A degenerate three-level laser with a parametric amplifier
光电技术专业英语词汇

《光电技术》专业英语词汇1.Absorption coefficient 吸收系数2.Acceptance angle 接收角3.fibers 光纤4.Acceptors in semiconductors 半导体接收器5.Acousto-optic modulator 声光调制6.Bragg diffraction 布拉格衍射7.Air disk 艾里斑8.angular radius 角半径9.Airy rings 艾里环10.anisotropy 各向异性11.optical 光学的12.refractive index 各向异性13.Antireflection coating 抗反膜14.Argon-ion laser 氩离子激光器15.Attenuation coefficient 衰减系数16.Avalanche 雪崩17.breakdown voltage 击穿电压18.multiplication factor 倍增因子19.noise 燥声20.Avalanche photodiode(APD) 雪崩二极管21.absorption region in APD APD 吸收区域22.characteristics-table 特性表格23.guard ring 保护环24.internal gain 内增益25.noise 噪声26.photogeneration 光子再生27.primary photocurrent 起始光电流28.principle 原理29.responsivity of InGaAs InGaAs 响应度30.separate absorption and multiplication(SAM) 分离吸收和倍增31.separate absorption grading and multiplication(SAGM) 分离吸收等级和倍增32.silicon 硅33.Average irradiance 平均照度34.Bandgap 带隙35.energy gap 能级带隙36.bandgap diagram 带隙图37.Bandwidth 带宽38.Beam 光束39.Beam splitter cube立方分束器40.Biaxial crystals 双轴晶体41.Birefringent 双折射42.Bit rate 位率43.Black body radiation law 黑体辐射法则44.Bloch wave in a crystal 晶体中布洛赫波45.Boundary conditions 边界条件46.Bragg angle 布拉格角度47.Bragg diffraction condition 布拉格衍射条件48.Bragg wavelength 布拉格波长49.Brewster angle 布鲁斯特角50.Brewster window 布鲁斯特窗51.Calcite霰石52.Carrier confinement 载流子限制53.Centrosymmetric crystals 中心对称晶体54.Chirping 啁啾55.Cladding覆层56.Coefficient of index grating 指数光栅系数57.Coherence 连贯性pensation doping 掺杂补偿59.Conduction band 导带60.Conductivity 导电性61.Confining layers 限制层62.Conjugate image 共轭像63.Cut-off wavelength 截止波长64.Degenerate semiconductor简并半导体65.Density of states 态密度66.Depletion layer 耗尽层67.Detectivity 探测率68.Dielectric mirrors 介电质镜像69.Diffraction 衍射70.Diffraction grating 衍射光栅71.Diffraction grating equation 衍射光栅等式72.Diffusion current 扩散电流73.Diffusion flux 扩散流量74.Diffusion Length 扩散长度75.Diode equation 二极管公式76.Diode ideality factor 二极管理想因子77.Direct recombination 直接复合78.Dispersion 散射79.Dispersive medium 散射介质80.Distributed Bragg reflector 分布布拉格反射器81.Donors in semiconductors 施主离子82.Doppler broadened linewidth 多普勒扩展线宽83.Doppler effect 多普勒效应84.Doppler shift 多普勒位移85.Doppler-heterostructure 多普勒同质结构86.Drift mobility漂移迁移率87.Drift Velocity 漂移速度88.Effective density of states 有效态密度89.Effective mass 有效质量90.Efficiency 效率91.Einstein coefficients 爱因斯坦系数92.Electrical bandwidth of fibers 光纤电子带宽93.Electromagnetic wave 电磁波94.Electron affinity 电子亲和势95.Electron potential energy in a crystal 晶体电子阱能量96.Electro-optic effects 光电子效应97.Energy band 能量带宽98.Energy band diagram 能量带宽图99.Energy level 能级100.Epitaxial growth外延生长101.Erbium doped fiber amplifier 掺饵光纤放大器102.Excess carrier distribution 过剩载流子扩散103.External photocurrent 外部光电流104.Extrinsic semiconductors 本征半导体105.Fabry-Perot laser amplifier 法布里-珀罗激光放大器106.Fabry-Perot optical resonator 法布里-珀罗光谐振器107.Faraday effect 