【全国百强校】河北省衡水中学2017届高三上学期四调考试理数试题解析(原卷版)

合集下载

【全国百强校】河北省衡水中学2017届高三9月摸底联考(全国卷)理数试题01(解析版)

【全国百强校】河北省衡水中学2017届高三9月摸底联考(全国卷)理数试题01(解析版)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.若集合{}|0B x x =≥,且A B A = ,则集合A 可能是( )A . {}1,2B .{}|1x x ≤C .{}1,0,1-D .R 【答案】A 【解析】试题分析:因为A B A = ,所以A B ⊆,下列选项中只有选项A 中的集合是集合B 的子集,故选A. 考点:集合的运算.【名师点睛】本题考查集合的运算;容易题;有关集合运算的考题,在高考中多以选择题或填空题形式呈现,试题难度不大,多为低档题,对集合运算的考查主要有以下几个命题角度:1.离散型数集间的交、并、补运算;2.连续型数集间的交、并、补运算;3.已知集合的运算结果求集合;4.已知集合的运算结果求参数的值(或求参数的范围). 2. 复数1iz i=+ 的共轭复数在复平面上对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D 【解析】考点:1.复数的相关概念;2.复数的运算.3. 已知平面向量,a b满足()5a a b += ,且2,1a b == ,则向量a 与b 夹角的余弦值为( )A .B . .12 D .12- 【答案】C 【解析】试题分析:22()cos ,42cos ,5a a b a a b a a b a b a b ⋅+=+⋅=+⋅<>=+<>= ,所以1cos ,2a b <>= ,故选C.考点:向量的数量积.4. 执行如图所示的程序框图,若输人的a 值为1,则输出的k 值为( )A . 1B . 2C .3D .4 【答案】B 【解析】考点:程序框图.5. 已知数列{}n a 中,()111,21,n n n a a a n N S *+==+∈为其前n 项和,5S 的值为( ) A .57 B .61 C .62 D .63 【答案】A 【解析】试题分析:由条件可得1213243541,213,217,2115,2131a a a a a a a a a ==+==+==+==+=,所以512345137153157S a a a a a =++++=++++=,故选A.考点:1.数列的递推公式;2.数列求和.6. 某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .23π B . 3π C .29π D .169π 【答案】D 【解析】考点:三视图.7. 为了得到cos 2y x =,只需将sin 23y x π⎛⎫=+ ⎪⎝⎭作如下变换( ) A . 向右平移3π个单位 B .向右平移6π个单位 C .向左平移12π个单位 D .向右平移12π个单位【答案】C 【解析】试题分析:因为cos 2sin(2)sin[2()]2123y x x x πππ==+=++,所以只需将sin(2)3y x π=+的图象向左平移12π个单位即可得到函数cos 2y x =的图象,故选C.考点:图象平移变换.8. 若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩,表示的平面区域,则当a 从2-连续变化到1时,动直线x y a +=扫过A中的那部分区域的面积为( )A .1B .32C .34D .74【答案】D 【解析】试题分析:在直角坐标系中作出区域A ,当a 从2-连续变化到1时,动直线x y a +=扫过A 中的那部分区域为下图中的四边形AODE ,所以其面积为11172212224AOC DEC S S S ∆∆=-=⨯⨯-⨯⨯=,故选D.考点:线性规划.9. 焦点在x 轴上的椭圆方程为 ()222210x y a b a b+=>>,短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为3b,则椭圆的离心率为( ) A .14 B .13 C .12 D .23【答案】C 【解析】考点:椭圆的标准方程与几何性质.10. 在四面体S ABC -中,,2AB BC AB BC SA SC ⊥====,二面角S AC B --的余弦值是)A. B .6π C .24π D【答案】B 【解析】径为R ,则2221132R SO OO =+=,所以246S R ππ==,故选B.考点:1.球的切接问题;2.球的表面积与体积.11. 已知函数()()()()()52log 11221x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则关于x 的方程()()f x a a R =∈实根个数不可能为 ( )A . 2个B .3个C . 4个D .5 个 【答案】D 【解析】考点:函数与方程.【名师点睛】本题考查函数与方程,属中档题;函数与方程是最近高考的热点内容之一,解决方法通常是用零点存在定理或数形结合方法求解,如本题就是将方程转化为两个函数图象交点,通过观察图象交点的个数研究方程根的个数的.12. 函数()()sin 2,02f x A x A πϕϕ⎛⎫=+≤> ⎪⎝⎭部分图象如图所示,且()()0f a f b ==,对不同的[]12,,x x a b ∈,若()()12f x f x =,有()12f x x +=,则( )A .()f x 在5,1212ππ⎛⎫-⎪⎝⎭上是减函数 B .()f x 在5,1212ππ⎛⎫- ⎪⎝⎭上是增函数 C .()f x 在5,36ππ⎛⎫ ⎪⎝⎭上是减函数 D .()f x 在5,36ππ⎛⎫⎪⎝⎭上增减函数 【答案】B 【解析】故选B.考点:三角函数的图象与性质.【名师点睛】本题主要考查三角函数的图象与性质,属中档题;三角函数的图象与性质是高考的必考内容,根据函数图象确定解析式首先是由最大值与最小值确定A ,再根据周期确定ω,由最高点的值或最低点的值确定ϕ,求出解析式后再研究函数相关性质.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. ()4111x x ⎛⎫-+ ⎪⎝⎭的展开式中2x 项的系数为 . 【答案】2 【解析】 试题分析:()4111x x ⎛⎫-+ ⎪⎝⎭的展开式中2x 项的系数为2344(1)2C C +-=,故填2. 考点:二项式定理.14. 已知抛物线()220y px p =>上一点()1,M m 到其焦点的距离为5,双曲线221y x a-=的左顶点为A ,若双曲线一条渐近线与直线AM 垂直,则实数a = . 【答案】14【解析】试题分析:抛物线()220y px p =>上一点()1,M m 到其焦点的距离152pd =+=,所以8p =,抛物线方程为216y x =,点(1,4)M ,点(1,0)A -,4021(1)AM k -==--,所以12=-,即14a =,故应填14.考点:抛物线与双曲线的标准方程与几何性质.15. 如图,为测量出山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角60,MAN C ∠= 点的仰角45CAB ∠= 以及75MAC ∠= ,从C 点测得60MCA ∠= ,已知山高100BC m =,则山高MN = m .【答案】150 【解析】【名师点睛】本题考查解三角形应用,属中档题;三角函数在实际生活中有着相当广泛的应用,三角函数的应用题是以解三角形、正(余)弦定理、正余弦函数等知识为核心,以航海、测量、筑路、天文等为代表的实际应用题是高考的热点题型,求解此类问题时,应仔细审题,提炼题目信息,画出示意图,利用数形结合思想并借助正、余弦定理、勾股定理、三角函数、不等式等知识求解.16. 设函数()()21,x x xf xg x x e +==,对任意()12,0,x x ∈+∞,不等式()()121g x f x k k ≤+恒成立,则正数k 的取值范围是 . 【答案】121k e ≥- 【解析】试题分析:对任意()12,0,x x ∈+∞,不等式()()121g x f x k k ≤+恒成立等价于()()12max min1g x f x k k ⎛⎫⎛⎫≤ ⎪ ⎪+⎝⎭⎝⎭,2110,()2x x f x x x x+>∴==+≥ ,当且仅当1x =时取等号,所以min ()(1)2f x f ==,即()2min 211f x k k ⎛⎫= ⎪++⎝⎭,21()()x x x x e xe x g x e e --'==,当01x <<时,()0g x '>,当1x >时, ()0g x '<,所以函数()g x 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减,所以max 1()(1)g x g e==,所以()1max1g x k ke ⎛⎫= ⎪⎝⎭,所以有121ke k ≤+,解之得121k e ≥-. 考点:1.导数与函数的最值;2.函数与不等式.【名师点睛】本题主要考查导数与函数的最值、函数与不等式,属中档题;解决不等式相关问题最常用的方法就是等价转换,即将题中所给的我们不熟悉的问题通过等价转化,转化为我们能够解决的、熟悉的问题解决,如本题中的第一步等价转换就是解题的关键.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)中国人口已经出现老龄化与少子化并存的结构特征,测算显示中国是世界上人口老龄化速度最快的国家之一,再不实施“放开二胎”新政策,整个社会将会出现一系列的问题,若某地区2015年人口总数为45万,实施“放开二胎”新政策后专家估计人口总数将发生如下变化:从2016年开始到2025年每年人口比上年增加0.5万人,从2026年开始到2035年每年人口为上一年的0099. (1)求实施新政策后第n 年的人口总数n a 的表达式(注:2016年为第一年);(2)若新政策实施后的2016年到2035年人口平均值超过49万,则需调整政策,否则继续实施, 问到2035年后是否需要调整政策?(说明:()10100.9910.010.9=-≈). 【答案】(1)()1045.50.51,110500.99,11n n n n a n -⎧+⨯-≤≤⎪=⎨⨯≥⎪⎩;(2)到2035年不需要调整政策.【解析】10500.99n n a -=⨯因此,新政策实施后第n 年的人口总数n a (单位:万)的表达式为()1045.50.51,110500.99,11n n n n a n -⎧+⨯-≤≤⎪=⎨⨯≥⎪⎩故到2035年不需要调整政策.考点:1.数列的应用;2.等差数列的通项公式与求和公式;3.等比数列的通项公式与求和公式. 【名师点睛】本题考查数列的应用、等差数列的通项公式与求和公式、等比数列的通项公式与求和公式,属中档题;等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.18. (本小题满分12分)如图, 已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面, 平面ABCD 平面ABPE AB =,且2,1,AB BP AD AE AE AB ====⊥,且AE BP .(1)设点M 为棱PD 中点, 在面ABCD 内是否存在点N ,使得MN ⊥平面ABCD ?若存在, 请证明, 若不存在, 说明理由;(2)求二面角D PE A --的余弦值.【答案】(1)存在点N ,为BD 中点;(2)23. 【解析】试题分析:(1)由题意可知PB ⊥平面ABCD ,所以只要构造直线//MN PB 即可,连接BD ,取BD 中点N ,构造三角形PBD 的中位线即可;(2) 以A 为原点,AE ,AB ,AD 所在直线分别为x 轴,y 轴,z 轴建立坐标系,求出平面DPE 与平面APE 的法向量,利用空间向量相关知识求解即可. 试题解析: (1)连接AC ,BD 交于点N ,连接MN ,则⊥MN 平面ABCD 证明: M 为PD 中点,N 为BD 中点MN ∴为PDB ∆的中位线,PB MN //∴又平面⊥ABCD 平面ABPE平面ABCD 平面ABPE =AB ,⊂BC 平面ABCD ,AB BC ⊥⊥∴BC 平面ABPEPB BC ⊥∴,又AB PB ⊥,B BC AB =⋂⊥∴PB 平面ABCD所以⊥MN 平面ABCD32,cos 21>=<∴n n 又A PE D --为锐二面角,所以二面角A PE D --的余弦值为32 考点:1.线面垂直的判定与性质;2.空间向量的应用.19. (本小题满分12分)某产品按行业生产标准分成8个等级,等级系数X 依次1,2,...8,其中5X ≥为标准A ,3X ≥为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件; 乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准. (1)已知甲厂产品的等级系数1X 的概率分布列如下所示:且1X 的数学期望()16E X =,求,a b 的值;(2)为分析乙厂产品的等级系数2X ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数2X 的数学期望;(3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由. 注:① 产品的“性价比”;②“性价比”大的产品更具可购买性.【答案】(1)0.3,0.2a b ==;(2)4.8;(3) 乙厂的产品更具可购买性. 【解析】由① ② 得0.30.2a b =⎧⎨=⎩(2)由已知得,样本的频率分布表如下:用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 2的概率分布列如下:所以,230.340.250.260.170.180.1 4.8EX =⨯+⨯+⨯+⨯+⨯+⨯= 即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性,理由如下:因为甲厂产品的等级系数的数学期望等于6 ,价格为6 元/件,所以其性价比为616= 因为乙厂产品的等级系数的期望等于4.8 ,价格为4 元/件,所以其性价比为4.81.24=据此,乙厂的产品更具可购买性。

【全国百强校】河北省衡水中学2017届高三上学期第三次调研考试理数试题解析(解析版)

