红安县第二中学九年级9月月考数学试卷
湖北省黄冈市红安二中2022年九年级化学9月月考试题 新人教版

红安县第二中学2022年9月九年级月考化学试题本卷满分:50分考试时间40分钟一、选择题(本大题共12分,各小题只有一个选项符合题意,请将答案填入题后的答题卡中) 1.以下家庭食品制作中,发生了化学变化的是()A.萝卜风干 B.凉水冻冰 C.葡萄酿酒 D.辣椒剁碎2.下列实验操作中正确的是()A.向试管中滴加液体时,滴管应垂悬在试管口上方,并不接触试管B.实验用剩的药品应放回原试剂瓶中C.加热后的试管应立即用冷水冲洗D.为了便于观察,给试管里的液体加热时试管口应对着自己3.加热胆矾的实验过程中,相关实验操作正确的是()A. 取样B. 加料C. 加热D. 熄灭4.PM2.5是指空气中直径小于或等于2.5微米的颗粒物,它是造成雾霾天气的“元凶”之一。
下列做法不会增加空气中PM2.5的是A.燃煤发电 B.燃放烟花爆竹C.焚烧垃圾 D.使用太阳能热水器5.下列关于空气的说法中,错误的是A.空气中含有少量的稀有气体,它们可以制成多种用途的电光源B.空气中分离出的氮气化学性质不活泼,食品包装中充氮气可以防腐C.按质量计算,空气中约含氮气78%、氧气21%、稀有气体等其他成分1%D.空气中的氧气化学性质比较活泼,在常温能与许多物质发生化学反应6.为了除去灯泡中可能混入的微量氧气,有些白炽灯在灯丝的支架上附着了少量的某种红色物质。
该红色物质可能是A.红色油漆 B.红磷 C.氧化铁 D.高锰酸钾7.下列物质属于纯净物的是A.空气 B.石油 C.钢 D.冰水混合物8.下列实验现象叙述错误..的是A.硫在空气中燃烧发出淡蓝色的火焰B.铁丝在氧气中燃烧火星四射C.木炭在氧气中燃烧发出蓝紫色的火焰D.磷在空气中燃烧产生大量白烟9.最近,“镉大米”成为公众关注的热点问题之一。
据了解,含镉的大米对人的肝肾损害比较大。
镉(Cd)的原子序数为48,中子数为64,下列说法错误的是()A.镉原子的相对原子质量为112g B.镉原子的质子数为48C.镉是金属元素 D.镉原子的核外电子数为4810.元素周期表是学习化学的重要工具。
湖北省黄冈市红安县2023-2024学年九年级下学期月考数学试题

湖北省黄冈市红安县2023-2024学年九年级下学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.实数3的倒数是( ) A .3B .13C .13-D .3-2.2023年全国高考报名人数约12910000人,数12910000用科学记数法表示为( ) A .90.129110⨯B .71.29110⨯C .81.29110⨯D .712.9110⨯3.下列运算正确的是( ). A .4322x x x ÷= B .()437x x =C .437x x x +=D .3412x x x ⋅=4.解不等式组789,12x x x x -<⎧⎪⎨+≤⎪⎩①②时,不等式①②的解集在同一条数轴上表示正确是( )A .B .C .D .5.某班9名学生参加定点投篮测试,每人投篮10次,投中的次数统计如下:3,6,4,6,4,3,6,5,7.这组数据的中位数和众数分别是( ) A .5,4B .5,6C .6,5D .6,66.某商场的休息椅如图所示,它的俯视图是( )A .B .C .D .7.关于x 的一元二次方程()221310a x x a +++-=有一个根是0,则a 值为( )A .0B .1或1-C .1-D .18.如图,在33⨯的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点ABC V 外接圆的一部分,小正方形边长为1,图中阴影部分的面积为( )A .5724π-B .5722π-C .5744π-D .5742π-9.如图,在平面直角坐标系中,直线:22l y x =-与x 轴交于点1A ,以1OA 为边作正方形111A B C O ,点1C 在y 轴上,延长11C B 交直线l 于点2A ,以12C A 为边作正方形2221A B C C ,点2C 在y 轴上,以同样的方式依次作正方形3332,A B C C ⋅⋅⋅,正方形2023202320232022A B C C ,则点2023B 的横坐标是( )A .2022⎝⎭B .2023⎝⎭C .202232⎛⎫⎪⎝⎭D .202332⎫⎛ ⎪⎝⎭10.已知点()11,A x y 在直线319y x =+上,点()()2233,,,B x y C x y 在抛物线241y x x =+-上,若123y y y ==且123x x x <<,则123x x x ++的取值范围是( )A .123129x x x -<++<-B .12386x x x -<++<-C .12390x x x -<++<D .12361x x x -<++<二、填空题11.当1x <.12.中国古代的“四书”是指《论语》《孟子》《大学》《中庸》.若从这四本著作中随机抽取两本,则抽取的两本恰好是《论语》和《大学》的概率是.13.如图,将45︒的AOB ∠按下面的方式放置在一把刻度尺上,顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数为2cm ,若按相同的方式将38︒的AOC ∠放置在该刻度尺上,则OC 尺上沿的交点C 在尺上的读数是cm (结果精确到0.1cm ,参考数据sin380.62cos380.79tan380.78︒≈︒≈︒≈,,)14.如图,是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的一个大正方形.设图中AF a =,DF b =,连接,AE BE ,若ADE V 与BEH △的面积相等,则2222b aa b+=.15.如图,线段8AB =,点C 是线段AB 上的动点,将线段BC 绕点B 顺时针旋转120︒得到线段BD ,连接CD ,在AB 的上方作Rt DCE V ,使90DCE ∠=︒,30E ∠=︒,点F 为DE 的中点,连接AF ,当AF 最小时,BCD △的面积为.三、解答题16.计算:)2222cos302-+︒.17.已知:如图,在ABCD Y 中,90ACB ∠=︒,过点D 作DE BC ⊥交BC 的延长线于点E .求证:四边形ACED 是矩形;18.为进行某项数学综合与实践活动,小明到一个批发兼零售的商店购买所需工具.该商店规定一次性购买该工具达到一定数量后可以按批发价付款,否则按零售价付款.小明如果给学校九年级学生每人购买一个,只能按零售价付款,需用3600元;如果多购买60个,则可以按批发价付款,同样需用3600元,若按批发价购买60个与按零售价购买50个所付款相同,求这个学校九年级学生有多少人?19.