高一数学(必修四)期末测试

合集下载

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。

)。

A。

4.B。

8.C。

16.D。

322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。

)。

A。

(-∞,-1)。

B。

(1,+∞)。

C。

(-1,1)U(1,+∞)。

D。

(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。

)。

A。

a<b<c。

B。

b<c<a。

C。

c<a<b。

D。

c<b<a4.函数y=-x^2+4x+5的单调增区间是(。

)。

A。

(-∞,2]。

B。

[-1,2]。

C。

[2,+∞)。

D。

[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。

)。

A。

a≤2.B。

-2≤a≤2.C。

a≤-2.D。

a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。

)。

A。

y=x-2.B。

y=x-1.C。

y=x^2.D。

y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。

)。

A。

1/2.B。

2/3.C。

3/4.D。

1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。

)。

A。

1/5.B。

-1/5.C。

5.D。

-59.若tanα=3,则sinαcosα=(。

)。

A。

3.B。

3/2.C。

3/4.D。

9/410.sin600°的值为(。

)。

A。

3/2.B。

-3/2.C。

-1/2.D。

1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。

)。

A。

1.B。

-1.C。

5/8.D。

-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。

高一数学(必修四)期末考试题

高一数学(必修四)期末考试题

高一数学(必修四)期末测试一、选择题:每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是正确的,地请把正确地选项填在题后的括号内. 1.函数)252sin(π+=x y 的一条对称轴方程是 ( )A .2π-=xB .4π-=xC .8π=xD .45π=x 2.角θ满足条件sin2θ<0,且cos θ-sin θ<0,则θ在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.己知sin θ+cos θ=51,θ∈(0,π),则cot θ等于 ( )A .43B .-43C . ±43D .-344.已知O 是△ABC 所在平面内一点,若++=,且||=||=||,则△ABC 是 ( )A .任意三角形B .直角三角形C .等腰三角形D .等边三角形 5.己知非零向量a 与b 不共线,则 (a +b )⊥(a -b )是|a |=|b |的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.化简6sin 2008cos 2002sin 6cos 2008sin 2002sin +-的结果是( )A .28tanB .28tan -C .28cot -D .28cot7.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,08.把函数y =sin x 的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把 图象向左平移4π个单位,这时对应于这个图象的解析式 ( )A .y =cos2xB .y =-sin2xC .y =sin(2x -4π) D .y =sin(2x +4π) 9.)20(cos 3sin π≤≤+=x x x y ,则y 的最小值为( )A .– 2B .– 1C .1D .3 10.在下列区间中,是函数)4sin(π+=x y 的一个递增区间的是( ) A .],2[ππB .]4,0[πC .]0,[π-D .]2,4[ππ11.把函数y =x 2+4x +5的图象按向量 a 经一次平移后得到y =x 2的图象,则a 等于 ( ) A .(2,-1) B .(-2,1) C .(-2,-1) D .(2,1) 12.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则 ( )A .4,2πϕπω==B .6,3πϕπω== C .4,4πϕπω==D .45,4πϕπω==第Ⅱ卷(非选择题,共90分)二、填空题:每小题5分,共20分,把正确答案填写在题中的横线上,或按题目要求作答. 13.已知,4)4tan()4tan(=++-θπθπ且,2πθπ-<<-则θsin = . 14.函数21cos sin lg -+=x x y 的定义域为 . 15.已知奇函数)(x f 满足)()2(x f x f -=+,且当)1,0(∈x 时,.2)(xx f =则)18(log 21f 的值为 .16.在△ABC 中,A (-1,1),B (3,1),C (2,5),角A 的内角平分线交对边于D ,则向量的坐标等于 .三、解答题:共70分.要求写出必要的文字说明、重要演算步骤,有数值计算的要明确写出数值和单位,只有最终结果的不得分.17.(本题满分10分)已知).1,2(),0,1(==b a(I )求|3|b a+;(II )当k 为何实数时,k -a b 与b a3+平行, 平行时它们是同向还是反向?18.(本题满分12分)已知51cos sin ,02=+<<-x x x π. (I )求sin x -cos x 的值;(Ⅱ)求xx x x x x cot tan 2cos 2cos 2sin 22sin 322++-的值.19.