个数为______.14.已知函数()3212x f x x =-+在区间[]2023,2023-上的最大值为M ,最小值为m ,则M m +=______.15.若函数()11ax f x x -=-在区间()1,+∞上单调递减,则实数a 的取值范围是______.16.已知函数()2,0,2,0,x x x f x x +≤⎧=⎨>⎩则满足()()11f x f x +->的x 的取值范围是______.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)计算:(Ⅰ)20.5310910310.0122162716π--⎛⎫⎛⎫++-+⎪ ⎪⎝⎭⎝⎭;(Ⅱ)()223343log 48log 18log 2log 3log 16⨯+-+⨯.18.(12分)已知集合{}{}222760,210,0A x x x B x x x m m =-+≤≤=-+->.(Ⅰ)若1m =,求A B ;(Ⅱ)若x A ∈是x B ∈成立的充分不必要条件,求m 的取值范围.19.(12分)已知函数()(0xf x a a =>且1)a ≠的图象经过点()4,4.(Ⅰ)求a 的值;(Ⅱ)比较()2f -与()()22f m m m -∈R 的大小;(Ⅲ)求函数()()133x g x a x -=-≤≤的值域.20.(12分)(Ⅰ)若关于x 的不等式260mx mx m ++-<的解集非空,求实数m 的取值范围;(Ⅱ)若[]2,1x ∀∈-,不等式22mx mx m -<-+恒成立,求实数m 的取值范围.21.(12分)近年来,共享单车的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资200万元,每个城市都至少要投资70万元,由前期市场调研可知:在甲城市的收益P (单位:万元)与投入a (单位:万元)满足8P =-,在乙城市的收益Q (单位:万元)与投入a (单位:万元)满足134Q a =+.(Ⅰ)当在甲城市投资125万元时,求该公司的总收益;(Ⅱ)试问:如何安排甲、乙两个城市的投资,才能使总收益最大?22.(12分)已知定义域为R 的函数()133x x nf x m++=+是奇函数.(Ⅰ)求,m n 的值;(Ⅱ)判断()f x 的单调性并用定义证明;(Ⅲ)若当1,23x ⎡⎤∈⎢⎥⎣⎦时,()()2210f kxf x +->恒成立,求实数k 的取值范围.2023-2024学年(上)南阳六校高一年级期中考试数学・答案一、单项选择题:本题共8小题,每小题5分,共40分.1.答案C 命题意图本题考查集合的表示与运算.解析由题意可得{}2B x x =≥-R ð,所以(){}23A B x x =-≤<R ð.2.答案B 命题意图本题考查充分条件与必要条件的应用.解析选项A ,C ,D 都既不是充分条件也不是必要条件,对于B ,由0a <且0b <可得0a b +<,反过来推不出,所以B 符合条件.3.答案D 命题意图本题考查不等式的解法.解析由于关于x 的不等式0ax b ->的解集是(),1-∞-,所以0,0,a ab <⎧⎨--=⎩则有b a =-且0a <,则20ax bx +>等价于0b x x a ⎛⎫+< ⎪⎝⎭,解得01x <<,即不等式20ax bx +>的解集为()0,1.4.答案A 命题意图本题考查幂函数和指数函数的性质.解析因为()()21a f x a a x =--是幂函数,所以211a a --=,解得2a =或1a =-.当2a =时,()2f x x=在()0,+∞上单调递增,当1a =-时,()1f x x=在()0,+∞上单调递减,故2a =.此时()21x g x b +=-,当2x =-时,()20g -=,即()g x 的图保过定点()2,0-.5.答案C 命题意图本题考查函数的定义域.解析要使函数()g x 有意义,则024,10,x x ⎧<≤⎨-≠⎩故1x <或12x <≤,所以()g x 的定义域为()(],11,2-∞ .6.答案A 命题意图本题考查指数和对数的运算.解析因为1233123,2,log 92log 3232b c a -⎛⎫==>===== ⎪⎝⎭,所以c a b <<.7.答案D 命题意图本题考查函数的奇偶性和单调性.解析由题意得()222,0,2,0,x x x f x x x x ⎧-+≥=⎨+<⎩画出函数()f x 的大致图象,如图,观察图象可知,函数()f x 的图象关于原点对称,故函数()f x 为奇函数,单调递减区间是()(),1,1,-∞-+∞.8.答案C 命题意图本题考查偶函数的性质和不等式的解法.解析易知函数()f x 的定义域为R ,且()f x 为偶函数.