2017年秋季新版北师大版九年级数学上学期第3章、概率的进一步认识单元复习试卷15
新北师大版九年级数学上册第三章《概率的进一步认识》章末训练题含答案解析 (1)

一、选择题1.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A.19B.16C.13D.232.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( )A.24B.18C.16D.63.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A.14B.13C.12D.234.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是( )A.13B.12C.23D.345.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( )A.14B.34C.13D.126.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( )7.以下说法合适的是( )A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23 B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12 D.小明做了3次掷均匀硬币的实验,一次正面朝上,2次正面朝下,他再掷一次,正面朝上的概率还是128.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程.根据规定,我市将垃圾分为了四类:可回收物、厨余垃圾、有害垃圾和其他垃圾(如图).现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,则投放正确的概率是( )A.16B.18C.112D.1169.下列四种说法:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②将2020减去它的12,再减去剩下的13,再减去余下的14,再减去余下的15,⋯⋯,依次减下去,一直到减去余下的12020,结果是1;③实验的次数越多,频率越靠近理论概率;④对于任何实数x,y,多项式x2+y2−4x−2y+7的值不小于2.其中正确的个数是( )A.1B.2C.3D.4 10.同时抛掷两枚均匀硬币,则两枚硬币都出现反面向上的概率是( )二、填空题11.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有3个红球,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.25左右,则白球的个数约为.12.在一个不透明的盒子中装有x颗白色棋子和y颗黑色棋子,它们除颜色外完全相同,现从该盒,将取出的棋子放回,再往该盒子中放进6颗子中随机取出一颗棋子,取得白色棋子的概率是25同样的黑色棋子,此时从盒子中随机取出一颗棋子,取得白色棋子的概率是1,那么原来盒子中4的白色棋子有颗.13.当一次试验要涉及,并且可能出现的结果数目较多时,为不重不漏地列出所有结果,通常采用列表法.14.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些球除标注的数字外完全相同.现从中随机依次取出两个球(不放回),则取出的两个小球标注的数字之和为6的概率是.15.有三张卡片分别写着数字1,2,3,将它们背面向上任意放置(背面花色相同),小明先后从中取两张卡片,那么取得的第一张卡片所写数字大于第二张卡片所写数字的概率是.16.小强掷两枚质地均匀的骰子,每个骰子的六个面上分别刻有1到6的点数,则两枚骰子点数相同的概率为.17.一个不透明的口袋中,装有除颜色以外其余都相同的红、黄两种球共15个,摇匀后从中任意摸出一球,记下颜色放回,摇匀再摸出一个,记下颜色放回⋯.经过大量的重复试验,发现摸到红球的频率为0.4,则估计袋中有红球个.三、解答题18.现有A,B两个不透明的袋子,分别装有3个除颜色外完全相同的小球,其中A袋中装有2个白球,1个红球;B袋中装有2个红球,1个白球.小林和小华商定了一个游戏规则:从摇匀后的A,B两袋中各随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,19.如图,有一游戏棋盘和一个质地均匀的正四面体骰子(各面依次标有1,2,3,4四个数字).游戏规则是游戏者每投掷一次骰子,棋子按骰子着地一面所示的数字前进相应的格数.例如:若棋子位于A处,游戏者所投掷骰子着地一面所示数字为3,则棋子由A处前进3个方格到达B 处.请用画树形图法(或列表法)求投掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率.20.甲、乙两所医院分别有一男一女共4名医护人员支援武汉抗击疫情.(1) 若从这4名医护人员中随机选1名,则选中的是男医护人员的概率是.(2) 若从支援的4名医护人员中随机选2名,求出这两名医护人员来自不同医院的概率.21.为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图所示的统计图.根据统计图所提供的倍息,解答下列问题.(1) 本次抽样调查中的学生人数是;(2) 补全条形统计图;(3) 若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;(4) 现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.22.甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率.(1) 已确定甲打第一场,再从其余3名同学中随机选取1名,怡好选中乙同学.(2) 随机选取2名同学,其中有乙同学.23.为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1) 这次抽查了四类特色美食共种,扇形统计图中a=,扇形统计图中A部分圆心角的度数为;(2) 补全条形统计图;(3) 如果节目组想从A类的甲、乙、丙、丁四种特色美食中随机选择两种进行节目录制,请用列表或画树状图的方法求出恰好选中甲和乙两种美食的概率.24.某市“半程马拉松”的赛事共有两项:A“半程马拉松”,B“欢乐跑”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到两个项目组.(1) 小明被分配到“半程马拉松”项目组的概率为.(2) 为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:调查总人数2050100200500①估算本次赛事参加“半程马拉参加"半程马拉松"人数153372139356参加"半程马拉松"频率0.7500.6600.7200.6950.712松”人数的概率为.(精确到0.1)②若参加“欢乐跑”的人数大约有300人,估计本次参赛选手的人数是多少?25.庆祝改革开放40周年暨我爱我家⋅美丽青羊群众文艺展演圆满落幕,某学习小组对文艺展演中的A舞蹈《不忘初心》,B独舞《梨园一生》,C舞蹈《炫动的玫瑰》,D朝鲜组歌舞《阿里郎+atep》这四个节目开展“我最喜爱的舞蹈节目”调查,随机调查了部分观众(每位观众必选且只能选这四个节目中的一个)并将得到的信息绘制了下面两幅不完整的统计图:(1) 本次一共调查了名观众;并将条形统计图补充完整;(2) 学习小组准备从4个节目中随机选取两个节目的录像带回学校给同学们观看,请用树状图或者列表的方法求恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的概率.答案一、选择题 1. 【答案】C【解析】将三个小区分别记为 A ,B ,C ,列表如下:A B C A (A,A )(B,A )(C,A )B (A,B )(B,B )(C,B )C(A,C )(B,C )(C,C )由表可知,共有 9 种等可能结果,其中两个组恰好抽到同一个小区的结果有 3 种,∴ 两个组恰好抽到同一个小区的概率为 39=13. 【知识点】列表法求概率2. 【答案】C【解析】∵ 摸到红色球、黑色球的频率稳定在 15% 和 45%,∴ 摸到白球的频率为 1−15%−45%=40%,故口袋中白色球的个数可能是 40×40%=16 个. 【知识点】用频率估算概率3. 【答案】C【解析】画树形图得:由树形图可知共 4 种等可能的结果,一枚硬币正面向上,一枚硬币反面向上的有 2 种结果, ∴ 一枚硬币正面向上,一枚硬币反面向上的的概率为 24=12.【知识点】树状图法求概率4. 【答案】A【解析】根据题意,画出树形图.由图可知,任意翻开两张,共有 12 种等可能情况,其中两张图案一样的共有 4 种情况, 故任意翻开两张,其中两张图案一样的概率为 412=13.【知识点】树状图法求概率5. 【答案】D【解析】方法一:如图,将第二个转盘中的蓝色部分等分成两部分,画树状图得: ∵ 共有 6 种等可能的结果,可配成紫色的有 3 种情况, ∴ 可配成紫色的概率是:36=12. 方法二:列表如下:红蓝红(红,红)(蓝,红)蓝(红,蓝)(蓝,蓝)蓝(红,蓝)(蓝,蓝)由表格知共有 6 种等可能出现的结果数,其中能配成紫色的结果数有 3 种,则 P (配成紫色)=36=12.