(本题满分12分)已知函数xx x x f 2cos 4sin 5cos 6)(24-+=.(Ⅰ)求函数f (x )的定义域和值域; (Ⅱ)判断它的奇偶性.20.(本题满分12分)设函数x f ⋅=)(,其中向量a =(2cos x ,1),b =(cos x ,3sin2x ),x ∈R.(Ⅰ)若f (x )=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y =2sin2x 的图象按向量=(m ,n )(|m |<2π)平移后得到函数y=f (x )的图象, 求实数m 、n 的值.21.(本题满分12分)如图,某观测站C 在城A 的南偏西︒20方向上,从城A 出发有一条公路,走向是南偏东︒40,在C 处测得距离C 处31千米的公路上的B 处有一辆正沿着公路向城A 驶去,行驶了20千米后到达D 处,测得C 、D 二处间距离为21千米,这时此车距城A 多少千米?22.(本题满分12分)某港口水深y (米)是时间t (240≤≤t ,单位:小时)的函数,记作)(t f y =,下面是某日水深的数据t (小时)0 3 6 9 12 15 18 21 24 y (米)10.013.09.97.010.013.010.17.010.0(I )求出函数)(t f y =的近似表达式;(II )一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?参考答案一、选择题1.A 2.B 3.B 4.D 5.C 6.C 7.D 8.A 9.C 10.B 11.A 12.C 二、填空题13.21- 14.}322|{Z k k x k x ∈+≤<πππ 15.89- 16.(916,932) 三、解答题17.解:(I )b a3+= (1,0) + 3(2,1) = ( 7,3) , ∴|3|b a += 2237+=58.(II )k -ab= k(1,0)-(2,1)=(k -2,-1). 设k -ab=λ(b a3+),即(k -2,-1)= λ(7,3),∴⎩⎨⎧=-=-λλ3172k ⎪⎩⎪⎨⎧-=-=⇒3131λk . 故k= 31-时, 它们反向平行.18.解法一:(Ⅰ)由,251cos cos sin 2sin ,51cos sin 22=++=+x x x x x x 平方得 即 .2549cos sin 21)cos (sin .2524cos sin 22=-=--=x x x x x x又,0cos sin ,0cos ,0sin ,02<-><∴<<-x x x x x π 故 .57cos sin -=-x x(Ⅱ)xx x x x x xx x x x x sin cos cos sin 1sin 2sin 2cot tan 2cos 2cos 2sin 2sin 3222++-=++-sin cos (2cos sin )121108()(2).255125x x x x =--=-⨯-=- 解法二:(Ⅰ)联立方程⎪⎩⎪⎨⎧=+=+.1cos sin ,51cos sin 22x x x由①得,cos 51sin x x -=将其代入②,整理得,012cos 5cos 252=--x x ⎪⎪⎩⎪⎪⎨⎧=-=∴<<-=-=∴.54cos ,53sin ,02.54cos 53cos x x x x x π 或 故 .57cos sin -=-x x (Ⅱ)x x x x x x cot tan 2cos 2cos 2sin 2sin 322++- xxx x x xsin cos cos sin 1sin 2sin 22++-=①②sin cos (2cos sin )3443108()(2).5555125x x x x =--=-⨯⨯-+=- 19.解:(I )由cos2x ≠0得22ππ+=k x ,解得x ≠Z k k ∈+,42ππ,所以f(x)的定义域为 R x x ∈{且x ≠Z k k ∈+,42ππ} (II )∵f(x)的定义域关于原点对称且f(-x)=f(x), ∴f(x)为偶函数. (III )当x ≠Z k k ∈+,42ππ时, 因为1cos 32cos )1cos 3)(1cos 2(2cos 4sin 5cos 6)(22224-=--=-+=x xx x x x x x f , 所以f(x)的值域为1{-y ≤1122y y <<或者≤2}. 20.解:(Ⅰ)依题设,f(x)=2cos 2x+3sin2x=1+2sin(2x+6π).由1+2sin(2x+6π)=1-3,得sin(2x+6π)=-23. ∵-3π≤x ≤3π,∴-2π≤2x+6π≤65π,∴2x+6π=-3π, 即x=-4π.(Ⅱ)函数y=2sin2x 的图象按向量c=(m ,n)平移后得到函数y=2sin2(x-m)+n 的图象,即函数y=f(x)的图象.由(Ⅰ)得 f(x)=2sin2(x+12π)+1. ∵|m|<2π,∴m=-12π,n=1.21.解:在BCD ∆中,21=CD ,20=BD ,31=BC ,由余弦定理得,7120212312021cos 222-=⨯⨯-+=∠BDC所以774cos 1sin 2=∠-=∠BDC BDC . 在ACD ∆中,CD =21,)60sin(sin 604020︒-∠=∠︒=︒+︒=∠BDC ACD CAD ,=143560sin 60cos sin =︒∠-︒∠⋅⋅BDC BDC .由正弦定理得=∠∠=⋅CADACDCD AD sin sin 1523143521=⋅(千米). 所以此车距城A 有15千米. 22.解:(I )由已知数据,易知)(t f y =的周期为T = 12,∴ 62ππω==T . 由已知,振幅13,3,7,10.A b A A b b +==⎧⎧⎨⎨+==⎩⎩得 ∴ 106sin3+=t y π. (II )由题意,该船进出港时,水深应不小于5 + 6.5 = 11.5(米),∴ 13sin1011.5,sin.662tt ππ+≥≥即 ∴ πππππ652662+≤≤+k t k . ∴ )(512112z k k t k ∈+≤≤+. 故该船可在当日凌晨1时进港,17时出港,它在港内至多停留16小时.。