当0x ≥时,()12131xf x x+=-+,易知此时()f x 单调递增,所以()()()()2121f x f x fx f x <+⇒<+,所以21x x <+,解得1x <-或13x >-.二、多项选择题:本题共4小题,每小题5分,共20分.每小题全部选对的得5分,部分选对的得2分,有选错的得0分.9.答案ABD 命题意图本题考查不等式的性质.解析由0a b <<,得a b >,则22a b >,A 成立;由a b <两边同时乘以b ,不等号反向,得2ab b >,B 成立;由a b <两边同时除以ab ,得11b a<,C 不成立;由0a b <<可得0a b a +<<,同除以()a b a +,可得11a b a>+,D 成立.10.答案BC 命题意图本题考查函数的概念.解析A ,D 中函数的定义域不同.11.答案AD 命题意图本题考查函数的图象与性质.解析分别作出相应的图象,如图:对于A ,容易看出2xy =的图象上存在两点13,8⎛⎫- ⎪⎝⎭与11,2⎛⎫- ⎪⎝⎭到直线2x =-的距离均为1,故A 正确;对于B ,2xy =的图象在直线1y =上方的部分仅存在一点()1,2到直线1y =的距离为1,在直线1y =下方的部分满足01y <<,到直线1y =的距离均小于1,故不存在符合条件的两点,故B 错误;对于C ,因为20xy =>,故其图象上所有点到直线1y =-的距离均大于1,故C 错误;对于D ,利用几何知识可以算得点()0,1到直线y x =的距离为212<,由指数函数的图象可知,在点()0,1的两边各存在一点到直线y x =的距离为1,故D 正确.12.答案ABD 命题意图本题考查指数的运算性质.解析对于A ,因为236ab==,所以()()26,36baabba ==,所以26,36ab b ab a ==,所以2366ab ab b a⋅=⋅,所以66aba b +=,所以ab a b =+,故A 正确;对于B ,因为2ab a b ab =+≥,又a b ≠,所以2ab ab >4ab >,所以4a b ab +=>,故B 正确;对于C ,因为23ab=,所以2242398aab b b ===>,故C 错误;对于D ,设()222log log log a b ab t +==,则24ab '=>,所以2t >,故D 正确.三、填空题:本题共4小题,每小题5分,共20分.13.答案4命题意图本题考查集合的概念和运算.解析因为2222250534=+=+,所以满足2225x y +=的自然数对有()()()()0,5,5,0,3,4,4,3,即A B中的元素有4个.14.答案2-命题意图本题考查奇函数的概念.解析设函数()322x g x x =+,则()g x 的最大值为1M +,最小值为1m +,容易判断()g x 是奇函数,所以()()110M m +++=,所以2M m +=-.15.答案()1,+∞命题意图本题考查函数的单调性.解析函数()1111ax a f x a x x --==+--,由()1,x ∈+∞时,()f x 单调递减,得10a ->,解得1a >.16.答案()1,-+∞命题意图本题考查分段函数和不等式的解法.解析由题意知,当1x >时,1221xx -+>恒成立;当01x <≤时,2121x x +-+>恒成立;当0x ≤时,由2121x x ++-+>,解得1x >-,所以10x -<≤.综上,x 的取值范围是()1,-+∞.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.命题意图本题考查指数和对数的运算性质.解析(Ⅰ)原式12232516432160.012716-⎛⎫⎛⎫=++-+⎪ ⎪⎝⎭⎝⎭593100241616=++-+100=.(Ⅱ)原式()2232234318log 22log log 3log 42⎡⎤=⨯++⨯⎢⎥⎣⎦()82343log 2log 9log 32log 4=++⨯82212=++=.18.命题意图本题考查集合的运算、充分条件与必要条件的判断.解析由2760x x -+≤得16x ≤≤,故{}16A x x =≤≤,由22210x x m -+-=得121,1x m x m =-=+,因为0m >,故{}11m x m x B -≤≤+=.(Ⅰ)若1m =,则{}02B x x =≤≤,所以{}12A B x x =≤≤ .(Ⅱ)若x A ∈是x B ∈成立的充分不必要条件,则A B Ü,则有11,16,m m -≤⎧⎨+≥⎩解得5m ≥,此时满足A B Ü,所以m 的取值范围是[)5,+∞.19.命题意图本题考查指数函数的性质,函数与不等式的综合.解析(Ⅰ)因为()xf x a =的图象经过点()4,4,所以44a =,又0a >且1a ≠,所以a =1>,所以()xf x =在R 上单调递增.