【知识点】树状图法求概率6. 【答案】C【知识点】树状图法求概率7. 【答案】D【知识点】概率的概念及意义、用频率估算概率8. 【答案】C【解析】可回收物、厨余垃圾、有害垃圾和其他垃圾对应的垃圾桶分别用 A ,B ,C ,D 表示,垃圾分别用 a ,b ,c ,d 表示.设分类打包好的两袋不同垃圾为 a ,b ,画树状图如图:共有 12 个等可能的结果,分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的结果有 1 个,∴ 分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率为 112.【知识点】树状图法求概率9. 【答案】C【知识点】用频率估算概率、完全平方公式10. 【答案】B【知识点】树状图法求概率二、填空题 11. 【答案】 9【解析】设白球的个数约为 a , 根据题意得 3a+3=0.25, 解得:a =9,经检验:a =9 是分式方程的解, 故答案为:9.【知识点】用频率估算概率12. 【答案】 4【解析】根据题意得 {xx+y=25,x x+y+6=14, 解得 {x =4,y =6, 经检验,{x =4,y =6 是方程组的解,所以原来盒子中的白色棋子有 4 颗. 【知识点】公式求概率13. 【答案】两个因素【知识点】列表法求概率14. 【答案】 15【解析】根据题意画树状图如下:共有 20 种等可能的结果,其中取出的两小球标注的数字之和为 6 的有 4 种情况, 所以取出的两小球标注的数字之和为 6 的概率 =420=15.【知识点】树状图法求概率15. 【答案】 12【解析】列出所有等可能情况,如下表.由表可知,取两张卡片的等可能情况共有 6 种,取得的第一张卡片所写数字大于第二张卡片所写数字的情况有 3 种,所以取得的第一张卡片所写数字大于第二张卡片所写数字的概率为 36=12.12311,21,322,12,333,13,2【知识点】列表法求概率16. 【答案】 16【解析】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)由表可知一共有 36 种情况,两枚骰子点数相同的有 6 种,所以两枚骰子点数相同的概率 =636=16. 【知识点】列表法求概率17. 【答案】 6【解析】设袋中有红球 x 个,根据题意得:x15=0.4, 解得:x =6.答:袋中有红球 6 个. 【知识点】用频率估算概率三、解答题18. 【答案】列表法如下:或画树状图如下:由上表或树状图可知,一共有 9 种等可能的结果,其中颜色相同的结果有 4 种,颜色不同的结果有 5 种.∴P(颜色相同)=49,P(颜色不同)=59. ∵49<59,∴ 这个游戏规则对双方不公平. 【知识点】树状图法求概率19. 【答案】∵共有16种等可能的结果,掷骰子两次后,棋子恰好由A处前进6个方格到达C处的有(2,4),(3,3),(4,2),∴掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率为316.【知识点】树状图法求概率20. 【答案】(1) 12(2) 画树状图为:(a,b表示甲医院的男女医护人员c,d示乙医院的男女医护人员).共有12种等可能的结果数,其中这两名医护人员来自不同医院的结果数为8,∴这两名医护人员来自不同医院的概率=812=23.【解析】(1) ∵4名医护人员中有两男两女,从中随机抽取一名,共有四种结果,每种结果的概率相同,其中选中的是男医护人员的结果有两种,∴选中的是男医护人员的概率=24=12.【知识点】树状图法求概率、公式求概率21. 【答案】(1) 100(2)(3) 2000×(1−30%−10%−20100)=800(名),∴爱好打球的学生有800名.(4) 画树状图如图所示,共有12种等可能的情况产生,其中满足条件的情况共两种.∴P(一男一女)=812=23.【知识点】树状图法求概率、条形统计图、扇形统计图、用样本估算总体22. 【答案】(1) 已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是13.(2) 从甲、乙、丙、丁4名同学中随机选取2名同学,所有可能出现的结果有:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁),共有6种,共有6种,它们出现的可能性相同,所有的结果中,满足“随机选取2名同学,其中有乙同学”(记为事件A)的结果有3种,所以P(A)=36=12.【知识点】列表法求概率、公式求概率23. 【答案】(1) 20;40;72∘;(2) B类的种数为20−4−8−6=2,条形统计图为:(3) 画树状图为:共有12种等可能的结果数,其中恰好选中甲和乙两种美食的结果数为2,∴恰好选中甲和乙两种美食的概率=212=16.【解析】(1) 4÷20%=20,所以这次抽查了四类特色美食共20种,扇形统计图中C类所占的百分比=820×100%=40%,即a=40;扇形统计图中A部分圆心角的度数为360∘×20%=72∘.【知识点】条形统计图、扇形统计图、树状图法求概率24. 【答案】(1) 12(2) ① 0.7.②参加欢乐跑的人数为300人,概率为1−0.7=0.3,本次参赛选手总人数为300÷0.3=1000人.【解析】(1) 共有两项,被分配到其中一项的概率为12.(2) ①观察表格可知:估算本次参加“半程马拉松”的人数概率为0.7.【知识点】公式求概率、用频率估算概率25. 【答案】(1) 50补全条形图如下:(2) 如图所示:一共有12种可能,恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的有2种,故恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的概率为212=16.【解析】(1) 次调查的总人数为15÷30%=50(人),则B节目的人数为50−(16+15+7)=12(人).【知识点】条形统计图、树状图法求概率。
北师大新版数学九年级上学期《第3章概率的进一步认识》单元测试

北师大新版数学九年级上学期《第 3 章概率的进一步认识》单元测试一.选择题(共12 小题)1.在某校运动会 4×400m 接力赛中,甲乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲乙两名同学恰巧抽中相邻赛道的概率为()A.B.C.D.2.有大小、形状、颜色完好同样的 3 个乒乓球,每个球上分别标有数字1,2,3 中的一个,将这 3 个球放入不透明的袋中搅匀,假如不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是()A.B.C.D.3.小茜课间活动中,上午大课间活动时能够先从跳绳、乒乓球、健美操中随机选择一项运动,下午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上、下午都选中球类运动的概率是()A.B.C.D.4.在一个不透明的袋子里共有 2 个黄球和 3 个白球,每个球除颜色外都同样,小亮从袋子中随意摸出一个球,结果是白球,则下边对于小亮从袋中摸出白球的概率和频次的说明正确的选项是()A.小亮从袋中随意摸出一个球,摸出白球的概率是 1B.小亮从袋中随意摸出一个球,摸出白球的概率是0C.在此次实验中,小亮摸出白球的频次是 1D.由此次实验的频次去预计小亮从袋中随意摸出一个球,摸出白球的概率是 1 5.点 P 的坐标是( x,y),从﹣ 3、﹣ 2、0、2、3 这五个数中任取一个数作为x 的值,再从余下的四个数中任取一个数作为y 的值,则点 P(x,y)在平面直角坐标系中第四象限内的概率是()A.B.C.D.6.同时转动以下图的两个转盘,则转盘停止转动后,指针同时落在红色地区的概率为()A.B.C.D.7.从﹣ 2,﹣1,2 这三个数中任取两个不一样的数相乘,积为正数的概率是()A.B.C.D.8.从 3、1、﹣ 2 这三个数中任取两个不一样的数作为P 点的坐标,则 P 点恰巧落在第四象限的概率是()A.B.C.D.9.某中学初三年级四个班,四个数学老师分别任教不一样的班.期末考试时,学校安排一致监考,要求同年级数学老师互换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8B.9C.10D.1210.已知 | a| =2,| b| =3,则 | a﹣ b| =5 的概率为()A.0B.C.D.11.从 2 种不一样样式的衬衣和 2 种不一样样式的裙子中分别取一件衬衣和一条裙子搭配,有()种可能.A.1B.2C.3D.412.不透明的袋子里装有 2 个红球和 1 个白球,这些球除了颜色外都同样.从中随意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色同样的概率是()A.B.C.D.二.填空题(共7 小题)13.甲、乙、丙 3 名学生随机排成一排摄影,此中甲排在中间的概率是.14.在一个不透明的布袋中装有标着数字2,3,4,5 的 4 个小球,这 4 个小球的材质、大小和形状完好同样,现从中随机摸出两个小球,这两个小球上的数字之积大于 9 的概率为15.从 2019 年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,能够依据高校有关专业的选课要乞降自己兴趣、理想、优势,从思想政治、历史、地理、物理、化学、生物 6 个科目中,自主选择3 个科目参加等级考试.