高一数学必修一,必修四练习题

高一数学必修一,必修四练习题

高一数学(必修一,必修四)期末练习题一.A 卷1.0390sin 的值为( ) A.23 B.23- C.21- D.21 2.若sin 0α<,tan 0α>,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限3.函数x x x f cos sin 2)(=是 ( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数D .最小正周期为π的偶函数4.设M 和m 分别是函数1)62cos(31--=πx y 的最大值和最小值,则M+m 等于( )A.32B.32-C. 34- D.2-5.已知角α的终边经过点)3,1(P ,则α2cos 的值为 ( ) A. 21-B. 23-C . 21 D. 236. tan(40)-,tan38,tan56的大小关系是( )A .tan(40)tan 38tan 56->>B .tan 56tan 38tan(40)>>-C .tan 38tan(40)tan 56>->D .tan 56tan(40)tan 38>->7.将函数sin 2y x =的图象向左平移6π个单位,所得图象的函数解析式为( ) A .sin 26y x π⎛⎫=+⎪⎝⎭C .sin 26y x π⎛⎫=-⎪⎝⎭B .sin 23y x π⎛⎫=+⎪⎝⎭D .sin 23y x π⎛⎫=-⎪⎝⎭8.在ABC ∆中,若135cos ,53cos ==B A ,则C sin 的值为( )A. 6556-B. 6556C. 6563D.6516-9.为了得到函数)32sin(π-=x y 的图象,只需把函数x y 2sin =的图象 ( )A. 向左平移3π个长度单位 B. 向右平移3π个长度单位C. 向左平移6π个长度单位 D. 向右平移6π个长度单位 10.对于函数)62sin(2π+=x y ,则下列结论正确的是 ( )A .)(x f 的图象关于点)0,3(π对称 B.)(x f 在区间]6,3[ππ-递增C .)(x f 的图象关于直线12π-=x 对称 D. 最小正周期是2π11.105sin 15cos 75cos 15sin +=12. 已知扇形的半径为2,圆心角是3π弧度,则该扇形的面积是 . 13. 函数x x y 2cos 2sin =的最小正周期是 ,最大值是 。

高一数学(必修4)期末测试题及其答案

高一数学(必修4)期末测试题及其答案

高中数学必修4 期末测试题班级: 姓名:一.选择题:(本大题共30小题,每小题2分,共60分). 1.3π的正弦值等于( A ) (A )23 (B )21 (C )23- (D )21- 2.215°是 ( C )(A )第一象限角(B )第二象限角(C )第三象限角 (D )第四象限角 3.角α的终边过点P (4,-3),则αcos 的值为( C ) (A )4(B )-3(C )54(D )53-4.若sin α<0,则角α的终边在( D )(A )第一、二象限 (B )第二、三象限 (C )第二、四象限 (D )第三、四象限 5.函数y=cos2x 的最小正周期是( A ) (A )π (B )2π (C )4π (D )π26.给出下面四个命题:① =+;②=+B ;③=;④00=-。