为了激发同学们对古诗词学习的兴趣,2023年9月我市某中学开展了“课外古诗词赏析比赛”.为了解学生课外古诗词的学习情况,现从该校七、八年级中各随机抽取10名学生的比赛成绩(成绩为百分制,学生得分均为整数且用x 表示,)进行整理、描述和分析,并将其共分成四组:A :85x <,B :8590x ≤<,C :9095x ≤<,D :95100x ≤≤)下面给出了部分信息:七年级10名学生的比赛成绩是:84,85,86,88,89,95,96,99,99,99. 八年级10名学生的比赛成绩在C 组中的数据是:90,94,94. 七、八年级抽取的学生比赛成绩统计表根据以上信息,解答下列问题:(1)=a ______,b =______,c =______;(2)根据以上数据,你认为该校七、八年级中哪个年级学生古诗词掌握得较好?请说明理由(一条理由即可);(3)该校七年级有1420名学生、八年级有1300名学生参加了此次“课外古诗词赏析比赛”,请估计参加此次比赛成绩不低于90分的学生人数是多少? 20.如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于()1,4A -,(),1B a -两点.(1)求反比例函数和一次函数的表达式;(2)点(),0P n 在x 轴负半轴上,连接AP ,过点B 作BQ AP ∥,交my x=的图象于点Q ,连接QP .当BQ AP =时,求n 的值.21.如图,在菱形ABCD 中,DH AB ⊥于H ,以DH 为直径的O e 分别交AD ,BD 于点E ,F ,连接EF .(1)求证:①CD 是O e 的切线; ②DEF DBA V V ∽;(2)若5AB =,6DB =,求sin DFE ∠.22.加强劳动教育,落实五育并举.孝礼中学在政府的支持下,建成了一处劳动实践基地.2023年计划将其中21000m 的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y (单位:元/2m )与其种植面积x (单位:2m )的函数关系如图所示,其中200700x ≤≤;乙种蔬菜的种植成本为50元/2m .(1)当200600x ≤≤时,y 与x 的函数关系式为________;(2)设2023年甲乙两种蔬菜总种植成本为w 元,如何分配两种蔬菜的种植面积,使w 最小?(3)该校计划今后每年在这21000m 土地上,均按(2)中方案种植蔬菜,因技术改进预计种植成本逐年下降.若甲种蔬菜种植成本平均每年下降10%,乙种蔬菜种植成本平均每年下降%a ,当a 为何值时,2025年总种植成本为28920元? 23.综合与实践 【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD 中,E 是边AB 上一点,DF CE ⊥于点F ,GD DF ⊥,AG DG ⊥,AG CF =.试猜想四边形ABCD 的形状,并说明理由; 【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形ABCD 中,E 是边AB 上一点,DF CE ⊥于点F ,AH CE ⊥于点H ,GD DF ⊥交AH 于点G ,可以用等式表示线段FH ,AH ,CF 的数量关系,请你思考并解答这个问题; 【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD 中,E 是边AB 上一点,AH CE ⊥于点H ,点M 在CH 上,且AH HM =,连接AM ,BH ,可以用等式表示线段CM ,BH 的数量关系,请你思考并解答这个问题.24.在平面直角坐标系中,已知抛物线2y ax bx c =++与x 轴交于点()()3,0,1,0A B -两点,与y 轴交于点()0,3C ,点P 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC于点D.如图1.当PDDB的值最大时,求点P的坐标及PDDB的最大值;(3)过点P作x轴的垂线交直线AC于点M,连接PC,将PCM△沿直线PC翻折,当点M的对应点'M恰好落在y轴上时,请直接写出此时点M的坐标.。
2024届湖北省黄冈市红安县中考联考数学试卷含解析

2024学年湖北省黄冈市红安县中考联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.如图,三角形纸片ABC ,AB =10cm ,BC =7cm ,AC =6cm ,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长为( )A .9cmB .13cmC .16cmD .10cm2.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x -=-B .4504504050x x -=-C .4504502503x x -=+D .4504502503x x -=- 3.下列二次根式,最简二次根式是( )A .B .C .D .4.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y =ax 2(a ≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤D .122a ≤≤ 5.在解方程12x --1=313x +时,两边同时乘6,去分母后,正确的是( ) A .3x -1-6=2(3x +1)B .(x -1)-1=2(x +1)C .3(x -1)-1=2(3x +1)D .3(x -1)-6=2(3x +1)6.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.下列计算正确的是( )A .a 3﹣a 2=aB .a 2•a 3=a 6C .(a ﹣b )2=a 2﹣b 2D .(﹣a 2)3=﹣a 68.下列运算正确的是( )A .a 12÷a 4=a 3B .a 4•a 2=a 8C .(﹣a 2)3=a 6D .a•(a 3)2=a 7 9.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cosα的值,错误的是( )A .CD ACB .BC ABC .BD BC D .AD AC 10.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( )A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m .水面下降2.5m ,水面宽度增加_____m .12.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.13.