学生 A 已选物理,还从思想政治、历史、地理 3 个文科科目中选 1能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.16.从﹣ 2,﹣ 8,5 中任取两个不一样的数作为点的横纵坐标,该点在第三象限的概率为.17.同时掷两个质地均匀的六面体骰子,两个骰子向上一面点数同样的概率是.18.某批足球的质量查验结果以下:抽取的蓝球数 n 100 200 400 600 800 1000 1200优等品频数 m 93 192 380 561 752 941 1128优等品频次从这批足球中,随意抽取的一只足球是优等品的概率的预计值是.bx c( a≠ 0)与 x 轴有两个交点,那么以该抛物线的219.假如一条抛物线 y=ax + +极点和这两个交点为极点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c 中,系数 a、b、c 为绝对值不大于 1 的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为.三.解答题(共9 小题)20.一个不透明的口袋里装有分别标有汉字“书”、“香”、“历”、“城”的四个小球,除汉字不一样以外,小球没有任何差别,每次摸球前先搅拌均匀.( 1)若从中任取一个球,球上的汉字恰巧是“书”的概率为.(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求拿出的两个球上的汉字能构成“历城”的概率.21.“食品安全”遇到全社会的宽泛关注,济南市某中学对部分学生就食品安全知识的认识程度,采纳随机抽样检查的方式,并依据采集到的信息进行统计,绘制了下边两幅尚不完好的统计图.请你依据统计图中所供给的信息解答以下问题:( 1)接受问卷检查的学生共有人,扇形统计图中“基本认识”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生 900 人,请依据上述检查结果,预计该中学学生中对食品安全知识达到“认识”和“基本认识”程度的总人数;( 4)若从对食品安全知识达到“认识”程度的2个女生和2个男生中随机抽取 2人参加食品安全知识比赛,请用树状图或列表法求出恰巧抽到 1 个男生和 1 个女生的概率.22.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”,比赛项目为: A.唐诗; B.宋词; C.论语; D.三字经.比赛形式为两人抗衡赛,即把四种比赛项目写在 4 张完好同样的卡片上,比赛时,比赛的两人从中随机抽取1张卡片作为自己的比赛项目(不放回,且每人只好抽取一次)比赛时,小红和小明分到一组.( 1)小明先抽取,那么小明抽到唐诗的概率是多少?(2)小红善于唐诗,小红想:“小明先抽取,我后抽取”抽到唐诗的概率是不一样的,且小明抽到唐诗的概率更大,若小红后抽取,小红抽中唐诗的概率是多少?小红的想法对吗?23.小明手中有一根长为5cm 的细木棒,桌上有四个完好同样的密封的信封.里面各装有一根细木棒,长度分别为:2、3、 4、5(单位: cm).小明从中随意抽取两个信封,而后把这 3 根细木棒首尾按序相接,求它们能搭成三角形的概率.(请用“画树状图”或“列表”等方法写出剖析过程)24.如图,有一个能够自由转动的转盘被均匀分红 3 个扇形,分别标有 1、2、3 三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束获得一组数(若指针指在分界限时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的全部结果;(2)求每次游戏结束获得的一组数恰巧是方程 x2﹣3x+2=0 的解的概率.25.某工厂甲、乙两个部门各有职工200 人,为认识这两个部门职工的生产技术状况,有关部门进行了抽样检查,过程以下.从甲、乙两个部门各随机抽取20 名职工,进行了生产技术测试,测试成绩(百分制,单位:分)以下:甲: 78 86 74 81 75 76 87 70 75 9075 79 81 70 75 80 85 70 83 77乙: 92 71 83 81 72 81 91 83 75 8280 81 69 81 73 74 82 80 70 59整理、描绘数据按以下分数段整理、描绘这两组样本数据:成绩 x 50≤x≤59 60≤x≤69 70≤x≤ 79 80≤x≤89 90≤ x≤ 100 人数部门甲0 0 12 7 1乙 1 1 6(说明:成绩 80 分及以上为生产技术优异, 70﹣﹣ 79 分为生产技术优异, 60﹣﹣69 分为生产技术合格)依据上述表格绘制甲、乙两部门职工成绩的频数散布图.剖析数据两组样本数据的均匀数、中位数、众数以下表所示:部门均匀数中位数众数甲 78.35 77.5 75乙7881(1)请将上述不完好的统计表和统计图增补完好;(2)请依据以上统计过程进行以下推测;①预计乙部弟子产技术优异的职工人数是多少;②你以为甲、乙哪个部门职工的生产技术水平较高,说明原因.(起码从两个不一样的角度说明推测的合理性)26.某商场在端午节时期展开优惠活动,凡购物者能够经过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向 A 地区时,所购置物件享受 9 折优惠、指针指向其余地区无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个地区的字母同样,所购置物件享受8 折优惠,其余状况无优惠.在每个转盘中,指针指向每个区城的可能性同样(若指针指向分界限,则从头转动转盘)( 1)若顾客选择方式一,则享受9 折优惠的概率为;( 2)若顾客选择方式二,请用树状图或列表法列出全部可能,并求顾客享受8折优惠的概率.27.合肥地铁一号线的开通运转给合肥市民出行方式带来了一些变化,小朱和小张准备利用课余时间,以问卷的分式对合肥市民的出行方式进行检查,如图是合肥地铁一号线图(部分),小朱和小张分别从塘西河公园站(用 A 表示)、金斗公园站(用 B 表示)、云谷路站(用 C 表示)、万达城站(用 D 表示)这四站中,随机选用一站作为检查的站点.(1)在这四站中,小朱选用问卷检查的站点是万达城站的概率是多少?(2)求小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的概率.28.张三同学扔掷一枚骰子两次,两次所扔掷的点数分别用字母m、 n 表示(1)求使对于 x 的方程 x2﹣ mx+2n=0 有实数根的概率;(2)求使对于 x 的方程 mx2+nx+1=0 有两个相等实根的概率.参照答案一.选择题1.D.2.C.3.A.4.C.5.A.6.A.7.C.8.B.9.B.10.B.11.D.12.B.二.填空题13.14..15..16..17.18..19..三.解答题20.解:( 1)若从中任取一个球,球上的汉字恰巧是“书”的概率为,故答案为:;( 2)列表以下:书香历城书(书,香)(书,历)(书,城)香(香,书)(香,历)(香,城)历(历,书)(历,香)(历,城)城(城,书)(城,香)(城,历)共有 12 种等可能的结果数,此中拿出的两个球上的汉字能构成“历城”的结果数为 2,因此拿出的两个球上的汉字能构成“历城”的概率═=.21.解:( 1)30÷50%=60,因此接受问卷检查的学生共有60 人;扇形统计图中“基本认识”部分所对应扇形的圆心角的度数为×360°=90°;故答案为 60;90°;(2)“认识”部分的人数 =60﹣15﹣ 30﹣10=5,条形统计图为:(3) 900×=300,因此预计该中学学生中对食品安全知识达到“认识”和“基本认识”程度的总人数为 300 人;( 4)画树状图为:(分别用A、B 表示两名女生,用C、D 表示两名男生)共有 12 种等可能的结果数,此中恰巧抽到 1 个男生和 1 个女生的结果数为8,因此恰巧抽到 1 个男生和 1 个女生的概率 = =.22.解:( 1)小明先抽取,那么小明抽到唐诗的概率为;( 2)小红的想法不对.原因以下:画树状图为:共有 12 种等可能的结果数,此中红明抽到唐诗的结果数为3,因此小红抽中唐诗的概率= =,因此小明抽到唐诗的概率和小红抽到唐诗的概率同样大.23.解:画树状图以下:由树状图可知,共有12 种等可能结果,此中能围成三角形的结果共有10 种,因此能搭成三角形的概率为=.24.解:( 1)列表以下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)( 2)全部等可能的状况数为 9 种,此中是 x2﹣3x+2=0 的解的为( 1,2),( 2,1)共 2 种,则 P是方程解= .25.解:( 1)补全图表以下:成绩 x50≤ x≤59 60≤x≤69 70≤x≤ 79 80≤x≤8990≤ x≤ 100 人数部门甲0 0 12 7 1乙 1 1 6 10 2( 2)①预计乙部弟子产技术优异的职工人数是200×=120 人;②甲或乙,1°、甲部弟子产技术测试中,均匀分较高,表示甲部门职工的生产技术水平较高;2°、甲部弟子产技术测试中,没有技术不合格的职工,表示甲部门职工的生产技能水平较高;或 1°、乙部弟子产技术测试中,中位数较高,表示乙部门职工的生产技术水平较高;2°、乙部弟子产技术测试中,众数较高,表示乙部门职工的生产技术水平较高.26.解:( 1)若选择方式一,转动转盘甲一次共有四种等可能结果,此中指针指向 A 地区只有 1 种状况,∴享受 9 折优惠的概率为,故答案为:;( 2)画树状图以下:由树状图可知共有12 种等可能结果,此中指针指向每个地区的字母同样的有 2 种结果,因此指针指向每个地区的字母同样的概率,即顾客享受8折优惠的概率为=.27.解:( 1)小朱选用问卷检查的站点是万达城站的概率=;( 2)画树状图为:共有 16 种等可能的结果数,此中小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的结果数为6,因此小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的概率= =.28.解:( 1)画树状图为:共有 36 种等可能的结果数,此中知足△ =m2﹣ 8n≥0 的结果数为 10,因此使对于 x 的方程 x2﹣ mx+2n=0 有实数根的概率 = = ;( 2)知足△=n2﹣ 4m=0 的结果数为 2,因此使对于 x 的方程 mx2+nx+1=0 有两个相等实根的概率 = =.。