其中正确的个数为( B ) (A )1个(B )2个(C )3个(D )4个7.向量)2,1(-=,)1,2(=,则( B ) (A )∥ (B )⊥ (C )与的夹角为60° (D )与的夹角为30°8. ( B )(A )cos160︒ (B )cos160-︒ (C )cos160±︒ (D )cos160±︒9. 函数)cos[2()]y x x ππ=-+是 ( C )(A ) 周期为4π的奇函数 (B ) 周期为4π的偶函数 (C ) 周期为2π的奇函数 (D ) 周期为2π的偶函数10.要得到函数y=sin(2x-3π)的图象,只需要将y=sin2x 的图象 ( A )(A .向右平移6π个单位 B.向左平移6π个单位C.向右平移3π个单位 D.向左平移3π个单位11.cos3000的值等于( A )A .21 B .-21 C .23 D .-23 12.下列命题中正确的是( C ) (A )小于90°的角是锐角(B )第一象限角是锐角(C )钝角是第二象限角(D )终边相同的角一定相等13.已知=(3,0)等于( B ).A .2B .3C .4D .514.在0到2π范围内,与角-34π终边相同的角是( C ). A .6π B .3πC .32π D .34π 15.若cos α>0,sin α<0,则角 α 的终边在( D ).A .第一象限B .第二象限C .第三象限D .第四象限16.sin 20°cos 40°+cos 20°sin 40°的值等于( B ).A .41B .23 C .21 D .43 17.如图,在平行四边形ABCD 中,下列结论中正确的是( C ).A .=B .-=C .+=D .+=18.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( D ).A .10B .5C .-25 D .-1019.已知向量a=(1,2),b=(-4,x ),且a ⊥b ,则x 的值是( C ) A .-8 B .-2 C .2 D .8 20.若tan α=3,tan β=34,则tan (α-β)等于( D ). A .-3B .3C .-31D .3121.函数y =2cos x -1的最大值、最小值分别是( B ).A .2,-2B .1,-3C .1,-1D .2,-1 22.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥,那么c 的值是( D ).C (第17题)A .-1B .1C .-3D .323.下列函数中,在区间[0,2π]上为减函数的是( A ). A .y =cos x B .y =sin x C .y =tan xD .y =sin (x -3π) 24.已知0<A <2π,且cos A =53,那么sin 2A 等于( D ).、 A .254 B .257 C .2512 D .2524 25.函数x y 2sin 4=是( C ) A .周期为2π的奇函数 B .周期为2π的偶函数 C .周期为π的奇函数 D .周期为π的偶函数26.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( D ).A .(-3,-2)B .(3,-2)C .(-2,-3)D .(-3,2)27.已知a =(-2 , 4),b =(1 , 2), 则a ·b 等于( C )(A )0 (B )10 (C )6 (D )-10 28.若a =(1 ,2),b =(-3 ,2),且(ka + b )∥(a - 3b ),则实数k 的值是( A ) (A )31-(B )19(C )911(D )2-29.已知平行四边形ABCD 满足条件0)()(=-⋅+→-→-→-→-AD AB AD AB ,则该四边形是( B ) A.矩形 B.菱形 C.正方形 D.任意平行四边形 30.函数)sin(ϕω+=x A y 在一个周期内的图象如下,此函数的解析式为 ( A ) (A ))322sin(2π+=x y (B ))32sin(2π+=x y(C ))32sin(2π-=x y(D ))32sin(2π-=x y二.填空题(本大题共6小题,每小题2分,共12分)31.已知tan α=-1,且 α∈[0,π),那么 α 的值等于43π. 32.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 (-3,-5) . 33.已知点A (2,-4),B (-6,2),则AB 的中点M 的坐标为(-2,-1) ; 34.若)3,2(=与),4(y -=共线,则y = -6 ; 35.若21tan =α,则ααααcos 3sin 2cos sin -+= -3 ; 36.已知向量)8,(),,2(x b x a ==→→,若||||→→→→⋅=⋅b a b a ,则x 的值是 4 。