【全国百强校】河北省衡水中学2017届高三上学期第三次调研考试理数试题解析(解析版)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|1log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥ 【答案】C 【解析】试题分析:因为集合A 中至少有3个元素,所以2log 4k >,所以4216k >=,故选C .考点:1、集合的元素;2、对数的性质. 2.复数212ii+-的共轭复数的虚部是( ) A .35- B .35C .-1D .1 【答案】C 【解析】考点:复数的概念及运算. 3. 下列结论正确的是( )A .若直线l ⊥平面α,直线l ⊥平面β,则//αβB .若直线//l 平面α,直线//l 平面β,则//αβC .若两直线12l l 、与平面α所成的角相等,则12//l lD .若直线l 上两个不同的点A B 、到平面α的距离相等,则//l α 【答案】A 【解析】试题分析:A 中,垂直于同一直线的两平面互相平行,所以直线直线l ⊥平面α,直线l ⊥平面β,则//αβ,正确;B 中,若直线//l 平面α,直线//l 平面β,则两平面可能相交或平行,故B 错;C 中,若两直线12l l 、与平面α所成的角相等,则12l l 、可能相交、平行或异面,故C 错;D 中,若直线l 上两个不同的点A B 、到平面α的距离相等,则直线与平面可能相交或者平行,故D 错,故选A . 考点:空间直线与平面间的位置关系.【思维点睛】解答此类试题的关键是对于空间几何中的一些概念、公理、定理和推论的理解一定要结合图形,理解其本质,准确把握其内涵,特别是定理、公理中的限制条件,如公理3中“不共线的三点”,“不共线”是很重要的条件.4.等比数列{}n a 的前n 项和为n S ,已知2532a a a =,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .36 【答案】B考点:等比数列通项公式及求前n 项和公式. 【一题多解】由2532a a a =,得42a =.又47522a a +=,所以714a =,所以12q =,所以116a =,所以515(1)311a q S q-==-,故选B .5.已知实数,x y 满足21010x y x y -+≥⎧⎨--≤⎩,则22x y z x ++=的取值范围为( )A .100,3⎡⎤⎢⎥⎣⎦ B .(]10,2,3⎡⎫-∞+∞⎪⎢⎣⎭ C .102,3⎡⎤⎢⎥⎣⎦D .(]10,0,3⎡⎫-∞+∞⎪⎢⎣⎭ 【答案】D 【解析】试题分析:作出不等式组不等式的平面区域如图所示,2222x y y z x x+++==+表示的几何意义为区域内的点到点(0,2)P -的斜率k 加上2.因为(3,2)A 、(1,0)C -,所以4,23AP CP k k ==-,所以由图知43k ≥或2k ≤-,所以1023k +≥或20k +≤,即103z ≥或0z ≤,故选D .考点:简单的线性规划问题.6.若()0,0,lg lg lg a b a b a b >>+=+,则a b +的最小值为( ) A .8 B .6 C .4 D .2 【答案】C考点:1、对数的运算;2、基本不等式.7.阅读如图所示的程序框图,则该算法的功能是( )A .计算数列{}12n -前5项的和B .计算数列{}21n -前5项的和 C .计算数列{}21n -前6项的和 D .计算数列{}12n -前6项的和 【答案】D 【解析】试题分析:第一次循环,得1,2A i ==;第二次循环:1+21,3A i =⨯=;第三次循环:21+21+21,4A i =⨯⨯=;第四次循环:231+2+2+2,5A i ==;第五次循环:2341+2+2+2+2,6A i ==;第六次循环:23451+2+2+2+2+2A =,76i =>,不满足循环条件,退出循环,输出23451+2+2+2+22A =+,即计算数列{}12n -前6项的和,故选D .考点:循环结构流程图.【易错点睛】应用循环结构应注意的三个问题分别为:(1)确定循环变量和初始值;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.同时依次计算出每次的循环结果,直到不满足循环条件为止是解答此类问题的常用方法.8.ABC ∆中,“角,,A B C 成等差数列”是“)sin sin cos C A A B =+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】考点:1、充分条件与必要条件;2、、两角和的正弦函数.9.已知a b >,二次三项式220ax x b ++≥对于一切实数x 恒成立,又0x R ∃∈,使20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D .【答案】D 【解析】试题分析:因为二次三项式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩;又o x ∃∈R ,使220oo ax x b ++=成立,所以440ab -≥,故只有440ab -=,即0,,1a a b ab >>=,所以22a b a b+-=a b -+2aba b-=2a b a b -+≥-D . 考点:1、存在性命题;2、基本不等式;3、不等式恒成立问题.10.已知等差数列{}{},n n a b 的前n 项和分别为,n n S T ,若对于任意的自然数n ,都有2343n n S n T n -=-,则()3153392102a a a b b b b ++=++( )A .1941 B .1737C .715D .2041【答案】A考点:1、等差数列的性质;2、等差数列的前n 项和公式. 11.已知函数()21,g x a x x e e e ⎛⎫=-≤≤⎪⎝⎭为自然对数的底数与()2ln h x x =的图象上存在关于x 轴对称的点,则实数a 的取值范围是( ) A .211,2e ⎡⎤+⎢⎥⎣⎦ B .21,2e ⎡⎤-⎣⎦ C .2212,2e e ⎡⎤+-⎢⎥⎣⎦D .)22,e ⎡-+∞⎣ 【答案】B 【解析】试题分析:由条件知,方程22ln a x x -=-,即22ln a x x -=-在1[,]e e上有解.设2()2ln f x x x =-,则22(1)(1)()2x x f x x x x -+'=-=.因为1x e e ≤≤,所以()0f x '=在1x =有唯一的极值点.因为1()f e=212e --,2()2f e e =-,()(1)1f x f ==-极大值,又1()()f e f e <,所以方程22ln a x x -=-在1[,]e e上有解等价于221e a -≤-≤-,所以a 的取值范围为21,2e ⎡⎤-⎣⎦,故选B .考点:1、函数极值与导数的关系;2、函数函数的图象与性质.12.如图,在OMN ∆中,,A B 分别是,OM ON 的中点,若(),OP xOA yOB x y R =+∈,且点P 落在四边形ABNM 内(含边界),则12y x y +++的取值范围是( )A .12,33⎡⎤⎢⎥⎣⎦ B .13,34⎡⎤⎢⎥⎣⎦ C .13,44⎡⎤⎢⎥⎣⎦ D .12,43⎡⎤⎢⎥⎣⎦【答案】C 【解析】考点:向量的几何意义.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若实数()0,1a b ∈、,且满足()114a b ->,则a b 、的大小关系是_____________. 【答案】a b < 【解析】试题分析:因为()0,1a b ∈、,且满足()114a b ->12>,又()12a b -+≥所以()1122a b -+>,即a b <.考点:基本不等式. 14.若110tan ,,tan 342ππααα⎛⎫+=∈ ⎪⎝⎭,则2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭的值为___________. 【答案】0 【解析】试题分析:由110tan tan 3αα+=,得(tan 3)(3tan 1)0αα--=,所以tan 3α=或1tan 3α= .因为,42ππα⎛⎫∈ ⎪⎝⎭,所以tan 3α=,所以2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭22αα++cos 2)2α+=2222αα+=2222222sin cos cos sin 2sin cos sin cos 2αααααααα-⋅+++=2222tan 1tan 2tan 1tan 12αααα-++++=22223130231312⨯-+=++. 考点:1、两角和的正弦函数公式;2、同角三角函数间的基本关系;3、二倍角. 15.一个几何体的三视图如图所示,则此几何体的体积是_____________.【答案】80 【解析】考点:空间几何体的三视图及体积.【方法点睛】名求组合体的几何,首先应该知道它是哪些简单几何体组合而成,这就要求必须掌握简单几何体(柱、锥、台、球等)的三视图,只有在掌握简单几何体三视图的基础上才能确定组合体的“组合”,同时注意三视图的作图原则:“长对正,高平齐,宽相等”,由此可确定几何体中各数据.16.已知函数()()2lg ,064,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若关于x 的方程()()210f x bf x -+=有8个不同根,则实数b 的取值范围是______________. 【答案】1724b <≤ 【解析】考点:1、分段函数;2、函数的图象;3、方程的根.【方法点睛】方程解的个数问题解法:研究程)(x g 0=的实根常将参数移到一边转化为值域问题.当研究程)(x g 0=的实根个数问题,即方程)(x g 0=的实数根个数问题时,也常要进行参变分离,得到)(x f a =的形式,然后借助数形结合(几何法)思想求解;也可将方程化为形如)()(x h x f =,常常是一边的函数图像是确定的,另一边的图像是动的,找到符合题意的临界值,然后总结答案即可.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知()2sin 2f x x π⎛⎫=⎪⎝⎭,集合(){}|2,0M x f x x ==>,把M 中的元素从小到大依次排成一列,得到数列{}*,n a n N ∈. (1)求数列{}n a 的通项公式;(2)记211n n b a +=,设数列{}n b 的前n 项和为n T ,求证:14n T <. 【答案】(1)()*21n a n n N =-∈;(2)见解析. 【解析】试题分析:(1)首先根据正弦函数性质解出M 中的元素,从而得到21,x k k Z =+∈,由此可求得数列{}n a 的通项公式;(2)首先结合(1)求得n b 的表达式,然后利用放缩法与裂项法即可使问题得证.考点:1、递推数列;2、数列的通项公式;3、裂项法求数列的和. 18.(本小题满分12分)已知向量2,1,cos ,cos 444x x x m n ⎫⎛⎫==⎪ ⎪⎭⎝⎭,记()f x m n =. (1)若()1f x =,求cos 3x π⎛⎫+⎪⎝⎭的值; (2)在锐角ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足()2cos cos a c B b C -=,求()2f A 的取值范围. 【答案】(1)12;(2)32⎤⎥⎝⎦. 【解析】试题分析:(1)首先利用向量的数量积公式求出函数()f x 的解析式,然后利用二倍角公式求值即可;(2)首先由正弦定理将边角的混合等式化为角的等式,然后利用三角函数公式化简求出角A 的范围,从而求出三角函数值的范围.试题解析:(1)()21113sincos cos cos sin 44422222262x x x x x x f x m n π⎛⎫==+=++=++ ⎪⎝⎭, 由()1f x =,得1sin 262x π⎛⎫+=⎪⎝⎭,所以21cos 12sin 3262x x ππ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭.............6分(2)因为()2cos cos a c B b C -=,由正弦定理得()2sin sin cos sin cos A C B B C -=,所以2sin cos sin cos sin cos A B C B B C -=,所以()2sin cos sin A B B C =+,因为A B C π++=, 所以()sin sin B C A +=,且sin 0A ≠,所以1cos 2B =,又02B π<<,所以3B π=, 则22,33A C A C ππ+==-,又02C π<<,则62A ππ<<,得2363A πππ<+<,sin 16A π⎛⎫<+≤ ⎪⎝⎭,又因为()12sin 62f A A π⎛⎫=++ ⎪⎝⎭,故函数()2f A 的取值范围是13,22⎛⎤⎥ ⎝⎦................12分考点:1、两角和的正弦函数;2、倍角公式;3、正弦定理;4、正弦函数的图象与性质.【思路点睛】第一问解答时,要注意分析结论中的角与条件中角的关系,合理选择变换策略达到求值的目的;第二问解答时,求得内角B 的值是关键,结合三角形形状得到函数(2)f A 的定义域,问题就容易解答了,常见的错误是不少考生由于审题不够仔细,漏掉2A π<,实在可惜.19.(本小题满分12分)如图所示,在直三棱柱111ABC A B C -中,平面1A BC ⊥侧面11A B BA ,且12AA AB ==.(1)求证:AB BC ⊥;(2)若直线AC 与平面1A BC 所成角的正弦值为12,求锐二面角1A A C B --的大小.【答案】(1)见解析;(2)3π. 【解析】(2)解法一:连接CD ,由(1)可知AD ⊥平面1A BC ,则CD 是AC 在平面1A BC 内的射影, ∴ACD ∠即为直线AC 与平面1A BC 所成的角,因为直线AC 与平面1A BC 所成的角的正弦值为12,则6ACD π∠=,............................8分在等腰直角1A AB ∆中,12AA AB ==,且点D 是1A B 中点,∴112AD A B ==且,26ADC ACD ππ∠=∠=,∴AG =.................9分 过点A 作1AE A C ⊥于点E ,连接DE ,由(1)知AD ⊥平面1A BC ,则1AD A C ⊥,且AEAD A =,∴AED ∠即为二面角1A A C B --的一个平面角....................10分 且直角1A AC ∆中,11A A AC AE AC ===,又2AD ADE π=∠=,∴sin 2AD AED AE ∠===,且二面角1A A C B --为锐二面角, ∴3AED π∠=,即二面角1A A C B --的大小为3π..................12分 解法二(向量法):由(1)知AB BC ⊥且1BB ⊥底面ABC ,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,如图所示,且设BC a =,则()()()()10,2,0,0,0,0,,0,0,0,2,2A B C a A ,()()()()11,0,0,0,2,2,,2,0,0,0,2BC a BA AC a AA ===-=.........................9分 设平面1A BC 的一个法向量()1,,n x y z =, 由111,BC n BA n ⊥⊥得:220za y z =⎧⎨+=⎩,令1y =,得0,1x z ==-,则()10,1,1n =-............10分考点:1、空间直线与直线的位置关系;2、线段垂直的性质定理;3、二面角.【技巧点睛】破解此类问题的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础.由于“线线垂直”、“线面垂直”、“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心而展开,这是化解空间垂直关系难点的技巧所在.20.(本小题满分12分)已知函数()()()()212ln f x a x x a R =---∈.(1)若曲线 ()()g x f x x =+上点()()1,g 1处的切线过点()0,2,求函数()g x 的单调减区间; (2)若函数()y f x =在10,2⎛⎫ ⎪⎝⎭上无零点,求a 的最小值. 【答案】(1)()0,2;(2)24ln 2-. 【解析】(2)因为()0f x <在区间10,2⎛⎫ ⎪⎝⎭上恒成立不可能, 故要使函数()f x 在10,2⎛⎫ ⎪⎝⎭上无零点,只要对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立, 即对12ln 0,,221x x a x ⎛⎫∈>- ⎪-⎝⎭恒成立................................8分 令()2ln 12,0,12x I x x x ⎛⎫=-∈ ⎪-⎝⎭, 则()()()()222212ln 2ln 211x x x x x I x x x --+-'==--.................10分考点:1、函数的零点;2、导数的几何意义;3、利用导数研究函数的单调性.【方法点睛】利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需()min f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可;(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解. 21.(本小题满分12分)已知()(),,,1p x m q x a ==+,二次函数()1f x p q =+,关于x 的不等式()()2211f x m x m >-+-的解集为()(),1,m m -∞++∞,其中m 为非零常数,设()()1f xg x x =-. (1)求a 的值;(2)若存在一条与y 轴垂直的直线和函数()()ln x g x x x Γ=-+的图象相切,且切点的横坐标0x 满足0013x x -+>,求实数m 的取值范围;(3)当实数k 取何值时,函数()()()ln 1x g x k x ϕ=--存在极值?并求出相应的极值点. 【答案】(1)2a =-;(2)12m >;(3)若0m >时,k ∈R ,函数()x ϕ极小值点为2x ;若0m <时,当k >()x ϕ极小值点为2x ,极大值点为1x (其中122k x +=,2x =【解析】试题分析:(1)首先用向量的数量积公式代入到()f x 的表达式中,然后根据所给出的不等式解集即可求得a 的值;(2)若存在这样的直线,则说明函数()x Γ的导数可为0,从而对函数()x Γ求导后解得切点横坐标0x 与m 的关系,根据不等式得到0x 的范围,进而求得实数m 的范围;(3)当函数()x ϕ存在极值时,其导数必为零点,因此先对函数求导,由于解析式中含实数k ,由此对导数进行分类讨论,从而可求得极极值以及极值点.试题解析:(1)∵()()(),,,1,1p x m q x a f x p q ==+=+, ∴二次函数()21f x x ax m =+++,..........................1分 关于x 的不等式()()2211f x m x m >-+-的解集为()(),01,m -∞++∞,也就是不等式()22120x a m x m m ++-++>的解集为()(),01,m -∞++∞,∴m 和 1m +是方程()22120x a m x m m ++-++=的两个根, 由韦达定理得:()()112m m a m ++=-+-, ∴2a =-.............................2分(3)()()()()()ln 11ln 11mx g x k x x k x x ϕ=--=-+---的定义域为()1,+∞, ∴()()()()222211111x k x k m mkx x x x ϕ-++-+'=--=---方程()2210x k x k m -++-+= (*)的判别式()()222414k k m k m ∆=+--+=+.①若0m >时,0∆>,方程(*)的两个实根为1212k x +-=<,或2212k x ++=>,则()21,x x ∈时,()0x ϕ'<;()2,x x ∈+∞时,()0x ϕ'>, ∴函数()x ϕ在()21,x 上单调递减,在()2,x +∞上单调递增,此时函数()x ϕ存在极小值,极小值点为2,x k 可取任意实数,........................9分综上所述,若0m >时,k 可取任意实数,此时函数()x ϕ有极小值且极小值点为2x ;若0m <时,当k >()x ϕ有极大值和极小值,此时极小值点为2x ,极大值点为1x (其中122222k k x x +++==).......................12分考点:1、不等式的解法;2、方程的根;3、导数的几何意义;4、函数极值与导数的关系.请从下面所给的22 , 23 ,24三题中任选一题做答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-1:几何证明选讲已知四边形ABCD 为圆O 的内接四边形,且BC CD =,其对角线AC 与BD 相交于点M ,过点B 作圆O 的切线交DC 的延长线于点P .(1)求证:AB MD AD BM =;(2)若CP MD CB BM =,求证:AB BC =. 【答案】(1)见解析;(2)见解析. 【解析】考点:1、圆周角定理;2、相似三角形;3、弦切角定理. 23.本小题满分10分)选修4-4:坐标系与参数方程已知直线l的参数方程为22x m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,且曲线C 的左焦点F 在直线l 上. (1)若直线l 与曲线C 交于,A B 两点,求FA FB 的值; (2)求曲线C 的内接矩形的周长的最大值.【答案】(1)2;(2)16. 【解析】考点:24.(本小题满分10分)选修4-5:不等式选讲 已知0x R ∃∈使不等式12x x t ---≥成立. (1)求满足条件的实数t 的集合T ;(2)若1,1m n >>,对t T ∀∈,不等式23log log m n t ≥恒成立,求m n +的最小值. 【答案】(1){}|1T t t =≤;(2)6. 【解析】试题分析:(1)由条件可知关于x 的不等式t x x ≥---|2||1|有解即可,因此只需()max12x x t ---≥,进而可求出实数t 的集合T ;(2)根据条件知道应有max 33log log t n m ≥⋅,再结合(1)的结论以及基本不等式,进而可求出n m +的最小值.试题解析:(1)令()1,11223,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩,则()11f x -≤≤,由于0x R ∃∈使不等式12x x t ---≥成立,有{}|1t T t t ∈=≤..............5分考点:1、绝对值不等式的解法;2、基本不等式.。