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.14.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩15.请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_____.16.因式分解:2b2a2﹣a3b﹣ab3=_____.三、解答题(共8题,共72分)17.(8分)如图,AB是⊙O的直径, ⊙O过BC的中点D,DE⊥AC.求证: △BDA∽△CED.18.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中建立平面直角坐标系,格点△ABC(顶点是网格线的交点)的坐标分别是A(﹣2,2),B(﹣3,1),C(﹣1,0).(1)将△ABC绕点O逆时针旋转90°得到△DEF,画出△DEF;(2)以O为位似中心,将△ABC放大为原来的2倍,在网格内画出放大后的△A1B1C1,若P(x,y)为△ABC中的任意一点,这次变换后的对应点P1的坐标为.19.(8分)解方程311(1)(2)xx x x-=--+.20.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?21.(8分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)22.(10分)如图是某旅游景点的一处台阶,其中台阶坡面AB和BC的长均为6m,AB部分的坡角∠BAD为45°,BC部分的坡角∠CBE为30°,其中BD⊥AD,CE⊥BE,垂足为D,E.现在要将此台阶改造为直接从A至C的台阶,如果改造后每层台阶的高为22cm,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm且不足22cm时,按一个台阶计算.可能用到的数据:2≈1.414,3≈1.732)23.(12分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M 所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD的长.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】试题分析:由折叠的性质知,CD=DE,BC=BE.易求AE及△AED的周长.解:由折叠的性质知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).故选A.点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2、D【解题分析】解:设动车速度为每小时x千米,则可列方程为:45050x﹣450x=23.故选D.3、C【解题分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【题目点拨】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4、B【解题分析】试题解析:如图所示:分两种情况进行讨论:当0a >时,抛物线2y ax =经过点()1,2A 时,2,a =抛物线的开口最小,a 取得最大值2.抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:0 2.a <≤当0a <时,抛物线2y ax =经过点()1,1B -时,1,a =-抛物线的开口最小,a 取得最小值 1.-抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:10.a -≤<故选B.点睛:二次函数()20,y ax bx c a =++≠ 二次项系数a 决定了抛物线开口的方向和开口的大小, 0,a >开口向上,0,a <开口向下.a 的绝对值越大,开口越小.5、D【解题分析】 解:1316(1)623x x -+-=⨯ ,∴3(x ﹣1)﹣6=2(3x +1),故选D . 点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.6、C【解题分析】【分析】一次函数y 1=kx+b 落在与反比例函数y 2=c x图象上方的部分对应的自变量的取值范围即为所求. 【题目详解】∵一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【题目点拨】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.7、D【解题分析】各项计算得到结果,即可作出判断.解:A、原式不能合并,不符合题意;B、原式=a5,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=﹣a6,符合题意,故选D8、D【解题分析】分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.【题目详解】解:A、a12÷a4=a8,此选项错误;B、a4•a2=a6,此选项错误;C、(-a2)3=-a6,此选项错误;D、a•(a3)2=a•a6=a7,此选项正确;故选D.【题目点拨】本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则.9、D【解题分析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【题目详解】cosα=BD BC CD BC AB AC==.故选D.【题目点拨】熟悉掌握锐角三角函数的定义是关键.10、D【解题分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【题目详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【题目点拨】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.【解题分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【题目详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,∴抛物线解析式为y=-0.5x1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=±3,1×3-4=1,所以水面下降1.5m,水面宽度增加1米.故答案为1.