2017-2018学年度第一学期北师大版九年级上数学_第三章_概率的进一步认识_单元测试题

2017-2018学年度第一学期北师大版九年级上数学_第三章_概率的进一步认识_单元测试题1 / 52017-2018学年度第一学期北师大版九年级数学第三章 概率的进一步认识 单元测试题考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.在一个不透明的布袋中装有红色、白色玻璃球共 个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在 左右,则口袋中红色球可能有( ) A. 个 B. 个 C. 个 D. 个2.在一个袋子中装有 个黑球和若干个白球,每个球除颜色外都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回袋子中,不断重复上述过程.一共摸了 次,其中有 次摸到黑球,则估计袋子中白球的个数大约是( ) A. B. C. D.3.某中学举行数学竞赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( ) A.B.C.D.4.在课外活动时间,小王、小丽、小华做“互相踢毽子”游戏,毽子从一人传到另一人就记为踢一次.若从小丽开始,经过两次踢毽后,毽子踢到小华处的概率是( ) A.B.C.D.5.做重复实验:抛掷同一枚啤酒瓶盖 次.经过统计得“凸面向上”的频率约为 ,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( ) A. B. C. D.6.同时投掷 颗均匀的股子,朝上一面点数的和是偶数的概率是( )A. B.C.D.7.某人在做掷硬币实验时,投掷 次,正面朝上有 次(即正面朝上的频率是).则下列说法中正确的是( )A. 一定等于B. 一定不等于C.多投一次, 更接近D.投掷次数逐渐增加, 稳定在附近8.在一个不透明的袋子中装有 个红球, 个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是( ) A.B.C.D.9.小明与两位同学进行乒乓球比赛,用“手心、手背”游戏确定出场顺序.设每人每次出手心、手背的可能性相同.若有一人与另外两人不同,则此人最后出场.三人同时出手一次,小明最后出场比赛的概率为( )A.B.C.D.10.同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有 到 的点数,则两个骰子向上的一面的点数和为 的概率为( ) A.B.C.D.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.某同学练习定点投篮时记录的结果如表:则这位同学投篮一次,投中的概率约是________(结果保留小数点后一位).12.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是________.13.在一次统计中,调查英文文献中字母 的使用率,在几段文献,统计字母 的使用数据得到下列表中部分数据:请你将下表补充完整.通过计算表中数据可以发现,字母的使用频率在________左右摆动,并且随着统计数据的增加,这种规律愈加明显,所以估计字母在文献中使用概率是________.14.如图,一方形花坛分成编号为①、②、③、④四块,现有红、黄、蓝、紫四种颜色的花供选种.要求每块只种一种颜色的花,且相邻的两块种不同颜色的花,如果编号为①的已经种上红色花,那么其余三块不同的种法有________ 种.15.国庆节期间,小红的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共个,小红将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在,由此可以估计纸箱内红球的个数约是________个.16.一不透明的布袋中放有红、黄球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回袋中摇匀,再摸出一个球,小明两次都摸出红球的概率是________.17.一个口袋里有个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验次,其中有次摸到黄球,由此估计袋中的黄球有________个.18.已知在平面直角坐标系中有,两点,现从、、、四点中,任选两点作为、,则以、、、四个点为顶点所组成的四边形中是平行四边形的概率是________.19.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:20.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两上转盘中指针落在每一个数字上的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.所有可能得到的不同的积分别为________;数字之积为奇数的概率为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.在一个不透明的箱子里,装有个红和个黄球,它除了颜色外均相同.随机地从箱子里取出个球,则取出红球的概率是多少?小明、小亮都想去观看足球比赛,但是只有一张门票,他们决定通过摸球游戏确定谁去.规则如下:随机地从该箱子里同时取出个球,若两球颜色相同,小明去;若两球颜色不同,小亮去.这个游戏公平吗?请你用树状图或列表的方法,帮小明和小亮进行分析.22.本校有、两个餐厅,甲、乙两名学生各自随机选择其中一个餐厅用餐,请用列表或画树状图的方法解答:甲、乙两名学生在同一餐厅用餐的概率;甲、乙两名学生至少有一人在餐厅的概率.2017-2018学年度第一学期北师大版九年级上数学_第三章_概率的进一步认识_单元测试题3 / 523.小颖有 张大小相同的卡片,上面写有 这 个数字,她把卡片放在一个盒子中搅匀,完成上表;频率随着实验次数的增加,稳定于什么值左右?从试验数据看,从盒中摸出一张卡片是 的倍数的概率估计是多少?根据推理计算可知,从盒中摸出一张卡片是 的倍数的概率应该是多少?24.如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字 、 、 、 、若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为 、 (若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内). 请你用列表法或树状图求 与 的乘积等于 的概率.25.一个不透明袋子中有 个红球, 个绿球和 个白球,这些球除颜色外无其他差别. 当 时,从袋中随机摸出 个球,摸到红球和摸到白球的可能性________.(填“相同”或“不相同”);从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于 ,则 的值是________;在 的条件下,从袋中随机摸出两个球,请用树状图或列表方法表示所有等可能的结果,并求出摸出的两个球颜色不同的概率.26.一个不透明袋子中有 个红球, 个绿球和 个白球,这些球除颜色外无其他差别.从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于 ,求 的值;在一个摸球游戏中,若有 个白球,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球)的所有可能结果,如图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球颜色不同的概率.答案1.C2.A3.D4.A5.D6.C7.D8.D9.C10.B11.12.13.14.15.16.17.18.19.20.,,,,,,,,,,,,,,21.解: ∵在一个不透明的箱子里,装有个红和个黄球,它除了颜色外均相同,∴随机地从箱子里取出个球,取出红球的概率是:;不公平,如图所示:一共有中情况,两球颜色相同的有种情况,故(小明胜),(小亮胜).22.解:画树形图得:∵甲、乙两名学生在餐厅用餐的情况有、、、,∴ (甲、乙两名学生在同一餐厅用餐);由的树形图可知(甲、乙两名学生至少有一人在餐厅).23.解:,,,,,,,,,;观察可知频率稳定在左右;大量反复试验下频率稳定值即概率,故从盒中摸出一张卡片是的倍数的概率估计是;从盒中摸出一张卡片是的倍数的概率应该是为.∴ 与的乘积等于的概率是.25.相同;利用频率估计概率得到摸到绿球的概率为,则,解得,故答案为;画树状图为:共有种等可能的结果数,其中两次摸出的球颜色不同的结果共有种,2017-2018学年度第一学期北师大版九年级上数学_第三章_概率的进一步认识_单元测试题所以两次摸出的球颜色不同的概率.26.;画树状图为:共有种等可能的结果数,其中两次摸出的球的颜色不同的结果共有种,所以两次摸出的球颜色不同的概率.5 / 5。