【100所名校】河北省衡水中学高三年级上学期四调考试数学(理)试题(解析版)

【100所名校】河北省衡水中学高三年级上学期四调考试数学(理)试题(解析版)

名校精编卷 第1页(共6页) 名校精编卷 第2页(共6页) 河北省衡水中学 高三年级上学期四调考试数学(理)试题 数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单选题 1.下列命题正确的个数为 ①梯形一定是平面图形; ②若两条直线和第三条直线所成的角相等,则这两条直线平行; ③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. A .0 B .1 C .2 D .3 2.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 4= A.52 B .3 C .72 D .4 3.已知双曲线my 2−x 2=1(m ∈R)与抛物线x 2=8y 有相同的焦点,则该双曲线的渐近线方程为 A .y =±√3x B .y =±3x C .y =±13x D .y =±√33x 4.如图,一只蚂蚁从点A 出发沿着水平面的线条爬行到点C ,再由点C 沿着置于水平面的长方体的棱爬行至顶点B ,则它可以爬行的不同的最短路径有A .40条B .60条C .80条D .120条 5.函数f(x)=x 2−2|x|的图象大致是 A . B . C . D . 6.若tan(x 2+π4)+tan(x 2−π4)=32,则tanx = A .−2 B .2 C .34 D .−34 7.某县教育局招聘了8名小学教师,其中3名语文教师,3名数学教师,2名全科教师,需要分配到A,B 两个学校任教,其中每个学校都需要2名语文教师和2名数学教师,则分配方案种数为 A .72 B .56 C .57 D .63 8.一个简单几何体的三视图如图所示,则该几何体的体积为 A .96π+36 B .72π+48 C .48π+96 D .24π+48 9.已知函数f(x)=cosxsin2x ,下列结论不正确的是 A .y =f(x)的图象关于点(π,0)中心对称 B .y =f(x)既是奇函数,又是周期函数 C .y =f(x)的图象关于直线x =π2对称 D .y =f(x)的最大值为√32 此卷只装订不密封班级姓名准考证号考场号座位号名校精编卷 第3页(共6页)名校精编卷 第4页(共6页) 10.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为A .2000π9B .4000π27C .81πD .128π11.已知y 2=4x 的准线交x 轴于点Q ,焦点为F ,过Q 且斜率大于0的直线交y 2=4x 于A,B ,∠AFB =600,则|AB|=A .4√76B .4√73C .4D .312.已知f (x )={x 2,x ≤0−x (e 1−x +ax 2−a),x >0 是减函数,且f (x )+bx 有三个零点,则b 的取值范围为A .(0,ln22)∪[e −1,+∞)B .(0,ln22)C .[e −1,+∞)D .{ln22}∪[e −1,+∞)二、解答题13.数列{a n }满足a 1=6,a n+1=6a n −9a n (n ∈N ∗).(1)求证:数列{1a n −3}是等差数列;(2)求数列{lga n }的前999项和.14.在四棱锥P −ABCD ,AB//CD ,∠ABC =900,BC =CD =PD =2,AB =4,PA ⊥BD ,平面PBC ⊥平面PCD ,M,N 分别是AD,PB 中点.(1)证明:PD ⊥平面ABCD ;(2)求MN 与平面PDA 所成角的正弦值. 15.在ΔABC 中,内角A,B,C 所对的边分别为a,b,c ,已知b 2+c 2−a 2=accosC +c 2cosA . (1)求角A 的大小; (2)若ΔABC 的面积S ΔABC =25√34,且a =5,求sinB +sinC . 16.如图,直线AQ ⊥平面α,直线AQ ⊥平行四边形,四棱锥的顶点P 在平面α上,AB =√7,AD =√3,AD ⊥DB ,AC ∩BD =O,OP//AQ,AQ =2,M,N 分别是AQ 与CD 的中点. (1)求证:MN//平面QBC ; (2)求二面角M −CB −Q 的余弦值. 17.如图,椭圆C 1:x 2a +y 2b =1(a >b >0)的左右焦点分别为F 1,F 2,离心率为√32,过抛物线C 2:x 2=4by 焦点F 的直线交抛物线于M,N 两点,当|MF|=74时,M 点在x 轴上的射影为F 1,连接NO,MO)并延长分别交C 1于A,B 两点,连接AB ,ΔOMN 与ΔOAB 的面积分别记为S ΔOMN ,S ΔOAB ,设λ= S ΔOMN S ΔOAB . (1)求椭圆C 1和抛物线C 2的方程; (2)求λ的取值范围. 18.已知函数f(x)=ax 32−lnx −23的图象的一条切线为x 轴.(1)求实数a的值;(2)令g(x)=|f(x)+f′(x)|,若存在不相等的两个实数x1,x2满足g(x1)=g(x2),求证:x1x2<1.三、填空题19.已知向量m⃑⃑ ,n⃑夹角为600,且|m⃑⃑ |=1,|2m⃑⃑ +n⃑ |=√10,则|n⃑ |=_______.20.已知直三棱柱ABC−A1B1C1中,∠ABC=1200,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为_______.21.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有______种.22.三棱锥P−ABC中,PA⊥平面ABC,ΔABC为正三角形,外接球表面积为12π,则三棱锥P−ABC的体积V P−ABC的最大值为______.名校精编卷第5页(共6页)名校精编卷第6页(共6页)名校精编卷答案 第1页(共16页)名校精编卷答案 第2页(共16页) 河北省衡水中学高三年级上学期四调考试数学(理)试题数学 答 案参考答案1.C【解析】分析:逐一判断每个命题的真假,得到正确命题的个数.详解:对于①,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,所以该命题是真命题;对于②,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,所以该命题是假命题;对于③,两两相交的三条直线最多可以确定三个平面,是真命题;对于④,如果两个平面有三个公共点,则这两个平面相交或重合,所以该命题是假命题.故答案为:C.点睛:(1)本题主要考查空间直线平面的位置关系,意在考查学生对这些基础知识的掌握水平和空间想象能力.(2)对于类似这种空间直线平面位置关系的命题的判断,一般可以利用举反例的方法和直接证明法,大家要灵活选择方法判断.2.C【解析】【分析】利用等差数列前n 项和公式,代入S 8=4S 4即可求出a 1=12,再利用等差数列通项公式就能算出a 4.【详解】∵{a n }是公差为1的等差数列,S 8=4S 4,∴8a 1+8×7×12=4×(4a 1+4×3×12)解得a 1=12,则a 4=12+3×1=72,故选C.【点睛】本题考查等差数列的通项公式及其前n 项和公式的运用,是基础题。

【全国百强校】河北省衡水中学2017届高三上学期第三次调研考试理数试题解析(解析版)