【题目点拨】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.12、1.【解题分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【题目详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=12AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得8CD===.故答案是:1.13、1【解题分析】先根据同旁内角互补两直线平行知AB∥CD,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.【题目详解】解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案为:1.【题目点拨】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.14、A【解题分析】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.15、y=﹣x+1【解题分析】根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题.【题目详解】∵一次函数y随x的增大而减小,∴k<0,∵一次函数的解析式,过点(1,0),∴满足条件的一个函数解析式是y=-x+1,故答案为y=-x+1.【题目点拨】本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.16、﹣ab(a﹣b)2【解题分析】首先确定公因式为ab,然后提取公因式整理即可.【题目详解】2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案为﹣ab(a﹣b)2.【题目点拨】本题考查了因式分解-提公因式法,解题的关键是掌握提公因式法的概念.三、解答题(共8题,共72分)17、证明见解析.【解题分析】不难看出△BDA和△CED都是直角三角形,证明△BDA∽△CED,只需要另外找一对角相等即可,由于AD是△ABC 的中线,又可证AD⊥BC,即AD为BC边的中垂线,从而得到∠B=∠C,即可证相似.【题目详解】∵AB是⊙O直径,∴AD⊥BC,又BD=CD,∴AB=AC,∴∠B=∠C,又∠ADB=∠DEC=90°,∴△BDA∽△CED.【题目点拨】本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用.18、(1)见解析;(2)见解析,(﹣2x,﹣2y).【解题分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点D、E、F,即可得到△DEF;(2)先根据位似中心的位置以及放大的倍数,画出原三角形各顶点的对应顶点,再顺次连接各顶点,得到△A1B1C1,根据△A1B1C1结合位似的性质即可得P1的坐标.【题目详解】(1)如图所示,△DEF即为所求;(2)如图所示,△A1B1C1即为所求,这次变换后的对应点P1的坐标为(﹣2x,﹣2y),故答案为(﹣2x,﹣2y).【题目点拨】本题主要考查了位似变换与旋转变换,解决问题的关键是先作出图形各顶点的对应顶点,再连接各顶点得到新的图形.在画位似图形时需要注意,位似图形的位似中心可能在两个图形之间,也可能在两个图形的同侧. 19、原分式方程无解. 【解题分析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证. 【题目详解】方程两边乘(x ﹣1)(x+2),得x(x+2)﹣(x ﹣1)(x+2)=3 即:x 2+2x ﹣x 2﹣x+2=3 整理,得x =1检验:当x =1时,(x ﹣1)(x+2)=0, ∴原方程无解. 【题目点拨】本题考查解分式方程,解题的关键是明确解放式方程的计算方法. 20、(1)117(2)见解析(3)B (4)30 【解题分析】(1)先根据B 等级人数及其百分比求得总人数,总人数减去其他等级人数求得C 等级人数,继而用360°乘以C 等级人数所占比例即可得;(2)根据以上所求结果即可补全图形; (3)根据中位数的定义求解可得;(4)总人数乘以样本中A 等级人数所占比例可得. 【题目详解】解:(1)∵总人数为18÷45%=40人, ∴C 等级人数为40﹣(4+18+5)=13人, 则C 对应的扇形的圆心角是360°×1340=117°, 故答案为117; (2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B 等级, 所以所抽取学生的足球运球测试成绩的中位数会落在B 等级, 故答案为B .(4)估计足球运球测试成绩达到A 级的学生有300×440=30人. 【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 21、29.8米. 【解题分析】作AD BC ⊥,BH CN ⊥,根据题意确定出ABC ∠与BCH ∠的度数,利用锐角三角函数定义求出AD 与BD 的长度,由CD BD +求出BC 的长度,即可求出BH 的长度. 【题目详解】解:如图,作AD BC ⊥,BH CN ⊥,由题意得:MCD 57MCA 12AB CH ∠∠︒︒=,=,, ACB 45BCH ABC 33∠∠∠∴︒︒=,==, AB 40=米,AD CD sin ABC?AB 40sin33m BD AB?cos3340cos33===,==∠∴⨯︒︒⨯︒米, BC CD BD 40sin33cos3355.2∴+⨯︒+︒≈==()米,则BH BC?sin3329.8︒≈=米,答:这架无人飞机的飞行高度为29.8米.【题目点拨】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键. 22、33层. 【解题分析】根据含30度的直角三角形三边的关系和等腰直角三角形的性质得到BD 和CE 的长,二者的和乘以100后除以20即可确定台阶的数.【题目详解】解:在Rt△ABD中,BD=AB•sin45°=32m ,在Rt△BEC中,EC=12BC=3m,∴BD+CE=3+32,∵改造后每层台阶的高为22cm,∴改造后的台阶有(3+32)×100÷22≈33(个)答:改造后的台阶有33个.【题目点拨】本题考查了坡度的概念:斜坡的坡度等于斜坡的铅直高度与对应的水平距离的比值,即斜坡的坡度等于斜坡的坡角的正弦.也考查了含30度的直角三角形三边的关系和等腰直角三角形的性质.23、(1);(2)列表见解析,.【解题分析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华小丽-1 0 2-1 (-1,-1)(-1,0)(-1,2)0 (0,-1)(0,0)(0,2)2 (2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,∴P(点M落在如图所示的正方形网格内)==.考点:1列表或树状图求概率;2平面直角坐标系.24、3【解题分析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在Rt△ABD中,由勾股定理可解得AD的长.试题解析:∵四边形ABCD是矩形,∴OA=OB=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴OB=OA=2,∴BD=2OB=4,在Rt△ABD中∴22-2342-22BD AB。