2017年秋季新版北师大版九年级数学上学期第3章、概率的进一步认识单元复习学案

第2课时 概率与游戏的综合运用学习目标:1.经历利用树状图和列表法求出概率并解决问题的过程。
2.提高应用知识解决问题的能力。
1.小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)分别利用树状图或列表的方法表示游戏者所有可能出现的结果. (2)游戏者获胜的概率是多少?2.利用图所示的转盘进行“配紫色”游戏. 小颖制作了下面的树状图, 并据此求出游戏者获胜的概率是小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是12.你认为谁做得对?说说你的理由.归纳总结:你认为用画树状图和列表的方法求概率时应该注意些什么?(红,蓝)(蓝,红) (蓝,蓝)(红,红)_______________________________________________________________________________例:一个盒子中装有两个红球、两个白球和一个蓝球,这些球除颜色外都相同。
从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到的球的颜色能配成紫色的概率。
1.利用如图所示的转盘进行“配紫色”游戏。
游戏规则:连续转动两次转盘A,若两次转盘转出的出的颜色能配成紫色,小明得1分,若两次转出颜色都是红色,则小亮得1分.你认为游戏对双方公平吗?写出解答过程说明理由。
2.游戏者同时转动右边的两个转盘进行““配紫色游戏,若要使游戏者获胜的概率为110,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由。
B ABA。
2017年秋季新版北师大版九年级数学上学期第3章、概率的进一步认识单元复习教学设计2

生日相同的概率一、教学内容及分析本节课学习的主要内容是能用试验的方法估计一些复杂的随机事件发生的概率;指的是通过解决生活中一些常见的概率问题来使学生学会设计概率实验模型,其核心是设计概率实验来代替调查统计,理解他关键熟练掌握古典概型类实验如摸球实验;学生在上节《投针试验》的基础上,对通过试验估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,实验频率稳定于理论概率,并可据此估计某一事件发生的概率”本节课内容就是上节课内容的延伸;教学重点是利用实验的方法估计复杂事件发生的概率,解决重点的关键是通过具体例子让学生知道怎么样去设计一个估计实验。
(1)本节是用实验频率来估计一些复杂事件的概率.而实验频率稳定于理论概率是本节的教学重点和难点,是用实验的方法估计随机事件发生的概率基础,但对于义务教育阶段的学生而言,又难以给出一个理论的解释.因而只能借助于大量的重复试验去感悟.因此,在教学过程中,务必引导学生积极参与实验.学生通过实验还会发现,实验频率并不一定等于理论概率。
虽然多次试验的频率逐渐稳定于理论概率,但也可能无论做多少次实验,实验频率仍是理论概率的一个近似值,而不能等同于理论概率,两者存在着一定的偏差,应该说偏差的存在是正常的,经常的。
(2)其次,随着现代社会的迅猛发展,更多的事务要求人们合作交流.在本节中,用实验频率稳定于理论概率来认识“生日相同的概率”,必须收集、整理大量的数据,必须综合多个学生甚至全班学生的试验数据.因此在教学过程中,务必注重学生的合作和交流活动.同时鼓励学生使用计算器等现代信息技术手段进行概率学习活动.二、教学目标及分析教学目标:(1)能利用计算器或计算机等模拟试验,估计一些复杂的随机事件发生的概率。
(2)能用实验的方法估计一些复杂的随机事件的概率.目标分析:(1)能利用计算器或计算机等模拟试验,估计一些复杂的随机事件发生的概率是指在用各种方法设计估计实验时,利用计算器去设计是最简单有效地方法,所以要求学生学会利用计算器模拟实验;(2)用实验的方法估计一些复杂的随机事件的概率是指在上节课的基础上,能用摸球试验或者计算器的方法去估计一些复杂的随机事件发生的概率。
北师大版数学九年级上册第三章《概率的进一步认识》单元检测卷含答案

北师大版数学九年级上册第三章《概率的进一步认识》单元检测卷[检测内容:第三章 满分:120分 时间:120分钟]一、选择题(每小题3分,共30分)1. 在一个不透明的布袋中,红色、黑色、白色的球共有120个,这些球除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在15%和45%,则布袋中白色球的个数很可能是( )A. 48个B. 60个C. 18个D. 54个2. 在0,1,2三个数字中任取两个,组成两位数,则组成的两位数是奇数的概率为( )A. B. C. D. 141612343. 在用摸球试验来模拟6人中有2人生肖相同的概率的过程中,有如下不同的观点,其中正确的是( )A. 摸出的球不能放回B. 摸出的球一定放回C. 可放回,可不放回D. 不能用摸球试验来模拟此事件4. 如图所示,有以下3个条件:①AC =AB ,②AB ∥CD ,③∠1=∠2.从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )A. 0B.C.D. 11323第4题第5题5. 让如图所示的两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于( )A.B.C.D. 316385813166. 在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.B.C.D. 121314167. 小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面,小明赢1分,抛出其他结果,小刚赢1分,谁先到10分,谁就获胜.这是一个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( )A. 把“抛出两个正面”改为“抛出两个同面”B. 把“抛出其他结果”改为“抛出两个反面”C. 把“小明赢1分”改为“小明赢3分”D. 把“小刚赢1分”改为“小刚赢3分”8. 如图,一个质地均匀的正四面体上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M (a ,b )落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的概率是( )A. B.C.D. 38716129169.在平面直角坐标系中,作△OAB ,其中三个顶点分别是O (0,0),B (1,1),A (x ,y )(-2≤x ≤2,-2≤y ≤2,x ,y 均为整数),则所作△OAB 为直角三角形的概率是( )A.B.C.D. 2535151210. 如图所示,有一电路AB 由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A.B.C.D. 25353412二、填空题(每小题3分,共24分)11. 在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是 .12. 向一个装有很多黄豆的袋子里放入100粒绿豆,每次倒出10粒记下所倒出的绿豆的数目,再把它们放回去,做相同的试验100次,共倒出绿豆240粒,则袋中原有黄豆约粒.13. 在分别写有数字-1,0,1,2的四张卡片中,随机抽取一张后放回,再随机抽取一张,以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标的点落在第一象限的概率是 .14. 有四条线段,长度分别为3,5,7,9,从中任取三条,能构成三角形的概率为 .15. 有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意一把锁,一次打开锁的概率是 .16. 某人设摊“摸彩”,只见他手持一袋,内装大小、质地完全相同的3个红球、2个白球,每次让顾客“免费”从袋中摸出两球,若两球的颜色相同,则顾客获得10元钱,否则顾客付给这个人10元钱.请你判断一下,该活动对顾客(填“合算”或“不合算”).17. 对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是 .18. 如图,小华和小明做转盘游戏,当两个转盘所转到的数字之积为奇数时,小华得2分,当两个转盘所转到的数字之积为偶数时,小明得1分,这个游戏.