又因为()2222(1)10m m m ---=-+>,所以222m m ->-,所以()()222f f m m -<-.(Ⅲ)当33x -≤≤时,014x ≤-≤,所以1042)x -≤≤,即114x -≤≤,所以()g x 的值域为[]1,4.20.命题意图本题考查一元二次不等式与二次函数.解析(Ⅰ)当0m =时,显然60-<,满足题意;若0m <,显然满足题意;若0m >,则需()2Δ460m m m =-->,解得08m <<.综上,实数m 的取值范围是(),8-∞.(Ⅱ)由题可知,当[]2,1x ∈-时,()2120m x x -+-<恒成立.因为22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,所以()2120m x x -+-<等价于221m x x <-+.因为222211324y x x x ==-+⎛⎫-+ ⎪⎝⎭在区间[]2,1-上的最小值为27,所以只需27m <即可,所以实数m 的取值范围是2,7⎛⎫-∞ ⎪⎝⎭.21.命题意图本题考查函数模型的应用和二次函数的性质.解析(Ⅰ)当在甲城市投资125万元时,在乙城市投资75万元,所以总收益为1875363.754-+⨯+=(万元).(Ⅱ)设在甲城市投资x 万元,则在乙城市投资()200x -万元,总收益为()()11820034544f x x x =-+-+=-+,依题意得70,20070,x x ≥⎧⎨-≥⎩解得70130x ≤≤.故()()145701304f x x x =-++≤≤.令t =,则t ∈,所以2145,4y t t =-++∈,因为该二次函数的图象开口向下,且对称轴t =,所以当t =,即80x =时,y 取得最大值65,所以当在甲城市投资80万元,乙城市投资120万元时,总收益最大,且最大总收益为65万元.22.命题意图本题考查函数的综合问题.解析(Ⅰ)因为()f x 在定义域R 上是奇函数,所以()00f =,所以1n =-.又由()()11f f -=-,可得3m =,经检验知,当3,1m n ==-时,原函数是奇函数.(Ⅱ)由(I )知()()131121,333331x x x f x f x +-==-⋅++在R 上是增函数.证明:任取12,x x ∈R ,设12x x <,则()()2112211211212113331333133131x x x x f x f x ⎛⎫⎛⎫-=-⋅--⋅=- ⎪ ⎪++++⎝⎭⎝⎭()()211223333131x x x x ⎡⎤-⎢⎥=++⎢⎥⎣⎦,因为12x x <,所以21330x x ->,又()()1231310x x++>,所以()()210f x f x ->,即()()21f x f x >,所以函数()f x 在R 上是增函数.(Ⅲ)因为()f x 是奇函数,所以不等式()()2210f kx f x +->等价于()()()22112f kx f x f x >--=-,因为()f x 在R 上是增函数,所以212kx x >-,即对任意1,23x ⎡⎤∈⎢⎥⎣⎦,都有212xk x ->成立.设()2212112x g x x x x -⎛⎫==-⋅ ⎪⎝⎭,令11,,32t t x ⎡⎤=∈⎢⎥⎣⎦,则有()212,,32g t t t t ⎡⎤=-∈⎢⎥⎣⎦,所以()max max ()()33g x g t g ===,。
高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。
高一期中考试试题及答案

高一期中考试试题及答案一、选择题(每题3分,共30分)1. 下列关于细胞结构的描述,正确的是:A. 细胞壁只存在于植物细胞B. 细胞膜是细胞的外层结构C. 细胞核是细胞的能量转换器D. 线粒体是细胞的遗传物质储存地答案:B2. 光合作用中,水分子分解发生在:A. 光反应阶段B. 暗反应阶段C. 光反应和暗反应阶段D. 细胞呼吸阶段答案:A3. 人体细胞中,负责合成蛋白质的结构是:A. 线粒体B. 核糖体C. 内质网D. 高尔基体答案:B4. 以下哪种元素不属于人体必需的微量元素?A. 铁B. 锌C. 钙D. 碘答案:C5. 细胞分裂过程中,染色体数目加倍发生在:A. 有丝分裂前期B. 有丝分裂中期C. 有丝分裂后期D. 减数分裂第一次分裂答案:C6. 下列关于酶的描述,错误的是:A. 酶是活细胞产生的B. 酶是蛋白质或RNAC. 酶可以提高化学反应速率D. 酶在反应后被消耗答案:D7. 人体中,血红蛋白的主要功能是:A. 运输氧气B. 运输二氧化碳C. 调节酸碱平衡D. 储存能量答案:A8. 以下哪种激素不属于内分泌腺分泌的激素?A. 胰岛素B. 甲状腺激素C. 肾上腺素D. 消化酶答案:D9. 人体免疫系统中,负责识别和攻击外来病原体的是:A. 红细胞B. 白细胞C. 血小板D. 血浆答案:B10. 人体细胞中,负责储存遗传信息的是:A. 线粒体B. 核糖体C. 内质网D. 细胞核答案:D二、填空题(每空2分,共20分)1. 细胞膜的主要功能是________和________。