人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、单选题(共18分)1.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.直角三角形C.正五边形D.正六边形2.在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1 3.若点P(2,n﹣1)与点Q(m+1,3)关于原点对称,则m+n的值为()A.﹣5B.﹣1C.1D.54.电影《长津湖》一上映,第一天票房2.05亿元,若每天票房的平均增长率相同,三天后累计票房收入达10.53亿元,平均增长率记作x,方程可以列为()A.2.05(1+2x)=10.53B.2.05(1+x)2=10.53C.2.05+2.05(1+x)2=10.53D.2.05+2.05(1+x)+2.05(1+x)2=10.535.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.D.16.如图,矩形ABCD中,AB=8,BC=14,M,N分别是直线BC,AB上的两个动点,AE =2,△AEM沿EM翻折形成△FEM,连接NF,ND,则DN+NF的最小值为()A.14B.16C.18D.20二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程(x﹣2)(x+1)=0的根是.8.如图,AB是⊙O的直径,∠D=32°,则∠BOC等于.9.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(﹣1,6)和B(5,3),如图所示,则使不等式ax2+bx+c<mx+n成立的x的取值范围是.10.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是.11.如图,将正方形ABCD绕点A逆时针旋转60度得到正方形AEGF,连接EF,BF,点M,N分别为EF,BF的中点,连接MN,若MN的长度为1,则EF的长度为.12.如图所示,已知二次函数y=ax2+bx+c(a≠0)的部分图象,下列结论中:①abc>0;②4a+c>0;③若t为任意实数,则有a﹣bt≥at2+b;④若函数图象经过点(2,1),则a+b+c=;⑤当函数图象经过(2,1)时,方程ax2+bx+c﹣1=0的两根为x1,x2(x1<x2),则x1﹣2x2=﹣8.其中正确的结论有.三、解答题(共84分)13.解方程:x2+2x=0.14.如图,已知:A、B、C、D是⊙O上的四个点,且=,求证:AC=BD.15.如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象经过点C(0,﹣3),与x 轴交于点A、B(点A在点B左侧).(1)求二次函数的解析式及顶点坐标;(2)根据图象直接写出当y>0时,自变量x的取值范围.16.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:△AEB≌△ADC;(2)连接DE,若∠ADC=110°,求∠BED的度数.17.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.18.在△ABC中,AB=AC,点A在以BC为直径的半圆外.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图①中作弦EF,使EF∥BC;(2)在图②中以BC为边作一个45°的圆周角.19.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC绕点A顺时针旋转90°后得到的图形△AB1C1;(2)请画出将△ABC关于原点O成中心对称的图形△A2B2C2;(3)当△ABC绕点A顺时针旋转90°后得到△AB1C1时,点B对应旋转到点B1,请直接写出B1点的坐标.20.如图,△ABC内接于⊙O,AB是⊙O的直径.直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).21.恰逢新余桔子成熟的时节,为增加农民收入,助力乡村振兴.某驻村干部指导某农户进行桔子种植和销售,已知桔子的种植成本为1元千克,经市场调查发现,今年销售期间桔子的销售量y(千克)与销售单价x(元/千克)(1≤x≤12)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)请同学们求一下这位农户销售桔子获得的最大利润.22.如图所示,抛物线y=ax2+bx+c的对称轴为直线x=3,抛物线与x轴交于A(﹣2,0)、B两点,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)连接BC,在第一象限内的抛物线上,是否存在一点P,使△PBC的面积最大?最大面积是多少?23.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△BC的三边AB,BC,AC分别相切于点D,E,F则△ABC叫做⊙O的外切三角形,以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD AD+BC(横线上填“>”,“<”或“=”);(2)利用图2证明你的猜想;(3)若圆外切四边形的周长为36.相邻的三条边的比为2:6:7.求此四边形各边的长.24.如图,已知二次函数L1:y=ax2﹣4ax+4a+4(a>0)和二次函数L2:y=﹣a(x+2)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣4ax+4a+4(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是;(2)当EF=MN﹣1时,直接写出a的值;(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+2)2+1=0的解.