【全国百强校】河北省衡水中学2017届高三上学期第三次调研考试理数试题解析(解析版)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|1log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥ 【答案】C 【解析】试题分析:因为集合A 中至少有3个元素,所以2log 4k >,所以4216k >=,故选C .考点:1、集合的元素;2、对数的性质. 2.复数212ii+-的共轭复数的虚部是( ) A .35- B .35C .-1D .1 【答案】C 【解析】考点:复数的概念及运算. 3. 下列结论正确的是( )A .若直线l ⊥平面α,直线l ⊥平面β,则//αβB .若直线//l 平面α,直线//l 平面β,则//αβC .若两直线12l l 、与平面α所成的角相等,则12//l lD .若直线l 上两个不同的点A B 、到平面α的距离相等,则//l α 【答案】A 【解析】试题分析:A 中,垂直于同一直线的两平面互相平行,所以直线直线l ⊥平面α,直线l ⊥平面β,则//αβ,正确;B 中,若直线//l 平面α,直线//l 平面β,则两平面可能相交或平行,故B 错;C 中,若两直线12l l 、与平面α所成的角相等,则12l l 、可能相交、平行或异面,故C 错;D 中,若直线l 上两个不同的点A B 、到平面α的距离相等,则直线与平面可能相交或者平行,故D 错,故选A . 考点:空间直线与平面间的位置关系.【思维点睛】解答此类试题的关键是对于空间几何中的一些概念、公理、定理和推论的理解一定要结合图形,理解其本质,准确把握其内涵,特别是定理、公理中的限制条件,如公理3中“不共线的三点”,“不共线”是很重要的条件.4.等比数列{}n a 的前n 项和为n S ,已知2532a a a =,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .36 【答案】B考点:等比数列通项公式及求前n 项和公式. 【一题多解】由2532a a a =,得42a =.又47522a a +=,所以714a =,所以12q =,所以116a =,所以515(1)311a q S q-==-,故选B .5.已知实数,x y 满足21010x y x y -+≥⎧⎨--≤⎩,则22x y z x ++=的取值范围为( )A .100,3⎡⎤⎢⎥⎣⎦ B .(]10,2,3⎡⎫-∞+∞⎪⎢⎣⎭ C .102,3⎡⎤⎢⎥⎣⎦D .(]10,0,3⎡⎫-∞+∞⎪⎢⎣⎭ 【答案】D 【解析】试题分析:作出不等式组不等式的平面区域如图所示,2222x y y z x x+++==+表示的几何意义为区域内的点到点(0,2)P -的斜率k 加上2.因为(3,2)A 、(1,0)C -,所以4,23AP CP k k ==-,所以由图知43k ≥或2k ≤-,所以1023k +≥或20k +≤,即103z ≥或0z ≤,故选D .考点:简单的线性规划问题.6.若()0,0,lg lg lg a b a b a b >>+=+,则a b +的最小值为( ) A .8 B .6 C .4 D .2 【答案】C考点:1、对数的运算;2、基本不等式.7.阅读如图所示的程序框图,则该算法的功能是( )A .计算数列{}12n -前5项的和B .计算数列{}21n -前5项的和 C .计算数列{}21n -前6项的和 D .计算数列{}12n -前6项的和【答案】D 【解析】试题分析:第一次循环,得1,2A i ==;第二次循环:1+21,3A i =⨯=;第三次循环:21+21+21,4A i =⨯⨯=;第四次循环:231+2+2+2,5A i ==;第五次循环:2341+2+2+2+2,6A i ==;第六次循环:23451+2+2+2+2+2A =,76i =>,不满足循环条件,退出循环,输出23451+2+2+2+22A =+,即计算数列{}12n -前6项的和,故选D .考点:循环结构流程图.【易错点睛】应用循环结构应注意的三个问题分别为:(1)确定循环变量和初始值;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.同时依次计算出每次的循环结果,直到不满足循环条件为止是解答此类问题的常用方法.8.ABC ∆中,“角,,A B C 成等差数列”是“)sin sin cos C A A B =+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】考点:1、充分条件与必要条件;2、、两角和的正弦函数.9.已知a b >,二次三项式220ax x b ++≥对于一切实数x 恒成立,又0x R ∃∈,使20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D .【答案】D 【解析】试题分析:因为二次三项式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩;又o x ∃∈R ,使220oo ax x b ++=成立,所以440ab -≥,故只有440ab -=,即0,,1a a b ab >>=,所以22a b a b+-=a b -+2aba b-=2a b a b -+≥-D .考点:1、存在性命题;2、基本不等式;3、不等式恒成立问题.10.已知等差数列{}{},n n a b 的前n 项和分别为,n n S T ,若对于任意的自然数n ,都有2343n n S n T n -=-,则()3153392102a a a b b b b ++=++( )A .1941 B .1737C .715D .2041【答案】A考点:1、等差数列的性质;2、等差数列的前n 项和公式. 11.已知函数()21,g x a x x e e e ⎛⎫=-≤≤⎪⎝⎭为自然对数的底数与()2ln h x x =的图象上存在关于x 轴对称的点,则实数a 的取值范围是( ) A .211,2e ⎡⎤+⎢⎥⎣⎦ B .21,2e ⎡⎤-⎣⎦ C .2212,2e e ⎡⎤+-⎢⎥⎣⎦D .)22,e ⎡-+∞⎣ 【答案】B 【解析】试题分析:由条件知,方程22ln a x x -=-,即22ln a x x -=-在1[,]e e上有解.设2()2ln f x x x =-,则22(1)(1)()2x x f x x x x -+'=-=.因为1x e e ≤≤,所以()0f x '=在1x =有唯一的极值点.因为1()f e=212e --,2()2f e e =-,()(1)1f x f ==-极大值,又1()()f e f e <,所以方程22ln a x x -=-在1[,]e e上有解等价于221e a -≤-≤-,所以a 的取值范围为21,2e ⎡⎤-⎣⎦,故选B .考点:1、函数极值与导数的关系;2、函数函数的图象与性质.12.如图,在OMN ∆中,,A B 分别是,OM ON 的中点,若(),OP xOA yOB x y R =+∈,且点P 落在四边形ABNM 内(含边界),则12y x y +++的取值范围是( )A .12,33⎡⎤⎢⎥⎣⎦ B .13,34⎡⎤⎢⎥⎣⎦ C .13,44⎡⎤⎢⎥⎣⎦ D .12,43⎡⎤⎢⎥⎣⎦【答案】C 【解析】考点:向量的几何意义.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若实数()0,1a b ∈、,且满足()114a b ->,则a b 、的大小关系是_____________. 【答案】a b < 【解析】试题分析:因为()0,1a b ∈、,且满足()114a b ->()112a b ->,又()()112a b a b -+≥-以()1122a b -+>,即a b <.考点:基本不等式. 14.若110tan ,,tan 342ππααα⎛⎫+=∈ ⎪⎝⎭,则2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭的值为___________. 【答案】0 【解析】试题分析:由110tan tan 3αα+=,得(tan 3)(3tan 1)0αα--=,所以tan 3α=或1tan 3α= .因为,42ππα⎛⎫∈ ⎪⎝⎭,所以tan 3α=,所以2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭=22sin 2cos 222αα++2(1cos 2)2α+=22sin 22cos 222αα++=22222222sin cos cos sin 222sin cos sin cos 2αααααααα-⋅+⋅+++=22222tan 1tan 222tan 1tan 12αααα-⋅+⋅+++=22222313220231312⨯-⨯+⨯+=++. 考点:1、两角和的正弦函数公式;2、同角三角函数间的基本关系;3、二倍角. 15.一个几何体的三视图如图所示,则此几何体的体积是_____________.【答案】80 【解析】考点:空间几何体的三视图及体积.【方法点睛】名求组合体的几何,首先应该知道它是哪些简单几何体组合而成,这就要求必须掌握简单几何体(柱、锥、台、球等)的三视图,只有在掌握简单几何体三视图的基础上才能确定组合体的“组合”,同时注意三视图的作图原则:“长对正,高平齐,宽相等”,由此可确定几何体中各数据.16.已知函数()()2lg ,064,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若关于x 的方程()()210f x bf x -+=有8个不同根,则实数b 的取值范围是______________. 【答案】1724b <≤ 【解析】考点:1、分段函数;2、函数的图象;3、方程的根.【方法点睛】方程解的个数问题解法:研究程)(x g 0=的实根常将参数移到一边转化为值域问题.当研究程)(x g 0=的实根个数问题,即方程)(x g 0=的实数根个数问题时,也常要进行参变分离,得到)(x f a =的形式,然后借助数形结合(几何法)思想求解;也可将方程化为形如)()(x h x f =,常常是一边的函数图像是确定的,另一边的图像是动的,找到符合题意的临界值,然后总结答案即可.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知()2sin 2f x x π⎛⎫=⎪⎝⎭,集合(){}|2,0M x f x x ==>,把M 中的元素从小到大依次排成一列,得到数列{}*,n a n N ∈. (1)求数列{}n a 的通项公式; (2)记211n n b a +=,设数列{}n b 的前n 项和为n T ,求证:14n T <. 【答案】(1)()*21n a n n N =-∈;(2)见解析. 【解析】试题分析:(1)首先根据正弦函数性质解出M 中的元素,从而得到21,x k k Z =+∈,由此可求得数列{}n a 的通项公式;(2)首先结合(1)求得n b 的表达式,然后利用放缩法与裂项法即可使问题得证.考点:1、递推数列;2、数列的通项公式;3、裂项法求数列的和.18.(本小题满分12分)已知向量2,1,cos ,cos 444x x x m n ⎫⎛⎫==⎪ ⎪⎭⎝⎭,记()f x m n =. (1)若()1f x =,求cos 3x π⎛⎫+⎪⎝⎭的值; (2)在锐角ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足()2cos cos a c B b C -=,求()2f A 的取值范围.【答案】(1)12;(2)32⎤⎥⎝⎦. 【解析】试题分析:(1)首先利用向量的数量积公式求出函数()f x 的解析式,然后利用二倍角公式求值即可;(2)首先由正弦定理将边角的混合等式化为角的等式,然后利用三角函数公式化简求出角A 的范围,从而求出三角函数值的范围.试题解析:(1)()21113sin cos cos cos sin 4442222262x x x x x x f x m n π⎛⎫==+=++=++ ⎪⎝⎭, 由()1f x =,得1sin 262x π⎛⎫+=⎪⎝⎭,所以21cos 12sin 3262x x ππ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭.............6分(2)因为()2cos cos a c B b C -=,由正弦定理得()2sin sin cos sin cos A C B B C -=,所以2sin cos sin cos sin cos A B C B B C -=,所以()2sin cos sin A B B C =+,因为A B C π++=,所以()sin sin B C A +=,且sin 0A ≠,所以1cos 2B =,又02B π<<,所以3B π=, 则22,33AC A C ππ+==-,又02C π<<,则62A ππ<<,得2363A πππ<+<,所以sin 126A π⎛⎫<+≤ ⎪⎝⎭,又因为()12sin 62f A A π⎛⎫=++ ⎪⎝⎭,故函数()2f A 的取值范围是32⎤⎥⎝⎦................12分考点:1、两角和的正弦函数;2、倍角公式;3、正弦定理;4、正弦函数的图象与性质.【思路点睛】第一问解答时,要注意分析结论中的角与条件中角的关系,合理选择变换策略达到求值的目的;第二问解答时,求得内角B 的值是关键,结合三角形形状得到函数(2)f A 的定义域,问题就容易解答了,常见的错误是不少考生由于审题不够仔细,漏掉2A π<,实在可惜.19.(本小题满分12分)如图所示,在直三棱柱111ABC A B C -中,平面1A BC ⊥侧面11A B BA ,且12AA AB ==.(1)求证:AB BC ⊥;(2)若直线AC 与平面1A BC 所成角的正弦值为12,求锐二面角1A A C B --的大小. 【答案】(1)见解析;(2)3π. 【解析】(2)解法一:连接CD ,由(1)可知AD ⊥平面1A BC ,则CD 是AC 在平面1A BC 内的射影, ∴ACD ∠即为直线AC 与平面1A BC 所成的角,因为直线AC 与平面1A BC 所成的角的正弦值为12,则6ACD π∠=,............................8分在等腰直角1A AB ∆中,12AA AB ==,且点D 是1A B 中点,∴112AD A B ==且,26ADC ACD ππ∠=∠=,∴AG =.................9分 过点A 作1AE A C ⊥于点E ,连接DE ,由(1)知AD ⊥平面1A BC ,则1AD A C ⊥,且AEAD A =,∴AED ∠即为二面角1A A C B --的一个平面角....................10分 且直角1A AC ∆中,11A A AC AE AC ===,又2AD ADE π=∠=,∴sin AD AED AE ∠===1A A C B --为锐二面角, ∴3AED π∠=,即二面角1A A C B --的大小为3π..................12分 解法二(向量法):由(1)知AB BC ⊥且1BB ⊥底面ABC ,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,如图所示,且设BC a =,则()()()()10,2,0,0,0,0,,0,0,0,2,2A B C a A ,()()()()11,0,0,0,2,2,,2,0,0,0,2BC a BA AC a AA ===-=.........................9分 设平面1A BC 的一个法向量()1,,n x y z =, 由111,BC n BA n ⊥⊥得:220za y z =⎧⎨+=⎩,令1y =,得0,1x z ==-,则()10,1,1n =-............10分考点:1、空间直线与直线的位置关系;2、线段垂直的性质定理;3、二面角.【技巧点睛】破解此类问题的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础.由于“线线垂直”、“线面垂直”、“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心而展开,这是化解空间垂直关系难点的技巧所在.20.(本小题满分12分)已知函数()()()()212ln f x a x x a R =---∈.(1)若曲线 ()()g x f x x =+上点()()1,g 1处的切线过点()0,2,求函数()g x 的单调减区间; (2)若函数()y f x =在10,2⎛⎫ ⎪⎝⎭上无零点,求a 的最小值. 【答案】(1)()0,2;(2)24ln 2-. 【解析】(2)因为()0f x <在区间10,2⎛⎫ ⎪⎝⎭上恒成立不可能, 故要使函数()f x 在10,2⎛⎫ ⎪⎝⎭上无零点,只要对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立, 即对12ln 0,,221x x a x ⎛⎫∈>- ⎪-⎝⎭恒成立................................8分 令()2ln 12,0,12x I x x x ⎛⎫=-∈ ⎪-⎝⎭, 则()()()()222212ln 2ln 211x x x x x I x x x --+-'==--.................10分考点:1、函数的零点;2、导数的几何意义;3、利用导数研究函数的单调性.【方法点睛】利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需()min f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可;(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解. 21.(本小题满分12分)已知()(),,,1p x m q x a ==+,二次函数()1f x p q =+,关于x 的不等式()()2211f x m x m >-+-的解集为()(),1,m m -∞++∞,其中m 为非零常数,设()()1f xg x x =-. (1)求a 的值;(2)若存在一条与y 轴垂直的直线和函数()()ln x g x x x Γ=-+的图象相切,且切点的横坐标0x 满足0013x x -+>,求实数m 的取值范围;(3)当实数k 取何值时,函数()()()ln 1x g x k x ϕ=--存在极值?并求出相应的极值点. 【答案】(1)2a =-;(2)12m >;(3)若0m >时,k ∈R ,函数()x ϕ极小值点为2x ;若0m <时,当k >()x ϕ极小值点为2x ,极大值点为1x (其中122k x +-=,222k x +=)【解析】试题分析:(1)首先用向量的数量积公式代入到()f x 的表达式中,然后根据所给出的不等式解集即可求得a 的值;(2)若存在这样的直线,则说明函数()x Γ的导数可为0,从而对函数()x Γ求导后解得切点横坐标0x 与m 的关系,根据不等式得到0x 的范围,进而求得实数m 的范围;(3)当函数()x ϕ存在极值时,其导数必为零点,因此先对函数求导,由于解析式中含实数k ,由此对导数进行分类讨论,从而可求得极极值以及极值点.试题解析:(1)∵()()(),,,1,1p x m q x a f x p q ==+=+, ∴二次函数()21f x x ax m =+++,..........................1分 关于x 的不等式()()2211f x m x m >-+-的解集为()(),01,m -∞++∞,也就是不等式()22120x a m x m m ++-++>的解集为()(),01,m -∞++∞,∴m 和 1m +是方程()22120x a m x m m ++-++=的两个根, 由韦达定理得:()()112m m a m ++=-+-, ∴2a =-.............................2分(3)()()()()()ln 11ln 11mx g x k x x k x x ϕ=--=-+---的定义域为()1,+∞, ∴()()()()222211111x k x k m mkx x x x ϕ-++-+'=--=---方程()2210x k x k m -++-+= (*)的判别式()()222414k k m k m ∆=+--+=+.①若0m >时,0∆>,方程(*)的两个实根为212412k k m x +-+=<,或222412k k mx +++=>,则()21,x x ∈时,()0x ϕ'<;()2,x x ∈+∞时,()0x ϕ'>, ∴函数()x ϕ在()21,x 上单调递减,在()2,x +∞上单调递增,此时函数()x ϕ存在极小值,极小值点为2,x k 可取任意实数,........................9分综上所述,若0m >时,k 可取任意实数,此时函数()x ϕ有极小值且极小值点为2x ;若0m <时,当2k m >-()x ϕ有极大值和极小值,此时极小值点为2x ,极大值点为1x (其中2212242422k k m k k mx x +++++==).......................12分考点:1、不等式的解法;2、方程的根;3、导数的几何意义;4、函数极值与导数的关系.请从下面所给的22 , 23 ,24三题中任选一题做答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-1:几何证明选讲已知四边形ABCD 为圆O 的内接四边形,且BC CD =,其对角线AC 与BD 相交于点M ,过点B 作圆O 的切线交DC 的延长线于点P .(1)求证:AB MD AD BM =;(2)若CP MD CB BM =,求证:AB BC =. 【答案】(1)见解析;(2)见解析. 【解析】考点:1、圆周角定理;2、相似三角形;3、弦切角定理. 23.本小题满分10分)选修4-4:坐标系与参数方程已知直线l的参数方程为22x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,且曲线C 的左焦点F 在直线l 上. (1)若直线l 与曲线C 交于,A B 两点,求FA FB 的值; (2)求曲线C 的内接矩形的周长的最大值. 【答案】(1)2;(2)16.【解析】考点:24.(本小题满分10分)选修4-5:不等式选讲 已知0x R ∃∈使不等式12x x t ---≥成立. (1)求满足条件的实数t 的集合T ;(2)若1,1m n >>,对t T ∀∈,不等式23log log m n t ≥恒成立,求m n +的最小值. 【答案】(1){}|1T t t =≤;(2)6. 【解析】试题分析:(1)由条件可知关于x 的不等式t x x ≥---|2||1|有解即可,因此只需()max12x x t ---≥,进而可求出实数t 的集合T ;(2)根据条件知道应有max 33log log t n m ≥⋅,再结合(1)的结论以及基本不等式,进而可求出n m +的最小值.试题解析:(1)令()1,11223,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩,则()11f x -≤≤,由于0x R ∃∈使不等式12x x t ---≥成立,有{}|1t T t t ∈=≤..............5分考点:1、绝对值不等式的解法;2、基本不等式.。

河北省衡水中学高三数学上学期四调考试试题 理(含解析)

河北省衡水中学高三数学上学期四调考试试题 理(含解析)