法拉第效应108.Fermi-Dirac function 费米狄拉克结109.Fermi energy 费米能级110.Fill factor 填充因子111.Free spectral range 自由谱范围112.Fresnel’s equations菲涅耳方程113.Fresnel’s optical indicatrix 菲涅耳椭圆球114.Full width at half maximum半峰宽115.Full width at half power半功率带宽116.Gaussian beam 高斯光束117.Gaussian dispersion 高斯散射118.Gaussian pulse 高斯脉冲119.Glass perform玻璃预制棒120.Goos Haenchen phase shift Goos Haenchen相位移121.Graded index rod lens 梯度折射率棒透镜122.Group delay 群延迟123.Group velocity 群参数124.Half-wave plate retarder 半波延迟器125.Helium-Neon laser氦氖激光器126.Heterojunction 异质结127.Heterostructure 异质结构128.Hole 空穴129.Hologram 全息图130.Holography 全息照相131.Homojunction 同质结132.Huygens-Fresnel principle惠更斯-菲涅耳原理133.Impact-ionization 碰撞电离134.Index matching 指数匹配135.Injection 注射136.Instantaneous irradiance 自发辐射137.Integrated optics 集成光路138.Intensity of light 光强139.Intersymbol interference 符号间干扰140.Intrinsic concentration本征浓度141.Intrinsic semiconductors 本征半导体142.Irradiance 辐射SER 激光144.active medium 活动介质145.active region 活动区域146.amplifiers 放大器147.cleaved-coupled-cavity解理耦合腔148.distributed Bragg reflection 分布布拉格反射149.distributed feedback 分布反馈150.efficiency of the He-Ne 氦氖效率151.multiple quantum well 多量子阱152.oscillation condition 振荡条件ser diode 激光二极管sing emission 激光发射155.LED 发光二极管156.Lineshape function 线形结157.Linewidth 线宽158.Lithium niobate铌酸锂159.Load line 负载线160.Loss coefficient 损耗系数161.Mazh-Zehnder modulator Mazh-Zehnder型调制器162.Macrobending loss 宏弯损耗163.Magneto-optic effects 磁光效应164.Magneto-optic isolator 磁光隔离165.Magneto-optic modulator 磁光调制166.Majority carriers 多数载流子167.Matrix emitter 矩阵发射168.Maximum acceptance angle 最优接收角169.Maxwell’s wave equation 麦克斯维方程170.Microbending loss 微弯损耗171.Microlaser 微型激光172.Minority carriers 少数载流子173.Modulated directional coupler 调制定向偶合器174.Modulation of light 光调制175.Monochromatic wave 单色光176.Multiplication region 倍增区177.Negative absolute temperature 负温度系数 round-trip optical gain 环路净光增益179.Noise 噪声180.Noncentrosymmetric crystals 非中心对称晶体181.Nondegenerate semiconductors 非简并半异体182.Non-linear optic 非线性光学183.Non-thermal equilibrium 非热平衡184.Normalized frequency 归一化频率185.Normalized index difference 归一化指数差异186.Normalized propagation constant 归一化传播常数187.Normalized thickness 归一化厚度188.Numerical aperture 孔径189.Optic axis 光轴190.Optical activity 光活性191.Optical anisotropy 光各向异性192.Optical bandwidth 光带宽193.Optical cavity 光腔194.Optical divergence 光发散195.Optic fibers 光纤196.Optical fiber amplifier 光纤放大器197.Optical field 光场198.Optical gain 光增益199.Optical indicatrix 光随圆球200.Optical isolater 光隔离器201.Optical Laser amplifiers 激光放大器202.Optical modulators 光调制器203.Optical pumping 光泵浦204.Optical resonator 光谐振器205.Optical tunneling光学通道206.Optical isotropic光学各向同性的207.Outside vapor deposition管外气相淀积208.Penetration depth 渗透深度209.Phase change 相位改变210.Phase condition in lasers 激光相条件211.Phase matching 相位匹配212.Phase matching angle 相位匹配角213.Phase mismatch 相位失配214.Phase