参考答案一、单选题(共18分)1.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不一定是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,但不是中心对称图形,故本选项不合题意;D、是轴对称图形,也是中心对称图形,故本选项符合题意.故选:D.2.解:将二次函数y=x2的图象向左平移2个单位长度,得到:y=(x+2)2,再向上平移1个单位长度得到:y=(x+2)2+1.故选:B.3.解:∵点P(2,n﹣1)与点Q(m+1,3)关于原点对称称,∴m+1=﹣2,n﹣1=﹣3,∴m=﹣3,n=﹣2.∴m+n=﹣3﹣2=﹣5.故选:A.4.解:∵第一天票房约2.05亿元,且以后每天票房的增长率为x,∴第二天票房约2.05(1+x)亿元,第三天票房约2.05(1+x)2亿元.依题意得:2.05+2.05(1+x)+2.05(1+x)2=10.53.故选:D.5.解:连接OA,如图,∵AB⊥CD,∴AE=BE=AB=4,在Rt△OAE中,OE===3,∴CE=OC﹣OE=5﹣3=2.故选:B.6.解:如图作点D关于BC的对称点D′,连接ND′,ED′.在Rt△EDD′中,∵DE=12,DD′=16,∴ED′==20,∵DN=ND′,∴DN+NF=ND′+NF,∵EF=EA=2是定值,∴当E、F、N、D′共线时,NF+ND′定值最小,最小值=20﹣2=18,∴DN+NF的最小值为18,故选:C.二、填空题(共18分)7.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.8.解:∵∠D=32°,∴∠BOC=2∠D=64°,故答案为:64°.9.解:观察函数图象知,当﹣1<x<5时,直线在抛物线的上方,即ax2+bx+c<mx+n,故答案为:﹣1<x<5.10.解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π.11.解:如图所示,连接BE,∵点M,N分别为EF,BF的中点,∴MN是△BEF的中位线,∴BE=2MN=2,由旋转可得,AB=AE,∠BAE=60°,∴△ABE是等边三角形,∴AE=BE=2=AF,又∵∠EAF=90°,∴EF===2.故答案为:2.12.解:由抛物线开口向上,因此a>0,对称轴是直线x=﹣=﹣1,因此a、b同号,所以b>0,抛物线与y轴的交点在负半轴,因此c<0,所以abc<0,故①不正确;由对称轴x=﹣=﹣1可得b=2a,由图象可知,当x=1时,y=a+b+c>0,即a+2a+c>0,∴3a+c>0,又∵a>0,∴4a+c>0,因此②正确;当x=﹣1时,y最小值=a﹣b+c,∴当x=t(t≠﹣1)时,a﹣b+c<at2+bt+c,即a﹣bt<at2+b,∴x=t(t为任意实数)时,有a﹣bt≤at2+b,因此③不正确;函数图象经过点(2,1),即4a+2b+c=1,而b=2a,∴2a+3b+c=1,∴a+b+c=,因此④正确;当函数图象经过(2,1)时,方程ax2+bx+c=1的两根为x1,x2(x1<x2),而对称轴为x =﹣1,∴x1=﹣4,x2=2,∴x1﹣2x2=﹣4﹣4=﹣8,因此⑤正确;综上所述,正确的结论有:②④⑤,故答案为:②④⑤.三、解答题(共84分)13.解:由原方程,得x(x+2)=0,则x=0或x+2=0,解得,x1=0,x2=﹣2.14.证明:∵=,∴=,∴AC=BD.15.解:(1)将C(0,﹣3)代入y=x2﹣2x+c得,c=﹣3,∴y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)令y=0得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∴当y>0时,自变量x的取值范围是x<﹣1或x>3.16.(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,,∴△EAB≌△DAC(SAS).(2)解:如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,∵△EAB≌△DAC,∴∠AEB=∠ADC=110°.∴∠BED=50°.17.解:(1)根据题意得Δ=(2k+1)2﹣4(k2+1)>0,解得k>;(2)根据题意得x1x2=k2+1,∵x1x2=5,∴k2+1=5,解得k1=﹣2,k2=2,∵k>,∴k=2.18.解:(1)如图①,EF为所作;(2)如图②,∠PBC为所作.19.解:(1)如图,△AB1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据(1)的图可得B1的坐标(2,﹣2).20.(1)证明:连接OC,∵直线l与⊙O相切于点A,∴∠DAB=90°,∵DA=DC,OA=OC,∴∠DAC=∠DCA,∠OAC=∠OCA,∴∠DCA+∠ACO=∠DAC+∠CAO,即∠DCO=∠DAO=90°,∴OC⊥CD,∴直线DC是⊙O的切线;(2)解:∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∵OC=OB,∴△COB是等边三角形,∴OC=OB=BC=2,∴CE=OC=2,∴图中阴影部分的面积=S△OCE﹣S扇形COB=﹣=2﹣.21.解:(1)当1≤x≤9时,设y=kx+b(k≠0),则,解得:,∴当1≤x≤9时,y=﹣300x+3300,当9<x≤12时,y=600,∴y=.(2)设利润为W,则:当1≤x≤9时,W=(x﹣1)y=(x﹣1)(﹣300x+3300)=﹣300x2+3600x﹣3300=﹣300(x﹣6)2+7500,∵开口向下,对称轴为直线x=6,∴当1≤x≤9时,W随x的增大而增大,∴x=5时,W最大=7500元,当9<x≤12时,W=(x﹣1)y=600(x﹣1)=600x﹣600,∵W随x的增大而增大,∴x=12时,W最大=6600元,∵7500>6600,∴最大利润为7500元.22.解:(1)∵抛物线的对称轴为直线x=3,A(﹣2,0),∴B点坐标为(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把C(0,4)代入得4=a×2×(﹣8),解得a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣8),即y=﹣x2+x+4;(2)存在.设点P的坐标为(x,﹣x2+x+4),设直线BC的解析式为y=kx+m(k≠0).