答案:保护细胞内部结构;控制物质进出2. 人体中,负责合成和分泌胰岛素的腺体是________。
答案:胰腺3. 光合作用中,光能被转化为________和________。
答案:化学能;热能4. 人体中,负责运输氧气的蛋白质是________。
答案:血红蛋白5. 人体免疫系统中,负责识别和攻击外来病原体的细胞是________。
人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。
1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。
高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = x^2 - 2x + 1的零点是:A. 1B. -1C. 0D. 23. 集合A = {1, 2, 3},B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {4}D. {1, 2, 3, 4}4. 已知数列{a_n}的通项公式为a_n = 2n + 1,那么a_5等于:A. 11B. 9C. 13D. 155. 若函数f(x) = 3x - 5,则f(2)等于:A. 1B. -1C. 7D. 36. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (1, 5)C. (-3/2, 0)D. (3/2, 0)7. 圆的一般方程为x^2 + y^2 + 2x - 4y + 5 = 0,其圆心坐标是:A. (-1, 2)B. (1, -2)C. (-1, -2)D. (1, 2)8. 函数y = x^2 - 4x + 3的最小值是:A. -1B. 0C. 1D. 39. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定10. 函数y = √(x - 2)的定义域是:A. x ≥ 2B. x > 2C. x < 2D. x ≠ 2二、填空题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3的最大值为2,则x的值为______。
2. 已知数列{a_n}满足a_1 = 1,a_n = 2a_{n-1} + 1,那么a_3等于______。
3. 函数f(x) = 2x^2 - 3x + 1的对称轴方程是______。
4. 集合A = {x | x^2 - 5x + 6 = 0},则A的元素个数为______。
高一期中考试卷子金太阳

高一期中考试卷子金太阳金太阳高一期中考试试卷一、选择题(每题2分,共20分)1. 以下哪个选项是描述质数的?A. 只能被1和自身整除的大于1的自然数B. 任何自然数C. 可以被多个自然数整除的数D. 12. 根据题目所给的函数f(x) = 2x - 3,求f(5)的值。
A. 4B. 7C. 9D. 113. 以下哪个选项是牛顿第二定律的表达式?A. F = maB. F = mvC. F = m/aD. F = m * v...(此处省略其余选择题)二、填空题(每题2分,共20分)1. 圆的面积公式是 _______。
2. 根据题目所给的二次方程x^2 - 5x + 6 = 0,求其根。
解得 x1 = _______,x2 = _______。
3. 请写出一个满足条件的实数集合:所有小于2的正整数 _______。
...(此处省略其余填空题)三、简答题(每题10分,共30分)1. 请简述牛顿第一定律的内容,并举例说明其在现实生活中的应用。
2. 解释什么是欧拉公式,并说明它在数学中的重要性。
3. 描述如何使用勾股定理来解决实际问题,并给出一个具体的例子。
四、计算题(每题15分,共30分)1. 计算下列表达式的值:(3x^2 - 2x + 1) / (x - 1),当x = -2时。
2. 已知一个物体从静止开始,以恒定加速度a = 9.8 m/s²下落,求物体在第5秒时的速度和位移。
五、论述题(每题30分,共30分)1. 论述牛顿三大定律对现代物理学发展的影响,并结合实例说明它们在工程学中的应用。
六、附加题(10分)1. 根据题目所给的函数f(x) = x^3 - 3x^2 + 2x + 1,求其导数,并讨论其在x = 1处的切线斜率。
考试结束,请考生停止作答。