modulation 相位调制215.Phase modulator 相位调制器216.Phase of a wave 波相217.Phase velocity 相速218.Phonon 光子219.Photoconductive detector 光导探测器220.Photoconductive gain 光导增益221.Photoconductivity 光导性222.Photocurrent 光电流223.Photodetector 光探测器224.Photodiode 光电二极管225.Photoelastic effect 光弹效应226.Photogeneration 光子再生227.Photon amplification 光子放大228.Photon confinement 光子限制229.Photortansistor 光电三极管230.Photovoltaic devices 光伏器件231.Piezoelectric effect 压电效应232.Planck’s radiation distribution law 普朗克辐射法则233.Pockels cell modulator 普克尔斯调制器234.Pockel coefficients 普克尔斯系数235.Pockels phase modulator 普克尔斯相位调制器236.Polarization 极化237.Polarization transmission matrix 极化传输矩阵238.Population inversion 粒子数反转239.Poynting vector能流密度向量240.Preform 预制棒241.Propagation constant 传播常数242.Pumping 泵浦243.Pyroelectric detectors 热释电探测器244.Quantum efficiency 量子效应245.Quantum noise 量子噪声246.Quantum well 量子阱247.Quarter-wave plate retarder 四分之一波长延迟248.Radiant sensitivity 辐射敏感性249.Ramo’s theorem拉莫定理250.Rate equations速率方程251.Rayleigh criterion 瑞利条件252.Rayleigh scattering limit 瑞利散射极限253.Real image 实像254.Recombination 复合255.Recombination lifetime 复合寿命256.Reflectance 反射257.Reflection 反射258.Refracted light 折射光259.Refractive index 折射系数260.Resolving power分辩力261.Response time 响应时间262.Return-to-zero data rate 归零码263.Rise time 上升时间264.Saturation drift velocity 饱和漂移速度265.Scattering 散射266.Second harmonic generation 二阶谐波267.Self-phase modulation 自相位调制268.Sellmeier dispersion equation色列米尔波散方程式269.Shockley equation肖克利公式270.Shot noise肖特基噪声271.Signal to noise ratio 信噪比272.Single frequency lasers 单波长噪声273.Single quantum well 单量子阱274.Snell’s law斯涅尔定律275.Solar cell 光电池276.Solid state photomultiplier 固态光复用器277.Spectral intensity 谱强度278.Spectral responsivity 光谱响应279.Spontaneous emission 自发辐射280.stimulated emission 受激辐射281.Terrestrial light 陆地光282.Theraml equilibrium热平衡283.Thermal generation 热再生284.Thermal velocity 热速度285.Thershold concentration 光强阈值286.Threshold current 阈值电流287.Threshold wavelength 阈值波长288.Total acceptance angle 全接受角289.Totla internal reflection 全反射290.Transfer distance 转移距离291.Transit time 渡越时间292.Transmission coefficient 传输系数293.Tramsmittance 传输294.Transverse electric field 电横波场295.Tranverse magnetic field 磁横波场296.Traveling vave lase 行波激光器297.Uniaxial crystals 单轴晶体298.UnPolarized light 非极化光299.Wave 波300.Wave equation 波公式301.Wavefront 波前302.Waveguide 波导303.Wave number 波数304.Wave packet 波包络305.Wavevector 波矢量306.Dark current 暗电流307.Saturation signal 饱和信号量308.Fringing field drift 边缘电场漂移plementary color 补色310.Image lag 残像311.Charge handling capability 操作电荷量312.Luminous quantity 测光量313.Pixel signal interpolating 插值处理314.Field integration 场读出方式315.Vertical CCD 垂直CCD316.Vertical overflow drain 垂直溢出漏极317.Conduction band 导带318.Charge coupled device 电荷耦合组件319.Electronic shutter 电子快门320.Dynamic range 动态范围321.Temporal resolution 动态分辨率322.Majority carrier 