(填“公平”或“不公平”)三、解答题(共66分)19. (8分)某校九年级(1)、(2)班联合举行毕业晚会,组织者为了使气氛热烈、有趣,策划时计划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负责表演一个节目,(1)班和(2)班的文娱委员利用分别标着数字1,2,3和4,5,6,7的两个转盘(如图)设计一种游戏方案,两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时,(1)班代表胜,否则(2)班代表胜,你认为该方案对双方是否公平?为什么?20. (8分)在一个不透明的口袋里装有只有颜色不同的黑白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m68109136345568701摸到白球的频率0.680.730.680.690.710.70(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少个.21. (9分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.22. (9分)大课间活动时,有两个同学做了一个数字游戏:有三张正面写有数字-1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一个同学随机抽取一张,将其正面的数字作为p的值,然后将卡片放回并洗匀,另一个同学再从这三张卡片中随机抽取一张,将其正面的数字作为q的值,两次结果记为(p,q).(1)请你帮他们用画树状图或列表的方法表示(p,q)所有可能出现的结果;(2)求满足关于x的方程x2+px+q=0没有实数解的概率.23. (10分)试验探究:有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有整数1和2.B布袋中有三个完全相同的小球,分别标有整数-1,-2和-3.平平从A布袋中随机取出一个小球,记录其标有的整数为x,再从B布袋中随机取出一个小球,记录其标有的整数为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x-3上的概率.24. (10分)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红心、方块、黑桃、梅花,其中红心、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.A B C D(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.25. (12分)珊珊与静静设计了A,B两种游戏:游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则珊珊获胜;若两数字之和为奇数,则静静获胜.游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,珊珊先随机抽出一张牌,抽出的牌不放回,静静从剩下的牌中再随机抽出一张牌.若珊珊抽出的牌面上的数字比静静抽出的牌面上的数字大,则珊珊获胜;否则静静获胜.请你帮静静选择其中一种游戏,使她获胜的可能性较大,并说明理由.参考答案1. A2. A3. B4. D5. C6. A7. D8. B9. A 10. B11. Error!12. 31713. Error!14. Error!15. Error!16. 不合算17. Error!18. 公平19. 解:公平.理由:利用树状图法得出所有可能结果如下:所有可能结果有12种,其中数字之和为偶数的有6种,数学之和为奇数的也有6种.所以(1)班代表胜的概率为Error!,(2)班代表胜的概率也为Error!,所以该游戏方案对双方是公平的.20. 解:(1)0.70(2)0.700.30(3)白球有20×0.70=14(个),黑球有20-14=6(个).21. 解:(1)方法1:画树状图,如图所示.共有12种等可能的结果,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=Error!.方法2:列表格如下:甲乙丙丁甲甲、乙甲、丙甲、丁乙乙、甲乙、丙乙、丁丙丙、甲丙、乙丙、丁丁丁、甲丁、乙丁、丙共有12种等可能的结果,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=Error!. (2)P(恰好选中乙同学)=Error!.22. 解:(1)画树状图如下:由图可知共有9种等可能的结果.(2)若方程x2+px+q=0没有实数解,则Δ=p2-4q<0.由(1)可得满足Δ=p2-4q<0的有(-1,1),(0,1),(1,1),∴满足关于x的方程x2+px+q=0没有实数解的概率为Error!=Error!.23. 解:(1)列表为:y-1-2-3x1(1,-1)(1,-2)(1,-3)2(2,-1)(2,-2)(2,-3)∴点Q的坐标有(1,-1),(1,-2),(1,-3),(2,-1),(2,-2),(2,-3)六种可能情况. (2)“点Q落在直线y=x-3上”记为事件A,则有(1,-2)和(2,-1)两点满足条件,∴P(A)=Error!=Error!,即点Q落在直线y=x-3上的概率为Error!.24. 解:(1)画树状图如图所示:列表法:第二次A B C D第一次A AB AC ADB BA BC BDC CA CB CDD DA DB DC(2)P(摸出的两张牌同为红色)=Error!=Error!.25. 解:对游戏A:画树状图如图所示:或用列表法:第二次234第一次2(2,2)(2,3)(2,4)3(3,2)(3,3)(3,4)4(4,2)(4,3)(4,4)所有可能出现的结果共有9种,其中两数字之和为偶数的有5种,所以游戏A珊珊获胜的概率为Error!,而静静获胜的概率为Error!.即游戏A对珊珊有利,获胜的可能性大于静静.对游戏B:画树状图如图所示:或用列表法:静静5688珊珊5-(5,6)(5,8)(5,8)6(6,5)-(6,8)(6,8)8(8,5)(8,6)-(8,8)8(8,5)(8,6)(8,8)-所有可能出现的结果共有12种,其中珊珊抽出的牌面上的数字比静静大的有5种:根据游戏B的规则,当静静抽出的牌面上的数字与珊珊抽到的数字相同或比珊珊抽到的数字大时,则静静获胜.所以游戏B珊珊获胜的概率为Error!,而静静获胜的概率为Error!.即游戏B对静静有利,获胜的可能性大于珊珊.综上所述,静静应选择游戏B.。
新北师大版九年级数学上册第三章《概率的进一步认识》章末训练题含答案解析 (20)

一、选择题1.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( )A.13B.23C.49D.592.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是( )A.16B.38C.58D.233.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率4.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球,两次都摸到红球的概率为( )A.925B.310C.920D.355.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A.12B.13C.23D.166.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )A.20B.30C.40D.507.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )A.310B.925C.425D.1108.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有4个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.16B.20C.24D.289.在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有( )A.12个B.14个C.18个D.28个10.“明天下雨的概率是80%”,下列说法正确的是( )A.明天一定下雨B.明天一定不下雨C.明天80%的地方下雨D.明天下雨的可能性比较大二、填空题11.在一个不透明的袋子中,装有红球和白球共20个,这些球除颜色外都相同,搅匀后从中任意摸出一个球记下颜色,再把它放回袋子中,不断重复试验,统计结果显示,随着试验次数越来越大,摸到红球的频率逐渐稳定在0.3左右,则据此估计袋子中有白球个.12.我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数z,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是.13.某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.14.现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数字不同的概率是.15.三人同行,其中三人性别相同的概率是.16.有三张除颜色外,大小、形状完全相同的卡片,第一张卡片两面都是红色,第二张卡片两面都是白色,第三张卡片一面是红色,一面是白色,用三只杯子分别把它们遮盖住,若任意移开其中的一只杯子,则看到的这张卡片两面都是红色的概率是.17.