高一数学必修4期末试卷及答案

高一数学必修4期末试卷及答案

高一年级数学《必修4》试题一、选择题(每小题4分,共40分)1.与463终边相同的角可以表示为(kZ)()A .k 360463B .k 360103C .k 360257D .k 3602572如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是()A .AB OCB .AB ∥DEC .AD BED .AD FC3.是第四象限角,12cos 13,sin ()A513B 513C512D 5124.2255log sinlogcos1212的值是()A 4 B 1C4D15.设()sin()cos()f x a xb x +4,其中a b 、、、均为非零的常数,若(1988)3f ,则(2008)f 的值为()A .1B .3C .5D .不确定6.若动直线xa 与函数()sin f x x 和()cos g x x 的图像分别交于M N ,两点,则MN 的最大值为()A .1B .2C .3D .27.为得到函数πcos 23yx的图像,只需将函数sin 2yx 的图像()A .向左平移5π12个长度单位B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位8.函数),2,0)(sin(R xx A y的部分图象如图所示,则函数表达式为()A .)48sin(4xy B .)48sin(4x y C .)48sin(4xyD .)48sin(4xy 9.设函数()sin ()3f x xx R ,则()f x =()A .在区间2736,上是增函数B .在区间2,上是减函数C .在区间84,上是增函数D .在区间536,上是减函数10.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DCBD 2,CE EA 2,AFFB 则ADBE CF 与BC ()A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直二、填空题(每小题4分,共16分)11.23sin 702cos 1012.已知函数()2sin 5f x x的图象与直线1y的交点中最近的两个交点的距离为3,则函数()f x 的最小正周期为。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)高一数学试题(必修4)第一章三角函数一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C的关系是()A.B=A∩C。

B.B∪C=C。

C.AC。

D.A=B=C2.已知$\sin\theta=\frac{1}{2}$,$\theta\in\mathrm{Q}$,则$\cos\theta$等于()A。

$\frac{\sqrt{3}}{2}$。

B。

$-\frac{\sqrt{3}}{2}$。

C。

$\frac{1}{2}$。

D。

$-\frac{1}{2}$3.已知$\sin\alpha=-\frac{2}{\sqrt{5}}$,$\alpha\in\mathrm{III}$,则$\cos\alpha$等于()A。

$-\frac{1}{\sqrt{5}}$。

B。

$\frac{1}{\sqrt{5}}$。

C。

$-\frac{2}{\sqrt{5}}$。

D。

$\frac{2}{\sqrt{5}}$4.下列函数中,最小正周期为$\pi$的偶函数是()A。

$y=\sin2x$。

B。

$y=\cos x$。

C。

$y=\sin2x+\cos2x$。

D。

$y=\cos2x$5.若角$\theta$的终边上有一点$P$,则$\sin\theta$的值是()A。

$\frac{OP}{1}$。

B。

$\frac{1}{OP}$。

C。

$\frac{OA}{1}$。

D。

$\frac{1}{OA}$6.要得到函数$y=\cos x$的图象,只需将$y=\sin x$的图象()A。

向左平移$\frac{\pi}{2}$个单位。

B。

向右平移$\frac{\pi}{2}$个单位C。

向左平移$\pi$个单位。

D。

向右平移$\pi$个单位7.若函数$y=f(x)$的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿$x$轴向左平移1个单位,沿$y$轴向下平移1个单位,得到函数$y=\sin x$的图象,则$y=f(x)$是()A。

高一数学期末考试题(必修四)

高一数学期末考试题(必修四)

学校班级试场姓名考号富县高级中学2011-2012学年度第二学期期末考试高一数学试题一、选择题:(本答题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.105cos105sin的值为()A.B.C.D.2.化简=()A.B.0C.D.3.函数y=Asin(ωx+ϕ)在一个周期内的图象如图,此函数的解析式为()A.B.C.D.4.若向量),1,1(),1,1(-==ba则bac2321-=的坐标为()A.(1,2)B.(2,﹣1)C.(﹣1,2)D.(0.5,﹣1.5)5.已知5b2,a==,-3ba=⋅,则ba+等于()A.23B.35C.D.6.下列三角函数值的符号判断错误的是()A.sin165°>0 B.cos280°>0 C.tan170°>0 D.tan310°<07.已知)3,2(=a与),4(y-=b共线,则y的值为()A.-5 B.-6 C.-7 D.-88.设四边形ABCD中,有→→=AB21DC错误!未找到引用源。