(注:以上内容为模拟试卷,实际考试内容可能会有所不同。
)。
上海宝山世外学校高中国内部2023-2024学年高一年级第二学期数学学科期中考试试卷答案

上海宝山世外学校高中国内部2023/2024学年第二学期期中考试 高一数学 试卷(考试时间: 120分钟 满分: 150分)班级 学号 姓名一. 填空题(本大题共有12题, 满分54分, 第1~6题每题4分, 第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 已知角α的终边经过点P(-3,4), 则cosα= .【答案】−35.2、复数 11−i的共轭复数的模是 .【答案】223、在复数范围内,方程.x²-2x+2=0的解为 .【答案】 1+3或 1−i.4.在△ABC 中, AB =c ,AC =b , 若点D 满足 BD =2DC ,则 AD =¯.【答案】23b +1c 5.已知 sin (π2+2α)=−13,则cos(π+2α)= 【答案】−136 关于x 的实系数一元二次方程. x²+kx +3=0有两个虚根x ₁和x ₂,若 |x 1−x 2|=22,则实数k= .【答案】 k =2或 k =−2.7.已知向量ā在向量b 方向上的投影向量为-2b ,且 |b |=3,则 a ⋅b =¯..(结果用数值表示)【答案】 −18.8 已知点A 的坐标为( (43,1),,将OA 绕坐标原点O 逆时针旋转π/3至OB ,则点B 的坐标为【答案】1329.正方体的6个面无限延展后把空间分成个部分【答案】 2710.如图,为计算湖泊岸边两景点B与C之间的距离,在岸上选取A和D两点, 现测得AB=5km, AD=7km, ∠ABD=60°,∠CBD=23°,∠BCD=117°,据以上条件可求得两景点B与C之间的距离为 km(精确到0.1km).【答案】5.811.在△ABC中, a=2, b=3, 若该三角形为钝角三角形, 则边C的取值范围是 .【答案】(1,5)∪(13,5).12 将函数f(x)=4cos(π2x)和直线g(x)=x-1的所有交点从左到右依次记为.A₁,A₂,……,Aₙ,若P的坐标为(0,5),则|PA1+PA2+⋯+PAn|的值为 .【答案】30二、选择题(本大题共有4题, 满分18分, 第13、14题每题4分, 第15、16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.下列说法正确的是 ( )A. 四边形一定是平面图形B.不在同一条直线上的三点确定一个平面C.梯形不一定是平面图形D.平面α和平面β一定有交线【答案】B14. 设z₁、z₂为复数, 则.z21+z22=0是z₁=z₂=0的 ( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C15.设函数f(x)=asinx+bcosx,其中a>0,b>0,若f(x)≤f(π4)对任意的x∈R恒成立,则下列结论正确的是 ( )Af(π2)>f(π6)в f(x)的图像关于直线x=3π4对称C. f(x)在[π4,5π4]上单调递增D.过点(a,b)的直线与函数f(x)的图像必有公共点【答案】D16 给定方程: (12)x+sin x−1=0,给出下列4个结论:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(-∞,0)内有且只有一个实数根;④若x₀是方程的实数根,则x₀>−1.其中正确结论的个数是A.1B.2C.3D.4【答案】C三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知复数z是纯虚数,(z+2)²−8i是实数.(1) 求z; (2) 若1z1=1z+2−z,求|z1|.【答案】z=2i,2824118. (本题满分14分,第1小题满分6分,第2小题满分8分)已知平面内给定三个向量a=(3,2),b=(−1,2),c=(4,1).(1) 若a=mb−nc,求实数m,n的值;(2) 若(a−kc)⋅(kb)<6,求实数k的取值范围.【答案】m=59,n=−89, (−2,32)19. (本题满分14分,第1小题满分6分,第2小题满分8分)在△ABC中, 角A, B, C所对的边分别为a, b, c.(1) 若c=2,C=π3,且△ABC的面积.S=3,求a, b的值;(2) 若sinC+sin(B--A)=sin2A, 判断△ABC的形状.【答案】a=b=2,△ABC 为等腰或直角三角形20. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知函数 f (x )=3sin ωx cos ωx +sin 2ωx−12(其中常数ω>0)的最小正周期为π.