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有张.三、解答题18.一个不透明的袋子里装有三个分别标有数字−2,1,2的小球,除所标有的字不同外,其它方面均相同,现随机从中摸出一个小球,记录所摸出的小球上的数字后放回并搅匀,再随机摸出一个小球,记录小球上的数字.请用画树状图(或列表)的方法,求两次记录数字之和是正数的概率.19.两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1) 求得样本容量为,并补全直方图;(2) 如果会议期间组织1700名代表参会,请估计在这一天里发言次数不少于12次的人数;(3) 已知A 组发表提议的代表中恰有1位女士,E 组发表提议的代表中只有2位男士,现从A组与 E 组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.20.2017无锡国际马拉松赛的赛事共有三项:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小明、小刚和小芳参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1) 小明被分配到“迷你马拉松”项目组的概率为;(2) 已知小明被分配到A(全程马拉松),请利用树状图或列表法求三人被分配到不同项目组的概率.21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只.某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复上述过程,如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率mn 0.640.58 0.6050.601(1) 请将表中的数据补充完整;(2) 请估计:当n很大时,摸到白球的概率约是.(精确到0.01)22.“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.(1) 求参与该游戏可免费得到景点吉祥物的频率;(2) 请你估计纸箱中白球的数量接近多少?23.端午节是我国传统佳节,互赠粽子是端午节的一种习俗.小唐买了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,他从中随机拿出两个送给同学小何.(1) 请用树状图或列表的方法列出小何得到的两个粽子的所有可能结果;(2) 计算小何得到的两个粽子都是肉馅粽子的概率.24.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1) 李欣选择线路C.“园艺小清新之旅”的概率是多少?(2) 用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.25.某中学现要从两位男生和两位女生中,选派两位同学分别作为1号选手和2号选手代表学校参加汉字听写大赛.(1) 请用树形图或列表法列举出所有可能选派的结果.(2) 求恰好选派一男一女两位同学参赛的概率.答案一、选择题1. 【答案】C【解析】列表如下:黄红红红(黄,红)(红,红)(红,红)红(黄,红)(红,红)(红,红)白(黄,白)(红,白)(红,白)由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,所以摸出的两个球颜色相同的概率为49.【知识点】列表法求概率2. 【答案】B【知识点】公式求概率3. 【答案】D【解析】因为大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,所以D选项说法正确,故选D.【知识点】用频率估算概率4. 【答案】B【解析】列表如表:得到所有可能的情况数为20种;其中两次都为红球的情况有6种,则P(两次红)=620=310.【知识点】列表法求概率5. 【答案】B【知识点】树状图法求概率6. 【答案】A【解析】根据题意得n30+n=0.4,解得:n=20.【知识点】用频率估算概率7. 【答案】A【解析】画树状图为:(用A,B,C表示三本小说,a,b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310.故选:A.【知识点】树状图法求概率8. 【答案】B=20%,【解析】根据题意知4a解得a=20,经检验:a=20是原分式方程的解,故选:B.【知识点】用频率估算概率9. 【答案】B【解析】设袋子中黄球有x个,=0.35,根据题意,得:x40解得:x=14,即布袋中黄球可能有14个.【知识点】用频率估算概率10. 【答案】D【解析】该事件是随机事件,故A错误,B也错误,根据概率的定义,可知,概率为80%不代表80%的地方会下雨,只是表示下雨的可能性比较大,故C错误,D正确.故选:D.【知识点】用频率估算概率、概率的概念及意义二、填空题11. 【答案】14【解析】设袋子中有红球x个,=0.3,根据题意得x20解得x=6,∴估计袋子中有白球20−6=14个.【知识点】用频率估算概率12. 【答案】34【解析】该三角形的顺序旋转和与逆序旋转和的差为(4x+2z+3y)−(3x+2y+4z)=x+y−2z,画树状图为:共有12种等可能的结果,其中此三角形的顺序旋转和与逆序旋转和的差都小于4的结果数为9,所以三角形的顺序旋转和与逆序旋转和的差都小于4的概率=912=34.【知识点】树状图法求概率13. 【答案】③【解析】①正六面骰子,向上一面的点数是2的概率是16;②掷一枚硬币,正面朝上的概率是12;③任取一球是红球的概率是13.【知识点】用频率估算概率14. 【答案】34【知识点】列表法求概率15. 【答案】14【解析】画树状图如下:所有等可能的情况有8种,其中性别相同的情况有2种,则P(三人性别相同)=28=14.【知识点】树状图法求概率16. 【答案】13【解析】画树状图如下:根据树状图可得出,所有可能为3种,两面都是红色的有1种,∴卡片两面都是红色的概率是:13,故答案为:13.【知识点】树状图法求概率17. 【答案】9【解析】∵共有36张扑克牌,红心的频率为25%,∴扑克牌花色是红心的张数=36×25%=9张.【知识点】用频率估算概率三、解答题18. 【答案】列表如下−212−2−4−101−1232034所有等可能的情况有9种,其中两次记录数字之和是正数的有4种结果,所以两次记录数字之和是正数的概率为49.【知识点】列表法求概率19. 【答案】(1) 50;补全的直方图如下图所示.(2) 1700×(8%+10%)=306(人),即会议期间组织1700名代表参会,在这一天里发言次数不少于12次的人数是306人.(3) 由统计图可知,发言次数为A 的人数有:50×6%=3(人),发言次数为E 的人数有:50×8%=4(人),由题意可得,故所抽的两位代表恰好都是男士的概率是412=13,即所抽的两位代表恰好都是男士的概率是13.【知识点】频数分布表及直方图、树状图法求概率、用样本估算总体、扇形统计图20. 【答案】(1) 13(2) 设三种赛事分别为1,2,3,列表得:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)所有等可能的情况有9种,分别为(1,1);(1,2);(1,3);(2,1);(2,2);(2,3);(3,1);(3,2);(3,3),小芳和小刚被分配到半程马拉松和迷你马拉松项目组的情况有2种,所有其概率=29.【解析】(1) ∵共有A,B,C三项赛事,∴小明被分配到“迷你马拉松”项目组的概率是13;【知识点】列表法求概率、公式求概率21. 【答案】(1) 填表如下:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率mn0.580.640.580.590.6050.601(2) 0.60【知识点】用频率估算概率22. 【答案】(1) 参与该游戏可免费得到景点吉祥物的频率为1500060000=0.25.(2) 设袋子中白球的数量为x,则1212+x=0.25,解得x=36,经检验x=36是分式方程的解且符合实际,所以估计纸箱中白球的数量接近36.【知识点】频数与频率、用频率估算概率23. 【答案】(1) 肉粽记为A,红枣粽子记为B,豆沙粽子记为C,由题意可得,(2) 由(1)可得,小何得到的两个粽子都是肉馅的概率是:212=16.【知识点】树状图法求概率24. 【答案】(1) 因为在这四条线路中任选一条,每条被选中的可能性相同,所以在四条线路中,李欣选择线路C.“园艺小清新之旅“的概率是14.(2) 画树状图如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,所以李欣和张帆恰好选择同一线路游览的概率为416=14.【知识点】树状图法求概率、公式求概率25. 【答案】(1) 记男生为甲、乙,女生为丙、丁,画树状图得:(2) ∵共有12种等可能的结果,一男一女的有8种情况,∴一男一女的概率是:812=23.【知识点】树状图法求概率。
度第一学期北师大版九年级数学_第三章_概率的进一步认识_单元过关检测试题(有答案)