且→→=BCAD则这个四边形是()A.平行四边形B.矩形C.等腰梯形D.菱形9.sin63cos27cos63sin27+等于()A.1 B.-1 C.0错误!未找到引用源。

D.21错误!未找到引用源。

10.已知向量)2,3(-=a,),1,2(=b ba2+错误!未找到引用源。

的值为()A.3B.17C.7D.5213+11.要得到函数)32sin(π-=xy的图象,只需将函数xy2sin=的图象()A.向左平行移动3π错误!未找到引用源。

B.向右平行移动3π错误!未找到引用源。

C.向左平行移动6π错误!未找到引用源。

D.向右平行移动6π错误!未找到引用源。

12.已知下列命题:①若向量a∥b,b∥c,则a∥c;②若|a|>|b|,则a>b;③若a•b=0,则a=0或b=0;④在ABC∆中,若0CAAB<→⋅→,则△ABC是钝角三角形;⑤(a•b)•c=a•(b•c)、其中正确命题的个数是()A.0 B.1 C.2 D.3二、填空题(每小题4分,共16分)13.已知31cos=θ,且)4,27(ππθ∈,则=θsin.14.已知平面向量a =(1,-3), b=(4,-2),ba+μ与a垂直,则=μ.题号一二三总分得分12……………………………答……………………………………………………题…………………………………………线……………………………………………………答……………………………………………………题…………………………………………线……………………… ……………………………密……………………………………………………封…………………………………………线………………………15.若向量a =(1,2),b =(-3,4),则(a •b )•(a + b)等于 . 16.cos20°cos40°cos80°的值为_________.三、解答题(本大题共5小题,共52分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知向量)1,2(),,1(==b a λ,(1) 当0=λ时,求b a b a -+-2,3,和><b a ,cos , (2) 当b a ⊥时,求λ的值.18.(10分)若)2,3()2,1(-==b ,a ,k 为何值时:(1) 错误!未找到引用源。

高一数学必修1,2,3,4,5试题及答案

高一数学必修1,2,3,4,5试题及答案

高二数学必修部分测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.0sin 390=()A .21B .21-C .23 D .23- 2.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值为() A 1223133A 4.,b 满足:|3a =,|2b =,||a b +=||a b -=()A 3D .105.下面结论正确的是()C.6A C 789、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。

A 、),23(+∞- B 、]0,(-∞ C 、23,(--∞ D 、]0,2(- 10.当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是 A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]11.已知a,b,c 成等比数列,且x,y 分别为a 与b 、b 与c 的等差中项,则y c x a +的值为() (A )21(B )-2(C )2(D )不确定 12.已知数列{a n }的通项公式为a n =n n ++11且S n =1101-,则n 的值为()(A )98(B )99(C )100(D )101二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上)13141516。

17得到y 1819(本小题满分12分)已知向量a ,b 的夹角为60,且||2a =,||1b =,(1)求a b ;(2)求||a b +.20.已知数列{a n },前n 项和S n =2n-n 2,a n =log 5bn ,其中bn>0,求数列{bn}的前n 项和。