数学(理)试题【试卷综述】试题在重视基础,突出能力,体现课改,着眼稳定,实现了新课标高考数学试题与老高考试题的尝试性对接.纵观新课标高考数学试题,体现数学本质,凸显数学思想,强化思维量,控制运算量,突出综合性,破除了试卷的八股模式,以全新的面貌来诠释新课改的理念,无论是在试卷的结构安排方面,还是试题背景的设计方面,都进行了大胆的改革和有益的探索,应当说是一份很有特色的试题.【题文】一、选择题(本题共12个小题,每小题5分,共60分,在四个选项中,只有一项是符合要求的) 【题文】1.已知向量=【知识点】平面向量的数量积;向量模的运算. F3 【答案】【解析】C 解析:∵222()2()50a b a a b b +=+⋅+=,又(2,1),10a a b =⋅=,∴()250520255b b =--=⇒=,故选C. 【思路点拨】把向量的模转化为数量积运算. 【题文】2.已知的共轭复数,复数A .B .c.1 D .2【知识点】复数的基本概念与运算. L4【答案】【解析】A解析:∵114i z i-====+,∴144z i =--,∴221144z z ⎛⎛⎫⋅=+= ⎪ ⎝⎭⎝⎭.【思路点拨】化简复数z ,根据共轭复数的定义得z ,进而求得结论.【题文】3.某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有 A .80种 B .90种 C .120种 D .150种 【知识点】排列与组合. J2 【答案】【解析】 D 解析:有二类情况:(1)其中一所学校3名教师,另两所学校各一名教师的分法有335360C A =种,(2)其中一所学校1名教师,另两所学校各两名教师的分法有 213453902C C A =种,∴共有150种.故选D. 【思路点拨】先根据分到各学校的教师人数分类,再根据去各学校教师人数将教师分成三组,然后将这三组教师全排列即可. 【题文】4.曲线处的切线方程为 A .B .C .D .【知识点】导数的几何意义. B11【答案】【解析】A 解析:∵22222(2)(2)x x x y y x x x +-'=⇒==+++,∴曲线在点(-1,-1)处切线的斜率为2,∴所求切线方程为21y x =+,故选A.【思路点拨】根据导数的几何意义,得曲线在点(-1,-1)处切线的斜率,然后由点斜式得所求切线方程. 【题文】5.等比数列A .62B . 92 C .152 D .122【知识点】等比数列;积得导数公式. D3 B11 【答案】【解析】D 解析:因为182,4a a ==,又()()()()()()128128()f x x a x a x a x x a x a x a ''=---+---⎡⎤⎣⎦所以()441212818(0)82f a a a a a '====,故选D.【思路点拨】根据积得导数公式求解. 【题文】6.经过双曲线:的右焦点的直线与双曲线交于两点A,B ,若AB=4,则这样的直线有几条A .4条B .3条C .2条D .1条 【知识点】直线与双曲线. H6 H8 【答案】【解析】B 解析:因为AB=4而双曲线的实轴长是4,所以直线AB 为x 轴时成立,即端点在双曲线两支上的线段AB 只有一条,另外端点在双曲线右支上的线段AB 还有两条,所以满足条件得直线有三条.【思路点拨】设出过焦点的直线方程,代入双曲线方程,由弦长公式求得满足条件得直线条数.【题文】7.设函数,则A .在单调递增B .在单调递减 C .在单调递增 D .在单调递增【知识点】两角和与差的三角函数;函数的周期性;奇偶性;单调性. C5 C4【答案】【解析】D解析:())4f x x πωϕ=+-,因为T π=,所以2ω=,又因为()(),2f x f x πϕ-=<,所以4πϕ=,所以()f x x =,经检验在单调递增,故选 D.【思路点拨】根据已知条件求得函数()f x x =,然后逐项检验各选项的正误. 【题文】8.某产品的广告费用x 与销售额y的统计数据如下表:根据下表可得回归方程中的b =10.6,据此模型预报广告费用为10万元时销售额为A . 112.1万元B .113.1万元C .111.9万元D .113.9万元 【知识点】变量的相关性;回归直线方程的性质与应用. I4【答案】【解析】C 解析:把样本中心点(7,432)代入回归方程得 5.9a =,所以广告费用为10万元时销售额为10.610 5.9111.9⨯+=(万元),故选C.【思路点拨】根据回归方程过样本中心点得a 值,从而求得广告费用为10万元时销售额. 【题文】9.椭圆C 的两个焦点分别是F1,F2若C 上的点P 满足,则椭圆C 的离心率e 的取值范围是【知识点】椭圆的性质. H5【答案】【解析】C 解析:∵12233,2PF F F c ==∴223PF a c=-,由三角形中,两边之和大于第三边得232311223342c c a c c c a c c a +≥-⎧⇒≤≤⎨+-≥⎩,故选C.【思路点拨】利用椭圆定义,三角形的三边关系,椭圆离心率计算公式求得结论. 【题文】10.已知直三棱柱,的各顶点都在球O 的球面上,且,若球O 的体积为,则这个直三棱柱的体积等于【知识点】几何体的结构;球的体积公式;柱体的体积公式. G1【答案】【解析】B 解析:由球的体积公式得球的半径AB=AC=1,ABC是顶角是120°的等腰三角形,其外接圆半径r=1,所以球心到三棱柱底面的距离为2,所以此三棱柱的体积为111sin12042⨯⨯⨯⨯=B.【思路点拨】本题重点是求三棱锥的高,而此高是球心到三棱柱底面距离h的二倍,根据此组合体的结构,球半径R,△ABC的外接圆半径r及h构成直角三角形,由此求得结果.【题文】11.在棱长为1的正方体中,着点P是棱上一点,则满足的点P的个数为A.4 B.6 C.8 D.12【知识点】几何体中的距离求法. G11【答案】【解析】 B解析:若点P在棱AD上,设AP=x,则()222212 CP PD DC x=+=-+,所以2x=,解得12x=,同理点P可以是棱,,,,AB AA C C C B C D''''''的中点,显然点P不能在另外六条棱上,故选B.【思路点拨】构建方程,通过方程的解求得点P 的个数.【题文】12.定义在实数集R 上的函数的图像是连续不断的,若对任意实数x ,存在实常数t使得恒成立,则称是一个“关于£函数”.有下列“关于t函数”的结论:①()0f x=是常数函数中唯一一个“关于t函数”;②“关于12函数”至少有一个零点;③2()f x x=是一个“关于t函数”.其中正确结论的个数是A.1 B.2 C.3 D.0【知识点】函数中的新概念问题;函数的性质及应用. B1【答案】【解析】A 解析:①不正确,()0f x c=≠,取t= -1则f(x-1)-f(x)=c-c=0,即()0f x c=≠是一个“关于-1函数”;②正确,若f(x)是“关于12函数”,则11()()022f x f x ++=,取x=0,则1()(0)02f f +=,若1(),(0)2f f 任意一个为0,则函数f(x)有零点,若1(),(0)2f f 均不为0,则1(),(0)2f f 异号,由零点存在性定理知在10,2⎛⎫ ⎪⎝⎭内存在零点;③不正确,若2()f x x =是一个“关于t 函数”,则22()x t tx +=-()22120t x tx t ⇒+++=恒成立,则210200t t t ⎧+=⎪=⎨⎪=⎩所以t 不存在. 故选A.【思路点拨】举例说明①不正确;由函数零点存在性定理及新定义说明②正确;把2()f x x =代入新定义得t 不存在,所以③不正确.【典例剖析】本小题是新概念问题,解决这类题的关键是准确理解新概念的定义,并正确利用新概念分析问题.【题文】第Ⅱ卷(非选择题共90分)【题文】二、填空题(本题共4个小题,每小题5分,共20分。

【全国百强校】河北省衡水中学2017届高三上学期第二次调研考试理数试题解析(原卷版)

【全国百强校】河北省衡水中学2017届高三上学期第二次调研考试理数试题解析(原卷版)

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.z 是z 的共轭复数,若()2,2(z z z z i i +=-=为虚数单位),则z =( )A .1i +B .1i --C .1i -+D .1i - 2.已知向量a 与b 的夹角为60,2,5a b ==,则2a b -在a 方向上的投影为( )A .32 B .2 C .52D .3 3.在我国古代著名的数学专著《九章算术》里有—段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,曰增十三里:驽马初日行九十七里,曰减半里,良马先 至齐,复还迎驽马,二马相逢,问:几日相逢?( )A .12日B .16日C . 8日D .9日 4.已知0,0a b >>,若不等式3103m a b a b--≤+恒成立,则m 的最大值为( ) A .4 B .16 C . 9 D .35.动点(),P x y 满足1253y x y x y ≥⎧⎪+≤⎨⎪+≥⎩,点Q 为()1,1,O -为原点,OQ OP OQ λ=,则λ的最大值是( )A .1-B .1C .2 D.2 6.如图为某几何体的三视图,則该几何体的表面积为( )A . 105+B . 102+C .6226++D .626++7.已知函数()()2sin sin 3f x x x ϕ=+是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,则函数()()cos 2g x x ϕ=-的 图象( ) A .关于点,012π⎛⎫⎪⎝⎭对称 B .可由函数()f x 的图象向右平移3π个单位得到 C .可由函数()f x 的图象向左平移6π个单位得到 D .可由函数()f x 的图象向左平移3π个单位得到 8.ABC ∆中,若()sin 3cos sin cos C A A B =+,则( )A .3B π=B .2b a c =+C .ABC ∆是直角三角形D .222a b c =+或2B A C =+ 9.已知数列{}n a 满足()111,2n n n a a a n N a *+==∈+,若()()11121,n n b n n N b a λλ*+⎛⎫=-+∈=- ⎪⎝⎭, 且数列{}n b 是单调递增数列,則实数λ的取值范围是( ) A .23λ>B .32λ>C .23λ<D .32λ< 10.如图,正方形ABCD 中,M 是BC 的中点,若AC AM BD λμ=+,则λμ+=( )A .43 B .53 C .158D .2 11.已知函数()3212f x ax x =+,在1x =-处取得极大值,记()()1'g x f x =,程序框图如图所示,若输出的结果20142015S >,则判断框中可以填人的关于n 的判断条件是( )A .2014n ≤?B .2015n ≤?C .2014n >?D .2015n >?12.已知{}n a 满足()211112311,,44...44nn n n n n a a a n N S a a a a *-+⎛⎫=+=∈=++++ ⎪⎝⎭,则54n n n S a -=( )A .1n -B .nC .2nD .2n第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.数列{}n a 满足:11a =,且对任意的,m n N *∈都有:n m n m a a a nm +=++,则100a = .14.在ABC ∆中,111,2,4,,,2224A AB AC AF AB CE CA BD BC π∠======,则DE DF 的 值为 .15.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,5cos 23C =,且cos cos 2a B b A +=, 则ABC ∆面积的最大值为 . 16.已知方程23ln 02x ax -+=有4个不同的实数根,則实数a 的取值范围是 . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且()3cos 23cos a C b c A =-.(1)求角A 的大小; (2)求25cos 2sin 22C B π⎛⎫-- ⎪⎝⎭的取值范围.18.(本小题满分12分)设数列{}n a 的前n 和为n S ,()211,22n n a S na n n n N*==-+∈.(1)求证:数列{}n a 为等差数列, 并分别写出n a 和n S 关于n 的表达式; (2)是否存在自然数n ,使得321...2112423n n S S S S n+++++=?若存在,求出n 的值; 若不存在, 请说 明理由; (3)设()()()1232,...7n n n n c n N T c c c c n N n a **=∈=++++∈+,若不等式()32n mT m Z >∈,对 n N *∈恒成立, 求m 的最大值.19.(本小题满分12分)如图, 以坐标原点O 为圆心的单位圆与x 轴正半轴交于点A ,点,B P 在单位圆上, 且525,,55B AOB α⎛⎫-∠= ⎪ ⎪⎝⎭.(1)求4cos 3sin 5cos 3sin αααα-+的值;(2)若四边形OAQP 是平行四边形.①当P 在单位圆上运动时,求点Q 的轨迹方程; ②设()02POA θθπ∠=≤≤,点(),Q m n ,且()3f m n θ=+,求关于θ的函数()f θ的解析式, 并求其单调增区间.20.(本小题满分12分)已知函数()()1ln f x x a x a R x=-+∈. (1)若函数()f x 在[)1,+∞上单调递增,求实数a 的取值范围; (2)已知()()()()()211321,,22g x x m x m h x f x g x x =+-+≤-=+,当1a =时, ()h x 有两个扱值 点12,x x ,且12x x <,求()()12h x h x -的最小值.21.(本小题满分12分)在单调递增数列{}n a 中, 122,4a a ==,且21221,,n n n a a a -+成等差数 列,22122,n n n a a a ++ 成等比数列,1,2,3,...n =.(1)①求证:数列{}2n a 为等差数列;②求数列{}n a 通项公式;(2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:()4,33nn S n N n *>∈+.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 22.(本小题满分10分)选修4-1:几何证明选讲如图,,A B 是圆O 上两点, 延长AB 至点C ,满足22AB BC ==,过C 作直线CD 与圆O 相切于点,D ADB ∠的平分线交AB 于点E.(1)证明:CD CE =; (2)求ADBD的值.23.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线1C 的参数方程为cos (0,sin x a a b y b ϕϕϕ=⎧>>⎨=⎩为参数),以O 为极点,x 轴的正 半轴为极轴建立极坐标系,曲线2C 是圆心在极轴上且经过极点的圆,已知曲线1C 上的点()2,3M 对应 的参数,34ππϕθ==与曲线2C 交于点2,4D π⎛⎫⎪⎝⎭. (1)求曲线1C ,2C 的普通方程; (2)()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭是曲线1C 上的两点, 求221211ρρ+的值.24.(本小题满分10分)选修4-5:不等式选讲 已知()2122f x x x x =-++++. (1)求证:()5f x ≥;(2)若对任意实数()229,1521x f x a a -<++都成立, 求实数a 的取值范围.。

【全国百强校】河北省衡水中学2017届高三上学期四调考试理数试题解析(解析版)

【全国百强校】河北省衡水中学2017届高三上学期四调考试理数试题解析(解析版)