2019-2019学年度第一学期北师大版九年级数学第三章概率的进一步认识单元过关检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 9 小题,每小题 3 分,共 27 分)1.甲、乙两盒中各放入分别写有数字,,的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是的概率是()A. B. C. D.2.一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有个,黄、白色小球的数目相同、为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,再次搅匀…多次试验发现摸到红球的频率是,则估计黄色小球的数目是()A.个B.个C.个D.个3.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()A. B. C. D.4.某人在做抛掷硬币试验中,抛掷次,正向朝上有次(正面朝上的频率是),则下列说法正确的是()A.(正面朝上)一定等于B.(正面朝上)一定不等于C.多投一次,(正面朝上)更接近D.投掷次数逐渐增加,(正面朝上)稳定在附近5.连续两次抛掷一枚硬币,第一次正面朝上,第二次反面朝上的概率是()A. B. C. D.6.假定鸡蛋孵化后,鸡雏为雌或雄的羝概率相同,如果两个鸡蛋全部成功孵化,则两只鸡雏均为雄鸡的槪率是()A. B. C. D.7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球次,其中次摸到黑球,估计盒中大约有白球()A.个B.个C.个D.个8.如图,两个转盘分别被分成等份和等份,分别标有数字、、和、、、,转动两个转盘各一次(假定每次都能确定指针所指的数字),两次指针所指的数字之和为或的概率是()A. B. C. D.9.小王家新锁的密码是位数,他记得前两位数是,后两位数是,中间两位数忘了,那么他一次按对的概率是()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)10.在一个不透明的口袋中有个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在左右,则口袋中的白球大约有________个.11.一个不透明的文具袋装有型号完全相同的支红笔和支黑笔,小明、小红两人先后从袋中随机取出一支笔(不放回),两人所取笔的颜色相同的概率是________.12.两个装有乒乓球的盒子,其中一个装有个白球个黄球,另一个装有个白球个黄球.现从这两个盒中随机各取出一个球,则取出的两个球一个是白球一个是黄球的概率为________;至少有一个是白球的概率为________.13.一水塘里有鲤鱼、鲢鱼共尾,一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为,则水塘有鲢鱼________尾.14.在一个不透明的盒子中装有个小球,他们只有颜色上的区别,其中有个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于,那么可以推算出大约是________.15.一个布袋里装有只有颜色不同的个球,其中个红球,个白球.从中任意摸出个球,记下颜色后放回,搅匀,再任意摸出个球,摸出的个球都是红球的概率是________.16.分别从、、、四个数中随机取两个数,第一个作为十位数字,第二个作为个位数字,组成一个两位数,则这个两位数是的倍数的概率是________.17.一个口袋里有个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验次,其中有次摸到黄球,由此估计袋中的黄球有________个.18.从下面的张牌中,任意抽取两张.其点数和是奇数的概率是________.第 1 页19.小红、小明、小芳在一起做游戏时,需要确定做游戏的先后顺序,他们约定用“剪刀、布、锤子”的方式确定,则在一回合中三个人都出“剪刀”的概率是________. 三、解答题(共 7 小题 ,每小题 10 分 ,共 70 分 )20.把 张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出 张.请用列表或画树状图的方法表示出上述实验所有可能结果. 求这 张图片恰好组成一张完整风景图概率. 21.对一批西装质量的抽检情况如下:从这批西装中任选一套是正品的概率是多少? 若要销售这批西装 件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装? 22.小华有 张卡片,小明有 张卡片,卡片上的数字如图所示.小华和小明分别从自己的卡片中随机抽取一张.请用画树状图(或列表)的方法,求抽取的两张卡片上的数字和为 的概率. 23.在一个袋子中装有大小相同的 个小球,其中 个蓝色, 个红色. 从袋中随机摸出 个,求摸到的是蓝色小球的概率; 从袋中随机摸出 个,用列表法或树状图法求摸到的都是红色小球的概率; 在这个袋中加入 个红色小球,进行如下试验:随机摸出 个,然后放回,多次重复这个试验,通过大量重复试验后发现,摸到红色小球的频率稳定在 ,则可以推算出 的值大约是多少? 24.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共 只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:“摸到白球”的概率的估计值是________(精确到 );试估算口袋中黑、白两种颜色的球各有多少只?25.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验. 他们在一次实验中共掷骰子 次,试验的结果如下: ②小红说:“根据实验,出现 点朝上的概率最大.”她的说法正确吗?为什么?小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.26.甲乙两人玩数字游戏,先由甲写一个数,再由乙猜甲写的数:要求:他们写和猜的数字只在 , 、 、 , 这五个数字中:请用列表法或树状图表示出他们写和猜的所有情况;如果他们写和猜的数字相同,则称他们“心灵相通”:求他们“心灵相通”的概率; 如果甲写的数字记为 ,把乙猜的数字记为 ,当他们写和猜的数字满足 ,则称他们“心有灵犀”,求他们“心有灵犀”的概率. 答案 1.B 2.B 3.C 4.D 5.D 6.C 7.A 8.C 9.D 10. 11.12.13. 14.15.16.17.18.19.20.解:用、表示一张风景图片被剪成的两半,用、表示另一张风景图片被剪成的两半,画树状图为:共有种等可能的结果数,其中张图片恰好组成一张完整风景图的结果数为,所以张图片恰好组成一张完整风景图的概率.21.解:答案为:;;;;;;从这批西装中任选一套是正品的概率是;为了方便购买次品西装的顾客前来调换,所进西装的件数(件).22.解:或∴ (抽取的两张卡片上的数字和为).23.解: ∵ 个小球中,有个蓝色小球,∴ (蓝色小球);画树状图如下:共有种情况,摸到的都是红色小球的情况有种,(摸到的都是红色小球); ∵大量重复试验后发现,摸到红色小球的频率稳定在,∴摸到红色小球的概率等于,∴,解得:.24.由摸到白球的概率为,所以可估计口袋中白种颜色的球的个数(个),黑球(个).答:黑球个,白球个.25.解: ① ;②说法是错误的.在这次试验中,“ 点朝上”的频率最大并不能说明“ 点朝上”这一事件发生的概率最大.因为当试验的次数较大时,频率稳定于概率,但并不完全等于概率..26.解:如图所示:则他们“心灵相通”的概率为:.根据甲写的数字记为,把乙猜的数字记为,当他们写和猜的数字满足,则称他们“心有灵犀”,满足条件的事件是,可以列举出所有的满足条件的事件,第 3 页①若,则,;②若,则,,;③若,则,,;④若,则,,;⑤若,则,;总上可知共有种结果,∴他们“心有灵犀”的概率为:.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省凌海市石山初级中学2013-2014学年九年级上学期数学寒假
作业 统计与概率(七) 北师大版
1.课改实验区学生的综合素质状况受到全社会的广泛关注.市有关部门对全市9200名学生数学学业考试状况
进行了一次抽样调查,从中随机抽查了5所初中 九年级全体学生的数学调考成绩,右图是2005年 5月抽样情况统计图.这5所初中的九年级学生的 得分情况如下表(数学学业考试满分120分)
①这5所初中九年级学生的总人数有多少人?
②统计时,老师漏填了表中空白处的数据,请你帮老师填上; ③随机抽取一人,恰好是获得120分的概率是多少? ④从上表中,你还能获得其它的信息吗?(写出一条即可).
2.今年4月19日我市成功的举办了2005年菏泽国际牡丹花会,吸引了众多的国内外贸易洽谈及旅游观光人士,起到了“以花为媒,促进菏泽经济发展”的作用.花会期间,对六家大宾馆、饭店中游客的年龄(年龄取整数)进行了抽样统计,经整理后分成六组,并绘制
分数段
5所学校 20%
成频率分布直方图,如图所示.已知从左到右六个小组的频率分别是0.08,0.20,0.32,0.24,0.12,0.04.第一小组频数为8,请结合图形回答下列问题:
(1)这次抽样的样本容量是多少?
(2)样本中年龄的中位数落在第几小组内?(只要求写出答案)
(3)花会这天参观牡丹的旅客约有8000人,请你估计在20.5~50.5年龄段的游客约有多少人?
y
x
年龄。