(1) 求函数y=f(x)的表达式;(2)作出函数y=f(x),x∈[0,π]的大致图像,并指出其单调递减区间;(3) 将y=f(x)的图像向左平移φ(0<φ<π)个单位长度得到函数y=g(x)的图像,若实数x ₁,x ₂满足. f (x₁)g (x₂)=−1,且 |x₁−x₂||的最小值是 π6,求φ的值.【答案】 y =f (x )=sin (2x−π6), [π3 , 5π6],φ=π3或 2π3【解析】(1)∵函数f (x )=3sin ωx cos ωx +sin 2ωx−12=32sin 2ωx +1−2cos 2ωx2−12=sin (2ωx−π6)(其中常数 ω>0)的最小正周期为 2π2ω=π,∴ω=1.函数 y =f (x )=sin (2x−π6).(2)作出函数 y =f (x ),x ∈[0,π]的大致图像:作图:2x-π6-π6π2π3π211π6xπ12π37π125π6πf(x)-12010—1-12作图:结合图像,可得其单调递减区间为[π3,5π6].(3)将y=f(x)=sin(2x−π6)的图像向左平移φ(0<φ<π)个单位长度,得到函数y=g(x)=sin(2x+2−π6)的图像,若实数x₁, x₂满足f(x₁)g(x₂)=−1,则f(x₁)与g(x₂)一个等于1,另一个等于.−1,且|x₁−x₂|的最小值为|T2−φ|=π6,即|122π2−φ|=π6求得φ=π3或2π3.21. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)在平面直角坐标系中,我们把函数y=f(x),x∈D上满足.x∈N°,y∈N*(其中N⁺表示正整数)的点P(x,y)称为函数y=f(x)的“正格点”.(1)写出当m=π2时, 函数f(x)=sin mx, x∈R图像上所有正格点的坐标;(2)若函数f(x)=sinmx, x∈R,m∈(1,2)与函数g(x)=lgx的图像有正格点交点, 求m的值,并写出两个图像所有交点个数,需说明理由.(3) 对于 (2) 中的m值和函数f(x)=sinmx, 若当x∈[0,59]时,不等式log a x>22f(x)恒成立,求实数a的取值范围.【答案】(4k+1,1)(k∈N),4,(2581,1)【解析】(1) 因为 m =π2,一所以 f (x )=sin π2x,所以函数 f (x )=sin π2x 的正格点为(1,1),(5,1), (9,1), ……, (4k+1,1)(k∈N).(2)作出两个函数图像,如图所示:可知函数. f (x )=sinmx,x ∈R,与函数 g (x )=lg x 的图像只有一个“正格点”交点(10,1),所以 2kπ+π2=10m,m =4k +120π, k ∈Z,又 m ∈(1,2),可得 m =9π20,根据图像可知,两个函数图像的所有交点个数为4;(3)由 (2) 知 f (x )=sin 9π20x,x ∈(0,59]所以 9π20x ∈(0,π4],所以f (x )=sin 9π20x ∈(0,22],故22f (x )∈(0,12],当 a >1时,不等式 log a x >22f (x )不能恒成立,当 0<a <1时, 由下图可知log a 59>22sin π4=12,由loga 59>12=logaa,.综上,实数a的取值范围是2581<a<1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北重三中2011—2012学年第二学期高一年级期中考试地理试卷命 题:李国春一、单选题(每题2分,共90分)下图是某城市人口数量和人口自然增长率变化图。
读图,回答1~2题。
1.该市人口数量持续上升的最主要原因是( )A .人口出生率B .人口死亡率低C .大量人口迁入D .原有人口基数小2.该城市的人口再生产类型为( )A .过渡型B .原始型C .传统型D .现代型3.下图为某国人口自然增长率随时间变化示意图,下列有关该国①~⑤时期人口变化的说法正确的是()A .②时期不会出现用地紧张局面B .③时期人口总数达最大值,之后减少C .④时期人口最少,劳动力短缺现象严重D .⑤时期人口总数最多读2006年末中国人口资料,回答4-5题。
4.重状况的是( )A.① B.② C.③ D.④5.有关我国人口问题的说法正确的是( )A.我国应在一定的时期继续保持人口低自然增长率状况B.解决当前我国人口问题的主要措施是遏制人口老龄化的加速C.我国出生人口性别比居高不下,有利于安排就业D.流动人口持续增加,有利于城市公共资源合理配置读山东省2003年与2030年人口年龄结构比较图,完成6-7题。