河北省衡水中学2017届高三上学期四调考试理科数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥ 【答案】C考点:1.集合的运算;2.对数函数的性质. 2. 若()1z i i +=,则z 等于( )A .1BC .D .12【答案】C 【解析】试题分析:由()1z i i +=得()()()11111122i i i z i i i i -===+++-,所以z ==,故选C. 考点:1.复数相关的概念;2.复数的运算.3. 在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?( ) A .5 B .6 C .4 D .3 【答案】D 【解析】试题分析:由题意可知,每层悬挂的灯数从上到下依次构成比差数列,公比为2,设顶层的灯数为1a ,则77111(12)(2112738112a a a -==--)=,解之得13a =,故选D.考点:1.数学文化;2.等比数列的性质与求和.4. 已知双曲线()2222:10 0x y C a b a b-=>>,,则C 的渐近线方程为( ) A .14y x =± B .13y x =± C.12y x =± D .y x =±【答案】C考点:双曲线的标准议程与几何性质.5. 执行如图所示的程序框图,则输出的结果为( )A .4B .9 C.7 D .5 【答案】B 【解析】试题分析:模拟算法,开始:输入0,0,1T S n ===;2,9(11)18,123,T S n T S ==+==+=≥不成立; 328,9(31)36,325,T S n T S ===+==+=≥不成立; 5232,9(51)54,527,T S n T S ===+==+=≥不成立; 72128,9(71)63,729,T S n T S ===+==+=≥成立;输出9n =,结束得算法.故选B.考点:程序框图.6. 已知函数()()()cos 0f x A x ωϕω=+>的部分图象如图所示,下面结论错误的是( )A .函数()f x 的最小正周期为23πB .函数()f x 的图象可由()()cos g x A x ω=的图象向右平移12π个单位得到 C.函数()f x 的图象关于直线12x π=对称D .函数()f x 在区间 42ππ⎛⎫ ⎪⎝⎭,上单调递增【答案】D考点:三角函数的图象和性质.7. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数() 1 0 x f x x ⎧=⎨⎩,为有理数,为无理数,称为狄利克雷函数,则关于函数()f x 有以下四个命题: ①()()1f f x =;②函数()f x 是偶函数;③任意一个非零有理数T ,()()f x T f x +=对任意x R ∈恒成立;④存在三个点()()()()()()112233 A x f x B x f x C x f x ,,,,,,使得ABC △为等边三角形. 其中真命题的个数是( )A .4B .3 C.2 D .1 【答案】A考点:1.函数的奇偶性;2.函数的周期性;3.分段函数的表示与求值. 8. 某几何体的三视图如图所示,则该几何体的体积为( )A .10B .20 C.40 D .60 【答案】B 【解析】试题分析:由三视图可知该几何体的直观图如下图所示,且三角形ABC 是以角A 为直角的直角三角形,4,3AB AC ==,从而5BC =,又5BD =,且BD ⊥平面ABC ,故四边形BCED 中边长为5的正方形,过A 作AH BC ⊥于H ,由易知AH ⊥平面BCED ,在直角三角形ABC 中可求得125AH =,从而ABCD 11125520335A BCED V V S AH -==⨯⨯=⨯⨯⨯=正方形,故选B.考点:1.三视图;2.多面体和体积.9. 已知A 、B 是椭圆()222210x y a b a b +=>>长轴的两个端点,M 、N 是椭圆上关于x 轴对称的两点,直线AM 、BN 的斜率分别为()1212 0k k k k≠,,则12k k +的最小值为( )A .1 BD【答案】A考点:1.双曲线的标准方程与几何性质;2.基本不等式;3.斜率公式.【名师点睛】本题考查双曲线的标准方程与几何性质、基本不等式、斜率公式,属中档题;双曲线的标准方程与几何性质是高考的热点,特别是双曲线的性质,几乎每年均有涉及,主要以选择题、填空题为主,解题时,应利用图形,挖掘题目中的隐含条件,结合图形求解.10. 在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -的体积最大值是( )A .36B .C.24 D . 【答案】A考点:1.线面垂直的判定与性质;2.轨迹方程的求法;3.多面体的体积.11. 已知函数()()()3ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,,,若()f x ax ≥恒成立,则实数a 的取值范围是( ) A .20 3⎡⎤⎢⎥⎣⎦,B .30 4⎡⎤⎢⎥⎣⎦, C.[]0 1, D .30 2⎡⎤⎢⎥⎣⎦, 【答案】B 【解析】试题分析:在同一坐标系内作出函数()()()3ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,,与函数y ax =和图象,通过图象可知,当直线y ax =绕着原点从x 轴旋转到与图中直线l 重合时,符合题意,当0x >时,2()3(1)f x x '=-,设直线l与函数()y f x =的切点为00(,)P x y ,则3200000(1)3(1)y x x x x --==,解之得032x =,所以直线l 的斜率2333(1)24k =⨯-=,所以a 的取值范围为30 4⎡⎤⎢⎥⎣⎦,,故选B.考点:1.函数与不等式;2.导数的几何意义.【名师点睛】本题考查函数与不等式、导数的几何意义,属中档题;导数的几何意义是每年高考的必考内容,利用导数解决不等式恒成立问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的范围;或参变分离,构造函数,直接把问题转化为函数的最值问题;或通过数列结合解题.12. 已知过抛物线()2:20G y px p =>焦点F 的直线l 与抛物线G 交于M 、N 两点(M 在x 轴上方),满足3MF FN =,163MN =,则以M 为圆心且与抛物线准线相切的圆的标准方程为( )A .2211633x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭ B .2211633x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭C.()(22316x y -+-= D .()(22316x y -+=【答案】C考点:1.抛物线的标准方程与几何性质;2.直线与抛物线的位置关系;2.圆的标准方程.【名师点睛】本题考查抛物线的标准方程与几何性质、直线与抛物线的位置关系、圆的标准方程,属难题;在解抛物线有关问题时,凡涉及抛物线上的点到焦点的距离时,一般要运用定义转化为到准线的距离处理;抛物线的焦点弦一直是高考的热点,对于焦点弦的性质应牢固掌握.第Ⅱ卷(非选择题共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若x、y满足约束条件1040xx yx y-≥⎧⎪-≤⎨⎪+-≤⎩,则1yx-的最大值为.【答案】2考点:线性规划.14. 在ABC △中, 3 5AB AC ==,,若O 为ABC △外接圆的圆心(即满足OA OB OC ==),则AO BC ⋅的值为 . 【答案】8考点:数量积的几何运算.【名师点睛】本题考查数量积的几何运算,属中档题;平面向量的数量积有两种运算,一是依据长度与夹角,即数量积的几何意义运算,一是利用坐标运算,本题充分利用向量线性运算的几何意义与数量积的几何意义进行运算,运算量不大,考查子学生逻辑思维能力,体现了数形结合的数学思想. 15. 已知数列{}n a 的各项均为正数,11142 n n n n a a a a a ++=-=+,,若数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n = .【答案】120 【解析】试题分析:数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为321121211223111154444n n n a a a a a a a a a a a a a a +-----+++=++==+++,所以122n a +=, 又114 n n n na a a a ++-=+,所以221 4n n a a +-=,由此可得22211444,2244,120n a a n n n n +=+=+∴=+=,即应填120.考点:1.数列求和;2.累和法求数列通项.【名师点睛】本题考查数列求和,累和法求数列通项,属中档题;由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=f (n )·a n ,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用.16. 过抛物线()220y px p =>的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的的交点为B ,点A 在抛物线的准线上的射影为C ,若 48AF FB BA BC =⋅=,,则抛物线的方程为 . 【答案】24y x =考点:1.抛物线的标准方程与几何性质;2.向量数量积的几何意义.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC △中,内角A 、B 、C 所对的边分别为 a b c ,,,已知 4 6 2b c C B ===,,. (1)求cos B 的值; (2)求ABC △的面积.【答案】(1)34;(2试题解析:(1)在ABC △中,sin sin b c B C =,因为 4 6 2b c C B ===,,,所以46sin sin 2B B=,即 46sin 2sin cos B B B =,又sin 0B ≠,∴3cos 4B =.(2)由(1)知3cos 4B =,从而sin B =.因此sin sin 22sin cos C B B B ==21cos cos22cos 18C B B ==-=.所以()()13sin sin sin sin cos cos sin 84A B C B C B C B C π=--=+=++=所以ABC △的面积为1462⨯⨯=. 考点:1.正弦定理;2.三角恒等变换;3.三角形内角和与三角形面积公式.【名师点睛】本题考查正弦定理、三角恒等变换、三角形内角和与三角形面积公式,属中档题. 正、余弦定理是揭示三角形边角关系的重要定理,直接运用正弦定理解决一类已知三角形两边及一角对边求其它元素,或已知两边及一边对角求其它元素的问题,这时要讨论三角形解的个数问题;利用余弦定理可以快捷求第三边直接运用余弦定理解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题;知道两边和其中一边的对角,利用余弦定理可以快捷求第三边. 18. (本小题满分12分)如图所示,在三棱柱111ABC A B C -中,11AA B B 为正方形,11BB C C 为菱形,1160BB C ∠=︒,平面11AA B B ⊥平面11BB C C .(1)求证:11B C AC ⊥;(2)设点E 、F 分别是1B C ,1AA 的中点,试判断直线EF 与平面ABC 的位置关系,并说明理由; (3)求二面角1B AC C --的余弦值.【答案】(1)见解析;(2) EF ∥平面ABC ;.试题解析:(1)连接1BC ,在正方形11ABB A 中,1AB BB ⊥, 因为平面11AA B B ⊥平面11BB C C ,平面11AA B B平面111BB C C BB =,AB ⊂平面11ABB A ,所以AB ⊥平面11BB C C ,因为1B C ⊥平面11BB C C ,所以1AB B C ⊥.在菱形11BB C C 中,11BC B C ⊥,因为1BC ⊥面1ABC ,AB ⊥平面1ABC ,1BC AB B =,所以1B C ⊥平面1ABC ,因为1AC ⊥平面1ABC ,所以11B C AC ⊥.(2)EF ∥平面ABC ,理由如下:取BC 的中点G ,连接GE 、GA ,因为E 是1B C 的中点,所以1GE BB ∥,且112GE BB =,因为F 是 1AA 的中点,所以112AF AA =. 在正方形11ABB A 中,1111 AA BB AA BB =∥,,所以GE AF ∥,且GE AF =. ∴四边形GEFA 为平行四边形,所以EF GA ∥. 因为EF ABC ⊄平面,GA ABC ⊂平面, 所以EF ABC ∥平面.(3)在平面11BB C C 内过点B 作1Bz BB ⊥,由(1)可知:11AB BB C C ⊥平面,以点B 为坐标原点,分别以BA 、1BB 所在的直线为x 、y 轴,建立如图所示的空间直角坐标系B xyz -,设()2 0 0A ,,,则()10 2 0B ,,.在菱形11BB C C 中,1160BB C ∠=︒,所以(0 1 C -,,(10 1 C ,. 设平面1ACC 的一个法向量为() 1x y =n ,,. 因为100n AC n CC ⎧⋅=⎪⎨⋅=⎪⎩即()(()() 1 2 1 0 10 2 00x y x y ⎧⋅--=⎪⎨⋅=⎪⎩,,,,,,,,所以0x y ⎧=⎪⎨⎪=⎩0 1n ⎫=⎪⎪⎝⎭,,, 由(1)可知:1CB 是平面1ABC 的一个法向量.所以(1110 10 3 cos nCB n CB n CB ⎛⎫⋅ ⎪ ⎪⋅⎝<>===⋅,,,,,,所以二面角1B AC C --. 考点:1.面面垂直的判定与性质;2.线面平行、垂直的判定与性质;3.空间向量的应用.【名师点睛】本题考查.面面垂直的判定与性质、线面平行、垂直的判定与性质及空间向量的应用,属中档题;解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;求二面角,则通过求两个半平面的法向量的夹角间接求解.此时建立恰当的空间直角坐标系以及正确求出各点的坐标是解题的关键所在.19. (本小题满分12分)如图,在平面直角坐标系xOy 中,已知()00 R x y ,是椭圆22:12412x y C +=上的一点,从原点O 向圆()()2200:8R x x y y -+-=作两条切线,分别交椭圆于P ,Q .(1)若R 点在第一象限,且直线OP ,OQ 互相垂直,求圆R 的方程; (2)若直线OP ,OQ 的斜率存在,并记为12 k k ,,求12k k 的值; (3)试问22OP OQ +是否为定值?若是,求出该值;若不是,说明理由.【答案】(1)((228x y-+-=;(2)12-;(3)36.试题解析:(1)由圆R的方程知圆R的半径r=,因为直线OP,OQ互相垂直,且和圆R相切,所以4OR==,即220016x y+=①又点R在椭圆C上,所以220012412x y+=②联立①②,解得0xy⎧=⎪⎨=⎪⎩R的方程为((228x y-+-=.(2)因为直线1:OP y k x=和2:OQ y k x=都与圆R==212288yk kx-⋅=-,因为点()00R x y,在椭圆C上,所以220012412x y+=,即22001122y x=-,所以2122141228xk kx-==--.(3)方法一(1)当直线OP、OQ不落在坐标轴上时,设()11P x y,,()22Q x y,,由(2)知12210k k+=,所以121221y yx x=,故2222121214y y x x=,因为()11P x y,,()22Q x y,,在椭圆C上,所以221112412x y+=,222212412x y+=,即22111122y x=-,22221122y x=-,所以222212121111212224x x x x⎛⎫⎛⎫--=⎪⎪⎝⎭⎝⎭,整理得221224x x +=,所以222212121112121222y y x x ⎛⎫⎛⎫+=-+-= ⎪ ⎪⎝⎭⎝⎭,所以()()22222222221122121236OP OQ x y x y x x y y +=+++=+++=.(2)当直线OP 、OQ 落在坐标轴上时,显然有2236OP OQ +=. 综上:2236OP OQ +=.考点:1.椭圆的标准方程与几何性质;2.圆的标准方程;3.直线与圆的位置关系. 20. (本小题满分12分)设椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F 、2F ,上顶点为A ,过A 与2AF 垂直的直线交x 轴负半轴于Q 点,且12220F F F Q +=. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F 三点的圆恰好与直线30x --=相切,求椭圆C 的方程;(3)过2F 的直线l 与(2)中椭圆交于不同的两点M 、N ,则1F MN △的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.【答案】(1)12;(2) 22143x y +=;(3)1F MN △的内切圆的面积的最大值为916π,此时直线l 的方程为1x =.(3)设1F MN △的内切圆的半径为R ,则1F MN △的周长为48a =,由此可得112121212F MN S F F y y y y =⋅-=-△,设直线l 的方程为1x my =+,与椭圆方程联立得()2234690my my ++-=,由根与系数关系代入112F MNS y y =-=△,换元令t =()12121211313F MN t S t t t t==≥-+△,可知当1t =时,14F MN S R =△有最大值3,从而求出内切圆面积的最大值与相应的直线方程即可.试题解析:(1)由题()0 A b ,,1F 为2QF 的中点.设()()12 0 0F c F c -,,,,则()3 0Q c -,, ()3 AQ c b =--,,()2 AF c b =-,,由题2AQ AF ⊥,即22230AQ AF c b ⋅=-+=,∴()22230c a c -+-=即224a c =,∴12c e a ==. (2)由题2Rt QAF △外接圆圆心为斜边2QF 的中点()1 0F c -,,半径2r c =, ∵由题2Rt QAF △外接圆与直线30x --=相切,∴d r =,即322c c --=,即34c c +=,∴1c =,22a c ==,b =C 的方程为22143x y +=.(3)设()11 M x y ,,()22 N x y ,,由题12 y y ,异号,设1F MN △的内切圆的半径为R ,则1F MN △的周长为48a =,()111142F MN S MN F M F N R R =++=△, 因此要使1F MN △内切圆的面积最大,只需R 最大,此时1F MN S △也最大,112121212F MN S F F y y y y =⋅-=-△, 由题知,直线l 的斜率不为零,可设直线l 的方程为1x my =+,由221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=,由韦达定理得122634m y y m -+=+,122934y y m -=+,(0m R ∆>∈⇒)112F MN S y y =-=△令t =1t ≥,()12121211313F MN t S t t t t==≥-+△, 当1t =时,14F MN S R =△有最大值3,此时,0m =,max 34R =, 故1F MN △的内切圆的面积的最大值为916π,此时直线l 的方程为1x =. 考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系;3.直线与圆的位置关系. 21. (本小题满分12分) 已知0t >,设函数()()3231312t f x x x tx +=-++.(1)存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值,求t 的取值范围; (2)()2x f x xe m ≤-+对任意[0 )x ∈+∞,恒成立时,m 的最大值为1,求t 的取值范围.【答案】(1)5[ )3+∞,;(2) 1(0 ]3,.(2)()()()323223131313123131222x x x t t t x x tx xe m m xe x x tx x e x x t +++⎛⎫-++≤-+⇔≤-+-+=-+-+ ⎪⎝⎭,构造函数()()23132x t g x e x x t +=-+-,道m 的最大值为1,等价于()()231302x t g x e x x t +=-+-≥在区间[0 )+∞,上恒成立,由于()0130g t =-≥,则103t <≤,此时()0g x '>恒成立,即()g x 在区间[0 )+∞,上单调递增,符合题意.试题解析:(1)()()()()2'331331f x x t x t x x t =-++=--,①当01t <<时,()f x 在()0 t ,上单调递增,在() 1t ,单调递减,在()1 2,单调递增,∴()()2f t f ≥,由()()2f t f ≥,得3234t t -+≥在01t <<时无解, ②当1t =时,不合题意;③当12t <<时,()f x 在()0 1,单调递增,在()1 t ,递减,在() 2t ,单调递增, ∴()()1212f f t ⎧≥⎪⎨<<⎪⎩即1332212t t ⎧+≥⎪⎨⎪<<⎩,∴523t ≤<,④当2t ≥时,()f x 在()0 1,单调递增,在()1 2,单调递减,满足条件, 综上所述:5[ )3t ∈+∞,时,存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值. ∴()()0130g x g t ≥=-≥,满足条件,∴t 的取值范围是1(0 ]3,.考点:1.导数与函数的单调性、极值,最值;2.函数与不等式.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程已知圆锥曲线2cos :x C y αα=⎧⎪⎨=⎪⎩(α为参数)和定点(0 A ,1F 、2F 是此圆锥曲线的左、右焦点,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系. (1)求直线2AF 的直角坐标方程;(2)经过点1F 且与直线2AF 垂直的直线l 交此圆锥曲线于M 、N 两点,求12MF NF -的值.【答案】0y +-=;(2. 试题解析:(1)曲线2cos :x C y αα=⎧⎪⎨=⎪⎩可化为22143x y +=,其轨迹为椭圆,焦点为()1 1 0F -,,()21 0F ,.经过(0 A 和()21 0F ,的直线方程为11x =0y +-=. (2)由(1)知,直线2AF的斜率为2l AF ⊥,所以l,倾斜角为30︒, 所以l的参数方程为112x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数). 代入椭圆C的方程中,得213360t --=. 因为 M N ,在点1F的两侧,所以1112MF NF t t -=+=. 考点:1.参数方程与普通方程的互化;2.直线参数方程的应用. 23. (本小题满分10分)选修4-5:不等式选讲 设()34f x x x =-+-. (1)解不等式()2f x ≤;(2)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围. 【答案】(1) 59 22⎡⎤⎢⎥⎣⎦,;(2)()1 2[ )2-∞-+∞,, 【解析】试题分析:(1)由绝对值的意义去掉绝对值符号,将函数()f x 表示成分段函数的形式,作出函数()f x 的图象,数形结合可得到不等式的解集;(2)在同一坐标系内作出函数()y f x =与函数1y ax =-的图象,数形结合可求出a 的范围.(2)函数1y ax =-的图象是过点()0 1-,的直线, 当且仅当函数()y f x =与直线1y ax =-有公共点时,存在题设的x .由图象知,a 的取值范围为()12[ )2-∞-+∞,,.考点:1.含绝对值不等式的解法;2.分段函数的表示与作图;3.函数与不等式.。