将B(8,0)、C(0,4)代入y=kx+m,得:,解得:,∴直线BC的解析式为y=﹣x+4.过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∵S△PBC=S△PCD+S△PBD,∴△PCD与△PBD可以看作成以PD为底,两高之和为OB的三角形,∴S△PBC=PD•OB=×8×(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.此时P点的坐标为(4,6).23.解:(1)∵⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,∴猜想AB+CD=AD+BC,故答案为:=;(2)已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H,求证:AD+BC=AB+CD,证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等;(3)∵相邻的三条边的比为2:6:7,∴设此三边为2x,6x,7x,根据圆外切四边形的性质得,第四边为2x+7x﹣6x=3x,∵圆外切四边形的周长为36,∴2x+6x+7x+3x=18x=36,∴x=2,∴此四边形的四边的长为2x=4,6x=12,7x=14,3x=6.即此四边形各边的长为:4,12,14,6.24.解:(1)∵y=ax2﹣4ax+4a+4=a(x﹣2)2+4,a>0,∴y min=4,∵时,二次函数L1,L2的y值同时随着x的增大而减小,∴﹣2<x<2,故答案为:4,﹣2<x<2;(2)∵M(2,4),N(﹣2,1),∴MN==5,∵E(0,4a+4),F(0,﹣4a+1),∴EF=8a+3,∴8a+3=5﹣1,∴a=;(3)当AM=MN时,(m﹣2)2+42=25,∴m1=5,m2=﹣1,当m=5时,﹣a(x+2)2+1=0的解为:x=5,x=﹣9,当m=﹣1时,﹣a(x+2)2+1=0的解为:x=﹣1或x=﹣3,当AN=AM时,(m﹣2)2+42=(﹣2﹣m)2+12,∴m=,∴﹣a(x+2)2+1=0的解为:x=或x=,当AN=MN时,(m+2)2+1=25,∴m=﹣2﹣2(舍去),m=﹣2+2,∴﹣a(x+2)2+1=0的解为:x=﹣2+2,x=﹣2﹣2,综上所述:方程﹣a(x+2)2+1=0的解是:x=﹣1或x=﹣3;x=或x=;x=﹣2+2,或x=﹣2﹣2.。
红安县初三数学试卷人教版

一、选择题(每题3分,共30分)1. 若实数a、b满足a+b=3,则(a-1)²+(b-1)²的最小值为()A. 8B. 9C. 10D. 122. 在等腰三角形ABC中,底边BC=6cm,腰AB=AC=8cm,则三角形ABC的周长为()A. 14cmB. 16cmC. 18cmD. 20cm3. 已知函数f(x)=x²-4x+3,则f(-1)的值为()A. 0B. 2C. 4D. 64. 在平面直角坐标系中,点A(2,3),点B(-1,2)关于y轴对称的点分别是()A. A(-2,3),B(1,2)B. A(2,-3),B(-1,-2)C. A(-2,-3),B(1,-2)D. A(2,3),B(-1,-2)5. 若等差数列{an}的前三项分别为2,5,8,则该数列的公差为()A. 3B. 4C. 5D. 66. 已知二次函数y=ax²+bx+c的图象开口向上,且顶点坐标为(-1,2),则a、b、c的取值范围为()A. a>0,b<0,c>0B. a>0,b>0,c>0C. a<0,b<0,c<0D. a<0,b>0,c<07. 在等腰三角形ABC中,若∠A=60°,则∠B的度数为()A. 30°B. 45°C. 60°D. 90°8. 已知一次函数y=kx+b的图象经过点(2,-3),且与x轴、y轴的交点分别为(0,b)、(-b/k,0),则k+b的值为()A. 1B. 2C. 3D. 49. 在等比数列{an}中,若a₁=2,公比为q,则a₃的值为()A. 4B. 6C. 8D. 1010. 已知函数f(x)=x²+2x+1,则f(-1)的值为()A. 0B. 2C. 3D. 4二、填空题(每题3分,共30分)11. 若实数a、b满足a²+b²=2,则(a+b)²的最小值为______。
新人教版九年级数学上学期月考试卷及答案

九年级数学九月份月考试卷一、填空题:(每小题2分,共20分)1.化简:21= ,=-2)32(; 二、方程x 2-2=0的解是x 1= 、x 2= ; 3、已知一元二次方程01322=--x x 的两根为1x 、2x ,则=+21x x4、化简:5=-a a 9 ;五、关于x 的一元二次方程x 2+bx +c =0的两个实数根别离为1和2,则b =______;c =______.六、(2007湖南怀化)已知方程230x x k -+=有两个相等的实数根,则k =7.(2006年福建省三明市)已知x 2+4x -2=0,那么3x 2+12x +2000的值为 。
八、(2007江苏淮安)写出一个两实数根符号相反的一元二次方程:__________________。
九、(06四川成都市)已知某工厂计划通过两年的时刻,把某种产品从此刻的年产量100万台提高到121万台,那么每一年平均增加的百分数是______________。
按此年平均增加率,估计第4年该工厂的年产量应为______________万台。
10、下面是依照必然规律画出的一列“树型”图:经观察能够发觉:图⑵比图⑴多出2个“树枝”,图⑶比图⑵多出5个“树枝”,图⑷比图⑶多出10个“树枝”,照此规律,图⑺比图⑹多出_________个“树枝”.二、选择题:(每小题3分,共24分)1一、.方程x(x+3)=(x+3)的根为--------------------------------------( )A 、x 1=0,x 2=3B 、x 1=0,x 2=-3C 、x=0D 、x=-31二、下列方程没有实数根的是-----------------------------------------( )A. x 2-x-1=0B. x 2-6x+5=0C.2x 3x 30+= +x+1=0.13.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则那个三角形的周长为--( ).10 C 或10 D.不能肯定 14.如图1,在宽为20m ,长为30m 的矩形地面上修建两条一样宽的道路,余下部份作为耕地. 按照图中数据, 图11m 1m 30m20m计算耕地的面积为------------------------------------------( )A .600m 2B .551m 2C .550 m 2D .500m 215.