6.2030年与2003年相比,下列说法中最可能出现的是( )A.出生率上升B.死亡率上升C.人口总数下降D.自然增长率上升7.今后,山东省人口及社会状况可能出现的问题有( )①就业压力大②养老负担重③适龄儿童入学困难④人力资源数量短缺A.①② B.③④C.①③ D.②④2005年1月6日零点2分,中国第13亿个公民在北京妇产医院出生,这一天也成为“中国13亿人口日”,读图,回答8-9题。
8.关于我国人口容量的估计最科学的是( )A.我国合理人口容量大约是16亿人 B.我国人口承载量极限值约100亿人C.我国人口容量具有不确定性 D.到2040年前后,我国将达到人口合理容量9.到21世纪中叶以后,我国有可能出现人口负增长,其主要原因是( )A.人们生育观念变化的必然结果 B.重大自然灾害影响导致死亡率上升C.老年人口太多,导致死亡率上升 D.人口性别结构不合理我国西北地区海拔高,地形高低起伏不平,降水稀少、气候干燥,植被大部分为荒漠,也是目前我国沙尘暴的发源地,西北地区面积占全国陆地面积的30%,但人口只占全国的4%,同时西北地区经济发展较为落后。
分析材料并完成10-11题。
10.有关西北地区人口合理容量的叙述,正确的是( )A.西北地区人口合理容量小,原因只在于自然条件恶劣B.西北地区人口合理容量小,原因只在于经济发展落后C.西北地区人口合理容量小,原因有自然条件因素,也有社会经济因素D.西北地区自然条件和社会条件都不好,因此它的人口合理容量会永远很小11.当前,我国进行西部大开发,目的是合理利用西部丰富的自然资源,使得西部地区经济社会较快发展,下列说法不正确的是( )A.西部大开发,促进了经济社会的发展,从而使可供养人口数变大B.西部大开发,促进了经济社会的发展,使得人口迁移频率加大,其中主要迁移应该为自由迁移C.西部大开发,促进了经济的发展,相信有一天,西北地区的人口增长率将会很低D.西部大开发,使得经济发展,人民生活水平提高,因此人口素质将会得到提升下图为“某地2010年人口迁移与年龄关系统计图”,读图回答12-13题。
12.从图中判断,影响该地区人口迁移的主要因素最可能是( )A.人口的老龄化 B.婚姻家庭 C.政治因素D.经济因素13.图中甲至丁不同年龄段的人口迁移,有明显相关的是( )A.甲、乙B.甲、丙C.乙、丙D.乙、丁地域文化是指一定地域长时期形成的特定文化现象。
一个国家、一个地区、一个民族都会形成具有地域特色和民族特色的文化传统,他们对人口或城市产生一定的影响。
结合所学知识回答14-15题。
14.婚俗对人口出生率影响小的是( )A.初婚年龄 B.父母包办婚姻习俗 C.婚姻稳定程度D.一夫多妻15.有关中国文化对人口发展的影响,叙述错误的是( )A.从多育多子到只生一个 B.从“学而优则仕”到“全民皆商”C.从“四海为家”到安土重迁 D.从早婚早育到晚婚晚育影响城市的区位因素很多,主要有自然因素和社会因素两方面,并且随着时代的发展,影响城市的主要因素也会不断地发生变化。
据此并结合相关知识完成16-17题。
16.从城市的起源角度来看,耶路撒冷和拉萨两城市的共同之处都表现为( )A.以休闲、疗养为主的城市 B.以军港和兵营为中心的城市C.因矿产开发而形成的城市 D.以宗教圣地发展起来的城市17.从城市的选址角度看,上海、伦敦、开罗三城市共同之处表现为( )A.位于海岸、河口的沿岸B.邻近矿产资源的产地C.位于冲积平原的中央D.地处军事要冲下图是某城市医院与卫生所分布图。
读后完成18-19题。
18.医科大学毕业的小明想开一家私人卫生所,根据“中心地理论”他将选择在( )A.① B.② C.③ D.④19.他选择该处的理由是( )A.该地卫生所集中,利于经营 B.位于其他卫生所服务范围的边缘C.靠近大医院,可获得其技术支持 D.城市边缘有足够的土地发展空间下图为印度某城市(由西至东相距25千米)人口密度与土地价格统计。
读图回答20-21题。
20.图示甲地土地价格和人口密度均很低,合理的解释是( )A.位于城市中心,为市政中心广场 B.距离城市中心近,不利房地产开发C.位于城市边缘,基础设施不完善 D.位于郊区,只适合电子工业发展21.根据乙地土地价格和人口密度的关系可判断,应属于( )A.中心商务区 B.住宅区 C.工业区 D.文化区结合所学知识完成22-23题。
22.关于图示地区城市等级、服务功能和服务范围的叙述,正确的是( )A.常州的城市等级比上海高 B.无锡的服务范围比镇江大C.宁波的服务功能比杭州齐全 D.特大城市数量少23.图示地区城市化对自然地理环境的影响有( )①温室气体排放多,出现“热岛”现象②改变局部大气环流,使降水减少③城市建筑物面积扩大,增加了生物多样性④城市建设使地面径流汇集速度加快A.①② B.③④ C.①④ D.②③材料一2010年3月5日,温家宝总理在政府工作报告中指出,要“推进户籍制度改革,放宽中小城市和小城镇落户条件,引导非农产业和农村人口有序向小城镇集聚”。