【全国百强校】河北省衡水中学2017届高三上学期第三次调研考试理数试题解析(解析版)

【全国百强校】河北省衡水中学2017届高三上学期第三次调研考试理数试题解析(解析版)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|1log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥ 【答案】C 【解析】试题分析:因为集合A 中至少有3个元素,所以2log 4k >,所以4216k >=,故选C .考点:1、集合的元素;2、对数的性质. 2.复数212ii+-的共轭复数的虚部是( ) A .35- B .35C .-1D .1 【答案】C 【解析】考点:复数的概念及运算. 3. 下列结论正确的是( )A .若直线l ⊥平面α,直线l ⊥平面β,则//αβB .若直线//l 平面α,直线//l 平面β,则//αβC .若两直线12l l 、与平面α所成的角相等,则12//l lD .若直线l 上两个不同的点A B 、到平面α的距离相等,则//l α 【答案】A 【解析】试题分析:A 中,垂直于同一直线的两平面互相平行,所以直线直线l ⊥平面α,直线l ⊥平面β,则//αβ,正确;B 中,若直线//l 平面α,直线//l 平面β,则两平面可能相交或平行,故B 错;C 中,若两直线12l l 、与平面α所成的角相等,则12l l 、可能相交、平行或异面,故C 错;D 中,若直线l 上两个不同的点A B 、到平面α的距离相等,则直线与平面可能相交或者平行,故D 错,故选A . 考点:空间直线与平面间的位置关系.【思维点睛】解答此类试题的关键是对于空间几何中的一些概念、公理、定理和推论的理解一定要结合图形,理解其本质,准确把握其内涵,特别是定理、公理中的限制条件,如公理3中“不共线的三点”,“不共线”是很重要的条件.4.等比数列{}n a 的前n 项和为n S ,已知2532a a a =,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .36 【答案】B考点:等比数列通项公式及求前n 项和公式. 【一题多解】由2532a a a =,得42a =.又47522a a +=,所以714a =,所以12q =,所以116a =,所以515(1)311a q S q-==-,故选B .5.已知实数,x y 满足21010x y x y -+≥⎧⎨--≤⎩,则22x y z x ++=的取值范围为( )A .100,3⎡⎤⎢⎥⎣⎦ B .(]10,2,3⎡⎫-∞+∞⎪⎢⎣⎭ C .102,3⎡⎤⎢⎥⎣⎦D .(]10,0,3⎡⎫-∞+∞⎪⎢⎣⎭ 【答案】D 【解析】试题分析:作出不等式组不等式的平面区域如图所示,2222x y y z x x+++==+表示的几何意义为区域内的点到点(0,2)P -的斜率k 加上2.因为(3,2)A 、(1,0)C -,所以4,23AP CP k k ==-,所以由图知43k ≥或2k ≤-,所以1023k +≥或20k +≤,即103z ≥或0z ≤,故选D .考点:简单的线性规划问题.6.若()0,0,lg lg lg a b a b a b >>+=+,则a b +的最小值为( ) A .8 B .6 C .4 D .2 【答案】C考点:1、对数的运算;2、基本不等式.7.阅读如图所示的程序框图,则该算法的功能是( )A .计算数列{}12n -前5项的和B .计算数列{}21n -前5项的和 C .计算数列{}21n -前6项的和 D .计算数列{}12n -前6项的和【答案】D 【解析】试题分析:第一次循环,得1,2A i ==;第二次循环:1+21,3A i =⨯=;第三次循环:21+21+21,4A i =⨯⨯=;第四次循环:231+2+2+2,5A i ==;第五次循环:2341+2+2+2+2,6A i ==;第六次循环:23451+2+2+2+2+2A =,76i =>,不满足循环条件,退出循环,输出23451+2+2+2+22A =+,即计算数列{}12n -前6项的和,故选D .考点:循环结构流程图.【易错点睛】应用循环结构应注意的三个问题分别为:(1)确定循环变量和初始值;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.同时依次计算出每次的循环结果,直到不满足循环条件为止是解答此类问题的常用方法.8.ABC ∆中,“角,,A B C 成等差数列”是“)sin sin cos C A A B =+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】考点:1、充分条件与必要条件;2、、两角和的正弦函数.9.已知a b >,二次三项式220ax x b ++≥对于一切实数x 恒成立,又0x R ∃∈,使20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D .【答案】D 【解析】试题分析:因为二次三项式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩;又o x ∃∈R ,使220oo ax x b ++=成立,所以440ab -≥,故只有440ab -=,即0,,1a a b ab >>=,所以22a b a b+-=a b -+2aba b-=2a b a b -+≥-D .考点:1、存在性命题;2、基本不等式;3、不等式恒成立问题.10.已知等差数列{}{},n n a b 的前n 项和分别为,n n S T ,若对于任意的自然数n ,都有2343n n S n T n -=-,则()3153392102a a a b b b b ++=++( )A .1941 B .1737C .715D .2041【答案】A考点:1、等差数列的性质;2、等差数列的前n 项和公式. 11.已知函数()21,g x a x x e e e ⎛⎫=-≤≤⎪⎝⎭为自然对数的底数与()2ln h x x =的图象上存在关于x 轴对称的点,则实数a 的取值范围是( ) A .211,2e ⎡⎤+⎢⎥⎣⎦ B .21,2e ⎡⎤-⎣⎦ C .2212,2e e ⎡⎤+-⎢⎥⎣⎦D .)22,e ⎡-+∞⎣ 【答案】B 【解析】试题分析:由条件知,方程22ln a x x -=-,即22ln a x x -=-在1[,]e e上有解.设2()2ln f x x x =-,则22(1)(1)()2x x f x x x x -+'=-=.因为1x e e ≤≤,所以()0f x '=在1x =有唯一的极值点.因为1()f e=212e --,2()2f e e =-,()(1)1f x f ==-极大值,又1()()f e f e <,所以方程22ln a x x -=-在1[,]e e上有解等价于221e a -≤-≤-,所以a 的取值范围为21,2e ⎡⎤-⎣⎦,故选B .考点:1、函数极值与导数的关系;2、函数函数的图象与性质.12.如图,在OMN ∆中,,A B 分别是,OM ON 的中点,若(),OP xOA yOB x y R =+∈,且点P 落在四边形ABNM 内(含边界),则12y x y +++的取值范围是( )A .12,33⎡⎤⎢⎥⎣⎦ B .13,34⎡⎤⎢⎥⎣⎦ C .13,44⎡⎤⎢⎥⎣⎦ D .12,43⎡⎤⎢⎥⎣⎦【答案】C 【解析】考点:向量的几何意义.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若实数()0,1a b ∈、,且满足()114a b ->,则a b 、的大小关系是_____________. 【答案】a b < 【解析】试题分析:因为()0,1a b ∈、,且满足()114a b ->12>,又()12a b -+≥以()1122a b -+>,即a b <.考点:基本不等式. 14.若110tan ,,tan 342ππααα⎛⎫+=∈ ⎪⎝⎭,则2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭的值为___________. 【答案】0 【解析】试题分析:由110tan tan 3αα+=,得(tan 3)(3tan 1)0αα--=,所以tan 3α=或1tan 3α= .因为,42ππα⎛⎫∈ ⎪⎝⎭,所以tan 3α=,所以2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭=2222αα++cos 2)2α+=2222αα+=2222222sin cos cos sin 2sin cos sin cos 2αααααααα-⋅+++=2222tan 1tan 2tan 1tan 12αααα-++++=22223130231312⨯-++=++. 考点:1、两角和的正弦函数公式;2、同角三角函数间的基本关系;3、二倍角. 15.一个几何体的三视图如图所示,则此几何体的体积是_____________.【答案】80 【解析】考点:空间几何体的三视图及体积.【方法点睛】名求组合体的几何,首先应该知道它是哪些简单几何体组合而成,这就要求必须掌握简单几何体(柱、锥、台、球等)的三视图,只有在掌握简单几何体三视图的基础上才能确定组合体的“组合”,同时注意三视图的作图原则:“长对正,高平齐,宽相等”,由此可确定几何体中各数据.16.已知函数()()2lg ,064,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若关于x 的方程()()210f x bf x -+=有8个不同根,则实数b 的取值范围是______________. 【答案】1724b <≤ 【解析】考点:1、分段函数;2、函数的图象;3、方程的根.【方法点睛】方程解的个数问题解法:研究程)(x g 0=的实根常将参数移到一边转化为值域问题.当研究程)(x g 0=的实根个数问题,即方程)(x g 0=的实数根个数问题时,也常要进行参变分离,得到)(x f a =的形式,然后借助数形结合(几何法)思想求解;也可将方程化为形如)()(x h x f =,常常是一边的函数图像是确定的,另一边的图像是动的,找到符合题意的临界值,然后总结答案即可.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知()2sin 2f x x π⎛⎫=⎪⎝⎭,集合(){}|2,0M x f x x ==>,把M 中的元素从小到大依次排成一列,得到数列{}*,n a n N ∈. (1)求数列{}n a 的通项公式; (2)记211n n b a +=,设数列{}n b 的前n 项和为n T ,求证:14n T <. 【答案】(1)()*21n a n n N =-∈;(2)见解析. 【解析】试题分析:(1)首先根据正弦函数性质解出M 中的元素,从而得到21,x k k Z =+∈,由此可求得数列{}n a 的通项公式;(2)首先结合(1)求得n b 的表达式,然后利用放缩法与裂项法即可使问题得证.考点:1、递推数列;2、数列的通项公式;3、裂项法求数列的和.18.(本小题满分12分)已知向量2,1,cos ,cos 444x x x m n ⎫⎛⎫==⎪ ⎪⎭⎝⎭,记()f x m n =. (1)若()1f x =,求cos 3x π⎛⎫+⎪⎝⎭的值; (2)在锐角ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足()2cos cos a c B b C -=,求()2f A 的取值范围.【答案】(1)12;(2)32⎤⎥⎝⎦. 【解析】试题分析:(1)首先利用向量的数量积公式求出函数()f x 的解析式,然后利用二倍角公式求值即可;(2)首先由正弦定理将边角的混合等式化为角的等式,然后利用三角函数公式化简求出角A 的范围,从而求出三角函数值的范围.试题解析:(1)()21113sin cos cos cos sin 44422222262x x x x x x f x m n π⎛⎫==+=++=++ ⎪⎝⎭, 由()1f x =,得1sin 262x π⎛⎫+=⎪⎝⎭,所以21cos 12sin 3262x x ππ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭.............6分(2)因为()2cos cos a c B b C -=,由正弦定理得()2sin sin cos sin cos A C B B C -=,所以2sin cos sin cos sin cos A B C B B C -=,所以()2sin cos sin A B B C =+,因为A B C π++=,所以()sin sin B C A +=,且sin 0A ≠,所以1cos 2B =,又02B π<<,所以3B π=, 则22,33AC A C ππ+==-,又02C π<<,则62A ππ<<,得2363A πππ<+<,所以sin 126A π⎛⎫<+≤ ⎪⎝⎭,又因为()12sin 62f A A π⎛⎫=++ ⎪⎝⎭,故函数()2f A 的取值范围是13,22⎛⎤⎥ ⎝⎦................12分考点:1、两角和的正弦函数;2、倍角公式;3、正弦定理;4、正弦函数的图象与性质.【思路点睛】第一问解答时,要注意分析结论中的角与条件中角的关系,合理选择变换策略达到求值的目的;第二问解答时,求得内角B 的值是关键,结合三角形形状得到函数(2)f A 的定义域,问题就容易解答了,常见的错误是不少考生由于审题不够仔细,漏掉2A π<,实在可惜.19.(本小题满分12分)如图所示,在直三棱柱111ABC A B C -中,平面1A BC ⊥侧面11A B BA ,且12AA AB ==.(1)求证:AB BC ⊥;(2)若直线AC 与平面1A BC 所成角的正弦值为12,求锐二面角1A A C B --的大小. 【答案】(1)见解析;(2)3π. 【解析】(2)解法一:连接CD ,由(1)可知AD ⊥平面1A BC ,则CD 是AC 在平面1A BC 内的射影, ∴ACD ∠即为直线AC 与平面1A BC 所成的角,因为直线AC 与平面1A BC 所成的角的正弦值为12,则6ACD π∠=,............................8分在等腰直角1A AB ∆中,12AA AB ==,且点D 是1A B 中点,∴112AD A B ==且,26ADC ACD ππ∠=∠=,∴AG =.................9分过点A 作1AE A C ⊥于点E ,连接DE ,由(1)知AD ⊥平面1A BC ,则1AD A C ⊥,且AE AD A =,∴AED ∠即为二面角1A A C B --的一个平面角....................10分且直角1A AC ∆中,11A A AC AE AC ===,又2AD ADE π=∠=,∴sin AD AED AE ∠===1A A C B --为锐二面角, ∴3AED π∠=,即二面角1A A C B --的大小为3π..................12分 解法二(向量法):由(1)知AB BC ⊥且1BB ⊥底面ABC ,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,如图所示,且设BC a =,则()()()()10,2,0,0,0,0,,0,0,0,2,2A B C a A ,()()()()11,0,0,0,2,2,,2,0,0,0,2BC a BA AC a AA ===-=.........................9分 设平面1A BC 的一个法向量()1,,n x y z =,由111,BC n BA n ⊥⊥得:0220za y z =⎧⎨+=⎩,令1y =,得0,1x z ==-,则()10,1,1n =-............10分考点:1、空间直线与直线的位置关系;2、线段垂直的性质定理;3、二面角.【技巧点睛】破解此类问题的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础.由于“线线垂直”、“线面垂直”、“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心而展开,这是化解空间垂直关系难点的技巧所在. 20.(本小题满分12分)已知函数()()()()212ln f x a x x a R =---∈.(1)若曲线 ()()g x f x x =+上点()()1,g 1处的切线过点()0,2,求函数()g x 的单调减区间;(2)若函数()y f x =在10,2⎛⎫ ⎪⎝⎭上无零点,求a 的最小值.【答案】(1)()0,2;(2)24ln 2-.【解析】(2)因为()0f x <在区间10,2⎛⎫ ⎪⎝⎭上恒成立不可能,故要使函数()f x 在10,2⎛⎫ ⎪⎝⎭上无零点,只要对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立, 即对12ln 0,,221x x a x ⎛⎫∈>- ⎪-⎝⎭恒成立................................8分 令()2ln 12,0,12x I x x x ⎛⎫=-∈ ⎪-⎝⎭, 则()()()()222212ln 2ln 211x x x x x I x x x --+-'==--.................10分考点:1、函数的零点;2、导数的几何意义;3、利用导数研究函数的单调性.【方法点睛】利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需()min f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可;(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.21.(本小题满分12分)已知()(),,,1p x m q x a ==+,二次函数()1f x p q =+,关于x 的不等式()()2211f x m x m >-+-的解集为()(),1,m m -∞++∞,其中m 为非零常数,设()()1f xg x x =-. (1)求a 的值; (2)若存在一条与y 轴垂直的直线和函数()()ln x g x x x Γ=-+的图象相切,且切点的横坐标0x 满足0013x x -+>,求实数m 的取值范围;(3)当实数k 取何值时,函数()()()ln 1x g x k x ϕ=--存在极值?并求出相应的极值点.【答案】(1)2a =-;(2)12m >;(3)若0m >时,k ∈R ,函数()x ϕ极小值点为2x ;若0m <时,当k >()x ϕ极小值点为2x ,极大值点为1x (其中122k x +-=,2x = 【解析】试题分析:(1)首先用向量的数量积公式代入到()f x 的表达式中,然后根据所给出的不等式解集即可求得a 的值;(2)若存在这样的直线,则说明函数()x Γ的导数可为0,从而对函数()x Γ求导后解得切点横坐标0x 与m 的关系,根据不等式得到0x 的范围,进而求得实数m 的范围;(3)当函数()x ϕ存在极值时,其导数必为零点,因此先对函数求导,由于解析式中含实数k ,由此对导数进行分类讨论,从而可求得极极值以及极值点.试题解析:(1)∵()()(),,,1,1p x m q x a f x p q ==+=+,∴二次函数()21f x x ax m =+++,..........................1分关于x 的不等式()()2211f x m x m >-+-的解集为()(),01,m -∞++∞,也就是不等式()22120x a m x m m ++-++>的解集为()(),01,m -∞++∞,∴m 和 1m +是方程()22120x a m x m m ++-++=的两个根,由韦达定理得:()()112m m a m ++=-+-,∴2a =-.............................2分(3)()()()()()ln 11ln 11m x g x k x x k x x ϕ=--=-+---的定义域为()1,+∞, ∴()()()()222211111x k x k m mk x x x x ϕ-++-+'=--=--- 方程()2210x k x k m -++-+= (*)的判别式()()222414k k m k m ∆=+--+=+.①若0m >时,0∆>,方程(*)的两个实根为11x =<,或21x =>, 则()21,x x ∈时,()0x ϕ'<;()2,x x ∈+∞时,()0x ϕ'>,∴函数()x ϕ在()21,x 上单调递减,在()2,x +∞上单调递增,此时函数()x ϕ存在极小值,极小值点为2,x k 可取任意实数,........................9分综上所述,若0m >时,k 可取任意实数,此时函数()x ϕ有极小值且极小值点为2x ;若0m <时,当k >()x ϕ有极大值和极小值,此时极小值点为2x ,极大值点为1x (其中12x x ==).......................12分 考点:1、不等式的解法;2、方程的根;3、导数的几何意义;4、函数极值与导数的关系.请从下面所给的22 , 23 ,24三题中任选一题做答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-1:几何证明选讲已知四边形ABCD 为圆O 的内接四边形,且BC CD =,其对角线AC 与BD 相交于点M ,过点B 作圆O 的切线交DC 的延长线于点P .(1)求证:AB MD AD BM =;(2)若CP MD CB BM =,求证:AB BC =.【答案】(1)见解析;(2)见解析.【解析】考点:1、圆周角定理;2、相似三角形;3、弦切角定理.23.本小题满分10分)选修4-4:坐标系与参数方程已知直线l的参数方程为x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,且曲线C 的左焦点F 在直线l 上. (1)若直线l 与曲线C 交于,A B 两点,求FA FB 的值;(2)求曲线C 的内接矩形的周长的最大值.【答案】(1)2;(2)16.【解析】考点:24.(本小题满分10分)选修4-5:不等式选讲已知0x R ∃∈使不等式12x x t ---≥成立.(1)求满足条件的实数t 的集合T ;(2)若1,1m n >>,对t T ∀∈,不等式23log log m n t ≥恒成立,求m n +的最小值.【答案】(1){}|1T t t =≤;(2)6.【解析】试题分析:(1)由条件可知关于x 的不等式t x x ≥---|2||1|有解即可,因此只需()max 12x x t ---≥,进而可求出实数t 的集合T ;(2)根据条件知道应有max 33log log t n m ≥⋅,再结合(1)的结论以及基本不等式,进而可求出n m +的最小值.试题解析:(1)令()1,11223,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩,则()11f x -≤≤,由于0x R ∃∈使不等式12x x t ---≥成立,有{}|1t T t t ∈=≤..............5分考点:1、绝对值不等式的解法;2、基本不等式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省衡水中学2017届高三上学期四调考试理科
数学试题
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一