21(本小题满分14分)已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+,且()f x a b =(1)求函数()f x 的解析式;(2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最小值是-4,求此时函数()f x 的最大值,并求出相应的x 的值. 22如图如图,在底面是直角梯形的四棱锥S-ABCD ,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=1/2.ACAD 13.3π171)2-+x ,∴18.19.解:(1)1||||cos602112a b a b ==⨯⨯= (2)22||()a b a b +=+所以||3a b +=20.当n=1时,a 1=S 1=1当n ≥2时,a 1=S n -S n-1=3-2n ∴a n =3-2nb n =53-2n∵25155123)1(23==+-+-n n bn bn b 1=5∴{b n }是以5为首项,251为公比的等比数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学(必修四)期末测试说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,答题时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是正确的, 地请把正确地选项填在题后的括号内. 1.函数)252sin(π+=x y 的一条对称轴方程是 ( )A .2π-=xB .4π-=xC .8π=xD .45π=x 2.角θ满足条件sin2θ<0,且cos θ-sin θ<0,则θ在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.己知sin θ+cos θ=51,θ∈(0,π),则cot θ等于 ( )A .43B .-43C . ±43D .-344.已知O 是△ABC 所在平面内一点,若OA +OB +OC =0,且|OA |=|OB |=|OC |,则△ABC 是 ( )A .任意三角形B .直角三角形C .等腰三角形D .等边三角形 5.己知非零向量a 与b 不共线,则 (a +b )⊥(a -b )是|a |=|b |的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.化简6sin 2008cos 2002sin 6cos 2008sin 2002sin +-的结果是( )A .28tanB .28tan -C .28cot -D .28cot7.已知向量)sin ,(cos θθ=,向量)1,3(-=则|2|-的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,08.把函数y =sin x 的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把 图象向左平移4π个单位,这时对应于这个图象的解析式 ( ) A .y =cos2x B .y =-sin2xC .y =sin(2x -4π) D .y =sin(2x +4π) 9.)20(cos 3sin π≤≤+=x x x y ,则y 的最小值为( )A .– 2B .– 1C .1D .3 10.在下列区间中,是函数)4sin(π+=x y 的一个递增区间的是( ) A .],2[ππB .]4,0[πC .]0,[π-D .]2,4[ππ11.把函数y =x 2+4x +5的图象按向量 a 经一次平移后得到y =x 2的图象,则a 等于 ( )A .(2,-1)B .(-2,1)C .(-2,-1)D .(2,1)12.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则( )A .4,2πϕπω==B .6,3πϕπω== C .4,4πϕπω==D .45,4πϕπω==第Ⅱ卷(非选择题,共90分)二、填空题:每小题5分,共20分,把正确答案填写在题中的横线上,或按题目要求作答. 13.已知,4)4tan()4tan(=++-θπθπ且,2πθπ-<<-则θsin = .14.函数21cos sin lg -+=x x y 的定义域为 . 15.已知奇函数)(x f 满足)()2(x f x f -=+,且当)1,0(∈x 时,.2)(xx f =则)18(log 21f 的值为 .16.在△ABC 中,A (-1,1),B (3,1),C (2,5),角A 的内角平分线交对边于D ,则向量AD 的坐标等于 . 三、解答题:共70分.要求写出必要的文字说明、重要演算步骤,有数值计算的要明确写出数值和单位,只有最终结果的不得分.17.(本题满分10分)已知).1,2(),0,1(==b a(I )求|3|b a+;(II )当k 为何实数时,k-a b 与b a3+平行, 平行时它们是同向还是反向?18.(本题满分12分)已知51cos sin ,02=+<<-x x x π. (I )求sin x -cos x 的值;(Ⅱ)求xx x x x x cot tan 2cos 2cos 2sin 22sin 322++-的值.19.(本题满分12分)已知函数xx x x f 2cos 4sin 5cos 6)(24-+=.(Ⅰ)求函数f (x )的定义域和值域; (Ⅱ)判断它的奇偶性.20.