材料二下表是国家统计局发布的我国城市人口比重变化表。
24.反映出城市化的主要标志是( )A.城市人口比重增加 B.城市总人口增加 C.城市用地规模扩大 D.城市道路网密集25.下列关于我国城市化进程的叙述,正确的是( )A.城市化水平总体上升 B.中国的城市化速度落后于发达国家C.我国已经完全实现了城市化 D.城市化进程取决于农业现代化的发展26.温总理的报告( )A.说明我国城市化进程处于后期成熟阶段 B.会导致我国东、西部城市化速度同步C.会推进户籍制度改革,加快我国城市化的进程 D.说明我国尚未出现城市问题27.根据本次会议精神和中国的现实情况,今后我国城市化的方向是( )A.大城市的人口向西部转移 B.大城市的人口向中小城市转移C.农村人口向大城市转移 D.农村人口向中小城市转移读某国工业化、城市化进程比较图,回答28-30题。
28.关于该国工业化、城市化进程特点的叙述,正确的是()A.城市化与工业化呈同步增长趋势B.阶段I工业化进程速度比城市化快C.该国可能属于发展中国家D.阶段Ⅱ工业化促进了城市化发展29.阶段Ⅲ,该国第二产业新增就业机会主要来()A.技术密集型产业B.能源密集型产业C.劳动密集型产业D.资源密集型产业30.目前该国很多大城市的郊区人口迅速增长,主要原因可能是()A.国家政策的行政干预 B.近郊现代农业的兴起C.近郊大型工业的飞速发展 D.城市交通的迅速发展结合“产业活动的区位条件和地域联系”的相关知识回答下列31-32题:31.下列有关我国某采购员购物及去向的叙述,正确的是()A.采购人参、鹿茸,到甘肃去B.采购“龙井茶”,到河南去C.采购香蕉、荔枝,到四川去D.采购葡萄、长绒棉,到新疆去32.我国温州制鞋业发达,许多企业很快得到各种新款鞋样的彩色照片,为设计新款式鞋子提供有价值的资料。
这最能的方式是()A.利用报纸搜集各种信息B.利用照相机到各地拍照得到的C.利用互联网进行电子商务D.通过采访进行现场拍摄得到的我国某边防站(海拔4 900米)的驻防官兵在艰苦的条件下,为改善生活试种蔬菜。
他们先盖起简易阳光房,但种的蔬菜仍不能生长。
后来,他们又在简易阳光房中搭架,加上盆栽,终于有了收获。
据此完成33-34题。
33.盖简易阳光房改造的自然条件主要是( )A.热量 B.水分 C.土壤D.光照34.在简易阳光房中再搭架盆栽,蔬菜才能生长,解决的问题是( )A.蒸发量大 B.多虫害 C.地温低D.太阳辐射强据报道,天津市政府决定将原有的1万亩水稻田改种玉米和小麦。
据此回答35-36题。
35.天津市政府作出农业调整决策的原因是()A.华北地区居民习惯吃面食,大米销售有困难B.水稻产量低于小麦、玉米,经济效益差C.华北地区缺水日益严重,而种水稻需水量过多D.种植水稻需喷洒农药,会给环境造成污染36.这项农业调整决策()A.符合“因地制宜”发展农业的原则B.充分考虑了农业生产的季节性、周期性特点C.说明市场的需求量对农业生产的种类和产量影响最大D.说明对食物的偏好是影响农作物品种选择的最关键性因素近期研制出利用玉米叶片加工、编织购物袋的技术,这种购物袋易分解且物美价廉。
据此完成37-38题。
37.该种购物袋的生产厂应接近()A.原料产地 B.销售市场 C.能源基地 D.研发基地38.以该种购物袋替代目前广泛使用的同类用品,对环境保护的直接作用是()A.减轻大气污染 B.减轻“白色污染” C.促进生物多样性 D.减轻酸雨危害下图为某城镇多年平均风频图。
判断39-40题:39.该城镇可能位于( )A.我国东南沿海 B.印度半岛境内 C.地中海沿岸 D.西欧平原上40.如果在该城市布局一个火电厂,从环境保护的角度考虑应该布局在该城市的:A.西北 B.东南 C.西南 D.东北读图,回答41-43题。
41.如果图中黑点表示加油站,则影响该地理事物区位的主要因素是( )A.人口数量 B.车流量 C.地价D.服务范围42.距该地中心城市最近的是( )A.① B.② C.③ D.④43.图中国道走向平直的主要原因是( )A.尽可能联系较多的经济据点 B.缩短线路长度,节省运营时间C.降低筑路成本 D.少占耕地根据交通运输对商业的影响,分析44-45题:44.下列关于商业网点和商业中心的叙述,正确的是()A. 城市的商业中心都形成在城市的中心位置处B.在大城市中,可能形成几个较大规模的商业网点C.人口稀少的地区,不需要设置商业网点D. 城市的商业中心都是政府组织形成的45.在太原、西安的市场上,居民能买到鲜活的海产品,这个便捷的商业网形成是因为()A.自然条件B.居民的需要C.防腐、包装技术的提高D.运输技术的进步二、综合分析题(共60分)46.大蒜在我国是一种秋播夏收作物,喜湿、喜肥、不耐旱,忌渍水。