是符合题目要求的.
1.已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥
2.若()1z i i +=,则z 等于( )
A .1
B
C
D .12
3.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?( ) A .5 B .6 C .4 D .3
4.已知双曲线()22
22:10 0x y C a b a b
-=>>,,则C 的渐近线方程为( ) A .14y x =± B .13y x =± C.1
2y x =± D .y x =±
5.执行如图所示的程序框图,则输出的结果为( )
A .4
B .9 C.7 D .5
6. 已知函数()()()cos 0f x A x ωϕω=+>的部分图象如图所示,下面结论错误的是( )
A .函数()f x 的最小正周期为
23
π
B .函数()f x 的图象可由()()cos g x A x ω=的图象向右平移12
π
个单位得到 C.函数()f x 的图象关于直线12
x π
=
对称
D .函数()f x 在区间 4

π⎛⎫ ⎪⎝⎭,上单调递增
7.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数() 1 0 x f x x ⎧=⎨⎩

为有理数,为无理数,称为狄利克
雷函数,则关于函数()f x 有以下四个命题: ①()()1f f x =; ②函数()f x 是偶函数;
③任意一个非零有理数T ,()()f x T f x +=对任意x R ∈恒成立;
④存在三个点()()()()()()112233 A x f x B x f x C x f x ,
,,,,,使得ABC △为等边三角形. 其中真命题的个数是( )
A .4
B .3 C.2 D .1
8.某几何体的三视图如图所示,则该几何体的体积为( )
A .10
B .20 C.40 D .60
9. 已知A 、B 是椭圆()22
2210x y a b a b +=>>长轴的两个端点,M 、N 是椭圆上关于x 轴对称的两点,直线
AM 、BN 的斜率分别为()1212 0k k k k ≠,
,则12k k +的最小值为( ) A .1 B
D
10. 在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -的体积最大值是( ) A .36 B
. C.24 D

11.已知函数()()()3
ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,

,若()f x ax ≥恒成立,则实数a 的取值范围是( )
A .20 3⎡⎤⎢⎥⎣⎦,
B .30 4⎡⎤⎢⎥⎣⎦, C.[]0 1, D .30 2⎡
⎤⎢⎥⎣
⎦,
12.已知过抛物线()2:20G y px p =>焦点F 的直线l 与抛物线G 交于M 、N 两点(M 在x 轴上方),满足3MF FN =,16
3
MN =
,则以M 为圆心且与抛物线准线相切的圆的标准方程为( ) A
.2
211633x y ⎛⎛⎫-+-= ⎪ ⎝⎭⎝⎭ B
.2
211633x y ⎛⎛
⎫-+= ⎪ ⎝⎭⎝⎭
C.(
)(2
2
316x y -+-= D .(
)(2
2
316x y -+=
第Ⅱ卷(非选择题 共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.若x 、y 满足约束条件10
040
x x y x y -≥⎧⎪
-≤⎨⎪+-≤⎩
,则1y x -的最大值为 .
14. 在ABC △中, 3 5AB AC ==,,若O 为ABC △外接圆的圆心(即满足OA OB OC ==),则AO BC ⋅的值为 .
15.已知数列{}n a 的各项均为正数,1114
2 n n n n a a a a a ++=-=+,,若数列1
1n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为5,则
n = .
16.过抛物线()220y px p =>的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的的交点为B ,点A 在抛物线的准线上的射影为C ,若 48AF FB BA BC =⋅=,
,则抛物线的方程为 .
三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.(本小题满分12分)
在ABC △中,内角A 、B 、C 所对的边分别为 a b c ,,,已知 4 6 2b c C B ===,,. (1)求cos B 的值; (2)求ABC △的面积. 18.(本小题满分12分)
如图所示,在三棱柱111ABC A B C -中,11AA B B 为正方形,11BB C C 为菱形,1160BB C ∠=︒,平面11AA B B ⊥平面11BB C C .
(1)求证:11B C AC ⊥;
(2)设点E 、F 分别是1B C ,1AA 的中点,试判断直线EF 与平面ABC 的位置关系,并说明理由; (3)求二面角1B AC C --的余弦值. 19.(本小题满分12分)
如图,在平面直角坐标系xOy 中,已知()00 R x y ,是椭圆22
:12412
x y C +=上的一点,从原点O 向圆
()()22
00:8R x x y y -+-=作两条切线,分别交椭圆于P ,Q .
(1)若R 点在第一象限,且直线OP ,OQ 互相垂直,求圆R 的方程; (2)若直线OP ,OQ 的斜率存在,并记为12 k k ,,求12k k 的值; (3)试问2
2OP OQ +是否为定值?若是,求出该值;若不是,说明理由.
20.(本小题满分12分)
设椭圆()22
22:10x y C a b a b +=>>的左、右焦点分别为1F 、2F ,上顶点为A ,过A 与2AF 垂直的直线交x 轴负
半轴于Q 点,且12220F F F Q +=. (1)求椭圆C 的离心率;
(2)若过A 、Q 、2F 三点的圆恰好与直线30x --=相切,求椭圆C 的方程;
(3)过2F 的直线l 与(2)中椭圆交于不同的两点M 、N ,则1F MN △的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由. 21.(本小题满分12分) 已知0t >,设函数()()3231312
t f x x x tx +=-
++.
(1)存在()00 2x ∈,
,使得()0f x 是()f x 在[]0 2,上的最大值,求t 的取值范围; (2)()2x f x xe m ≤-+对任意[0 )x ∈+∞,恒成立时,m 的最大值为1,求t 的取值范围.
请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.
22. (本小题满分10分)选修4-4:坐标系与参数方程
已知圆锥曲线2cos :
x C y α
α=⎧⎪⎨=⎪⎩
(α为参数)和定点(0 A ,1F 、2F 是此圆锥曲线的左、右焦点,以原
点O 为极点,以x 轴的正半轴为极轴建立极坐标系. (1)求直线2AF 的直角坐标方程;
(2)经过点1F 且与直线2AF 垂直的直线l 交此圆锥曲线于M 、N 两点,求12MF NF -的值. 23. (本小题满分10分)选修4-5:不等式选讲 设()34f x x x =-+-. (1)解不等式()2f x ≤;
(2)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围.。

相关文档
最新文档