下列说法中正确的是……………………………………………………………( ) (A )36的平方根是±6 (B )16的平方根是±2 (C )|-8|的立方根是-2 (D )16的算术平方根是416 在式子b a b a a x m +-+,2,4,5.0,31,182中,是最简二次根式的有( )个A 、2B 、3C 、1D 、017.下列变形中,正确的是………------------------------------------------( )(A )(23)2=2×3=6 (B )2)52(-=-52 (C )169+=169+ (D ))4()9(-⨯-=49⨯.三、解答题:(19—21小题每小题5分,共20分)1九、()3327÷-20.计算:1131850452+-2一、 b a a b ab a155102÷⋅ 2二、 ()21322)6328(--÷-23、解方程:每小题7分,共28分)(1)、4x 2-121=0 (2)、2410x x +-=.(3)、x 2+3=3(x +1). (4)、x 2-3x+043=24.(9分)如图5,小正方形边长为1,连接小正方形的三个极点,可得△ABC 。
湖北省黄冈市红安县2023-2024学年九年级上学期月考数学试题

湖北省黄冈市红安县2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.一元二次方程2660x x +-=配方后的正确结果为()A .2(3)3x +=B .2(3)3x -=C .2(3)15x -=D .2(3)15x +=2.抛物线y=﹣x 2+2kx+2与x 轴交点的个数为()A .0个B .1个C .2个D .以上都不对3.关于方程210y y ++=的说法正确的是()A .两实数根之和为1-B .两实数根之积为1C .两实数根之和为1D .无实数根4.要组织一场足球赛,每两队之间进行两场比赛,计划踢56场比赛,则要邀请()个足球队.A .10B .9C .8D .75.某牧民要围成面积为352m 的矩形羊圈,且长比宽多2米,则此羊圈的周长是()A .20米B .24米C .26米D .20或22米6.已知方程20x bx a ++=有一个根是a (0a ≠),则代数式a b +的值是()A .1-B .1C .0D .以上答案都不是7.已知x 为实数,且满足(x 2+3x)2+2(x 2+3x)-3=0,那么x 2+3x 的值为()A .1B .-3或1C .3D .-1或38.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是()A .x 2+130x ﹣1400=0B .x 2+65x ﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=0三、解答题△的面积是(1)若PCQ△的面积能否为(2)PCQ23.人民商场销售某种商品,统计发现:每件盈利调查发现,该商品每降价()1假如现在库存量太大,。
九级数学第二次月考-3页文档资料

第 1 页九年级数学月考测试题一、选择题(每小题3分,共30分)1、下列方程式中,关于X 的一元二次方程是( ) A 、3(x+1)2 = 2(x + 2 ) B 、2112=+x xC 、ax 2 + bx + c = 0D 、x 2 + 2x = x 2 -12、利用配方法,方程x 2- 12x -15 = 0 可以化为 ( )A 、(x + 6)2 = 51B 、(x - 6)2 = 51C 、(x + 6)2 = 21D (x- 6)2 = 21 3、设一元二次方程x 2 - 2x - 4 = 0 的两个实数根为x 1,x 2, 则下列结论正确的是( )A 、x 1+ x 2 = 2B 、x 1+ x 2 = - 4C 、x 1 x 2 = - 2D 、x 1 x 2 = 44、已知菱形ABCD 的边长为5,它的一条对角线AC 长为6,则另一条对角线BD 长为( )A 、4B 、6C 、8D 、105、若a (a ≠0)是关于x 的方程x 2 + bx + 3a = 0 的根,则a + b 的值为( )A 、1B 、- 1C 、3D 、- 36、如图,在平行四边形ABCD 中,∠BAD 的平分线交CD 于点E ,已知∠AED = 35°,则∠B 的度数为( )A 、70°B 、105°C 、 110°D 、145°7、某商品经过两次连续降价,每件售价由原来的175元降到了135元,设平均每次降价的百分率为x ,则可列方程为 ( )A 、175(1 + x )2= 135B 、135(1 + x )2= 175 C 、175(1 - x )2 = 135 D 、135(1 - x )2 = 1758、下列说法正确的是( )A 、两个三角形的两条边对应相等,一个角对应相等,则这两个三角形全等B 、对角线互相垂直且相等的四边形是矩形C 、菱形的对角线互相平分,垂直且相等,还平分一组对角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级第一次月考试卷 第1页(共4页)
2011年秋红安二中九年级第一次月考
数 学 试 题
(时间:120分钟 满分:120分)
一、精心选一选(每小题3分,共24分)
1.下列式子正确的个数是 ( )
①24(=
②2(3=-
③221-=
④27=
A .1个 B. 2个 C. 3个 D. 4个
2.下列图形中,既是中心对称图形又是轴对称图形的是 ( )
A .等边三角形 B. 平行四边形 C. 梯形 D. 菱形
3
x 的取值范围是 ( )
A .x >1 B. x≥2 C. x >2 D. x≥1
4
,那么这个三角形周长为 ( )
A
.
或
B.
C.
D.
5.如图,图形中四个一样的长方形的长比宽多5,围成一个
大正方形面积为125,设长方形的宽为x ,则下列方程
不正确的是 ( )
A .x(x +5)=25 B. x 2+5x=25
C. x 2+5x -20=0
D. x(x +5)-25=0
6
2+bx +c=0(a≠0)一个解x 的范围是 ( )
A .3<x <3.26
7.已知a 、b 、c 为△ABC 的三边长,且关于x 的一元二次方程(c -b )x 2+2(b
-a)x +(a -
b)=0有两个相等的实数根,则这个三角形是 ( )
A .等边三角形 B. 直角三角形 C. 等腰三角形 D. 不等边三角形
8.已知梯形ABCD 的对角线AC 与BD 相交于点O ,若S △AOB =4, S △COD =9,则四边形ABCD
的面积S 为 ( )
A .21 B. 25 C. 26 D. 36
二、耐心填一填(每小题3分,共24分)
9.若等式02)=1成立,则x 的取值范围是 。
10.若2310x x -+=,则2
421x x x ++= 。