(本题满分12分)设函数x f ⋅=)(,其中向量=(2cos x ,1),=(cos x ,3sin2x ),x ∈R. (Ⅰ)若f (x )=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y =2sin2x 的图象按向量c =(m ,n )(|m |<2π)平移后得到函数y=f (x )的图象, 求实数m 、n 的值.21.(本题满分12分)如图,某观测站C 在城A 的南偏西︒20方向上,从城A 出发有一条公路,走向是南偏东︒40,在C 处测得距离C 处31千米的公路上的B 处有一辆正沿着公路向城A 驶去,行驶了20千米后到达D 处,测得C 、D 二处间距离为21千米,这时此车距城A 多少千米?22.(本题满分12分)某港口水深y (米)是时间t (240≤≤t ,单位:小时)的函数,记作)(t f y =,下面是某日水深的数据(I )求出函数)(t f y =的近似表达式;(II )一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?参考答案一、选择题1.A 2.B 3.B 4.D 5.C 6.C 7.D 8.A 9.C 10.B 11.A 12.C 二、填空题13.21- 14.}322|{Z k k x k x ∈+≤<πππ 15.89- 16.(916,932) 三、解答题17.解:(I )b a 3+= (1,0) + 3(2,1) = ( 7,3) , ∴|3|b a+= 2237+=58.(II )k -a b = k(1,0)-(2,1)=(k -2,-1). 设k -a b =λ(b a3+),即(k -2,-1)= λ(7,3),∴⎩⎨⎧=-=-λλ3172k ⎪⎩⎪⎨⎧-=-=⇒3131λk . 故k= 31-时, 它们反向平行.18.解法一:(Ⅰ)由,251cos cos sin 2sin ,51cos sin 22=++=+x x x x x x 平方得 即 .2549cos sin 21)cos (sin .2524cos sin 22=-=--=x x x x x x 又,0cos sin ,0cos ,0sin ,02<-><∴<<-x x x x x π 故 .57cos sin -=-x x(Ⅱ)xx x x x x xx x x x x sin cos cos sin 1sin 2sin 2cot tan 2cos 2cos 2sin 2sin 3222++-=++-sin cos (2cos sin )121108()(2).255125x x x x =--=-⨯-=-解法二:(Ⅰ)联立方程⎪⎩⎪⎨⎧=+=+.1cos sin ,51cos sin 22x x x由①得,cos 51sin x x -=将其代入②,整理得,012cos 5cos 252=--x x ⎪⎪⎩⎪⎪⎨⎧=-=∴<<-=-=∴.54cos ,53sin ,02.54cos 53cos x x x x x π 或 故 .57cos sin -=-x x ①②(Ⅱ)xx x x x x cot tan 2cos 2cos 2sin 2sin 322++- xxx x x xsin cos cos sin 1sin 2sin 22++-=sin cos (2cos sin )3443108()(2).5555125x x x x =--=-⨯⨯-+=- 19.解:(I )由cos2x ≠0得22ππ+=k x ,解得x ≠Z k k ∈+,42ππ,所以f(x)的定义域为 R x x ∈{且x ≠Z k k ∈+,42ππ} (II )∵f(x)的定义域关于原点对称且f(-x)=f(x), ∴f(x)为偶函数. (III )当x ≠Z k k ∈+,42ππ时, 因为1cos 32cos )1cos 3)(1cos 2(2cos 4sin 5cos 6)(22224-=--=-+=x x x x x x x x f , 所以f(x)的值域为1{-y ≤1122y y <<或者≤2}. 20.解:(Ⅰ)依题设,f(x)=2cos 2x+3sin2x=1+2sin(2x+6π).由1+2sin(2x+6π)=1-3,得sin(2x+6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x+6π≤65π,∴2x+6π=-3π, 即x=-4π.(Ⅱ)函数y=2sin2x 的图象按向量c=(m ,n)平移后得到函数y=2sin2(x-m)+n 的图象,即函数y=f(x)的图象.由(Ⅰ)得 f(x)=2sin2(x+12π)+1. ∵|m|<2π,∴m=-12π,n=1.21.解:在BCD ∆中,21=CD ,20=BD ,31=BC ,由余弦定理得,7120212312021cos 222-=⨯⨯-+=∠BDC所以774cos 1sin 2=∠-=∠BDC BDC . 在ACD ∆中,CD =21,)60sin(sin 604020︒-∠=∠︒=︒+︒=∠BDC ACD CAD ,=143560sin 60cos sin =︒∠-︒∠⋅⋅BDC BDC . 由正弦定理得=∠∠=⋅CADACDCD AD sin sin 1523143521=⋅(千米).所以此车距城A 有15千米. 22.解:(I )由已知数据,易知)(t f y =的周期为T = 12,∴ 62ππω==T . 由已知,振幅13,3,7,10.A b A A b b +==⎧⎧⎨⎨+==⎩⎩得 ∴ 106sin 3+=t y π. (II )由题意,该船进出港时,水深应不小于5 + 6.5 = 11.5(米),∴ 13sin1011.5,sin.662tt ππ+≥≥即 ∴ πππππ652662+≤≤+k t k . ∴ )(512112z k k t k ∈+≤≤+. 故该船可在当日凌晨1时进港,17时出港,它在港内至多停留16小时.。

相关文档
最新文档