多数载流子323.Amorphous silicon photoconversion layer 非晶硅存储型324.Floating diffusion amplifier 浮置扩散放大器325.Floating gate amplifier 浮置栅极放大器326.Radiant quantity 辐射剂量327.Blooming 高光溢出328.High frame rate readout mode 高速读出模式329.Interlace scan 隔行扫描330.Fixed pattern noise 固定图形噪声331.Photodiode 光电二极管332.Iconoscope 光电摄像管333.Photolelctric effect 光电效应334.Spectral response 光谱响应335.Interline transfer CCD 行间转移型CCD336.Depletion layer 耗尽层plementary metal oxide semi-conductor 互补金属氧化物半导体338.Fundamental absorption edge 基本吸收带339.Valence band 价带340.Transistor 晶体管341.Visible light 可见光342.Spatial filter 空间滤波器343.Block access 块存取344.Pupil compensation 快门校正345.Diffusion current 扩散电流346.Discrete cosine transform 离散余弦变换347.Luminance signal 高度信号348.Quantum efficiency 量子效率349.Smear 漏光350.Edge enhancement 轮廓校正351.Nyquist frequency 奈奎斯特频率352.Energy band 能带353.Bias 偏压354.Drift current 漂移电流355.Clamp 钳位356.Global exposure 全面曝光357.Progressive scan 全像素读出方式358.Full frame CCD 全帧CCD359.Defect correction 缺陷补偿360.Thermal noise 热噪声361.Weak inversion 弱反转362.Shot noise 散粒噪声363.Chrominance difference signal 色差信号364.Color temperature 色温365.Minority carrier 少数载流子366.Image stabilizer 手振校正367.Horizontal CCD 水平CCD368.Random noise 随机噪声369.Tunneling effect 隧道效应370.Image sensor 图像传感器371.Aliasing 伪信号372.Passive 无源373.Passive pixel sensor 无源像素传感器374.Line transfer 线转移375.Correlated double sampling 相关双采样376.Pinned photodiode 掩埋型光电二极管377.Overflow 溢出378.Effective pixel 有效像素379.Active pixel sensor 有源像素传感器380.Threshold voltage 阈值电压381.Source follower 源极跟随器382.Illuminance 照度383.Refraction index 折射率384.Frame integration 帧读出方式385.Frame interline transfer CCD 帧行间转移CCD 386.Frame transfer 帧转移387.Frame transfer CCD 帧转移CCD388.Non interlace 逐行扫描389.Conversion efficiency 转换效率390.Automatic gain control 自动增益控制391.Self-induced drift 自激漂移392.Minimum illumination 最低照度393.CMOS image sensor COMS图像传感器394.MOS diode MOS二极管395.MOS image sensor MOS型图像传感器396.ISO sensitivity ISO感光度。
基于简并四波混频的双信道双频段增益谱

基于简并四波混频的双信道双频段增益谱*王丹1)2)† 郭瑞翔1)2) 戴玉鹏1)2) 周海涛1)2)1) (山西大学物理电子工程学院, 太原 030006)2) (极端光学协同创新中心, 山西大学, 太原 030006)(2020 年10 月26日收到; 2020 年11 月20日收到修改稿)基于大规模光通信中频分复用的需求, 本文以热原子的简并四波混频为模型, 研究了具有双频段特性的双信道增益光谱. 一束缀饰场诱导激发态能级发生分裂, 由于量子干涉效应, 四波混频信号的增益在双光子共振处被抑制, 从而使增益谱线的包络由单频段转变为“M”型的双频段结构. 同时, 缀饰场还提高了相干基态的原子布居, 进一步增强了四波混频信号的强度. 最终实验上在铯原子气室内获得了一对具备双频段的双信道高增益光谱, 并通过调节缀饰场的强度和频率失谐, 实现了对双增益峰频率间隔的有效操控.关键词:简并四波混频, 缀饰态, Autler-Townes分裂, 双信道双频段PACS:42.50.–p, 42.50.Gy, 42.65.Ky, 42.50.Nn DOI: 10.7498/aps.70.202017781 引 言基于受激拉曼过程的四波混频(four-wave mixing, FWM)效应是一种具有双信道增益特性的三阶非线性效应[1−3]. 介质在同时吸收两个泵浦光子的能量后将其转换为一对斯托克斯和反斯托克斯光子, 因二者被同时放大, 所以其量子噪声具备一定的关联特性. 实验上, 原子系综因其相对灵活的操控性成为研究FWM的理想介质, 特别是基于双L型碱金属原子系统的受激拉曼FWM效应备受青睐. 该过程一方面为连续变量量子通信提供了丰富的纠缠光源: 包括制备强量子关联光束[3−7]、多组份纠缠[4,8,9]、图像纠缠[10]以及基于轨道角动量多路复用的纠缠光束[11]等; 另一方面, 实现了部分光量子器件的功能, 比如: 群速度匹配的双信道光脉冲延迟线[12]、超慢光水平全光晶体管[13]、低噪声放大器[14,15]、低噪声原子干涉仪[16]、量子分束器[17]等, 这些为实现基于原子系综的量子存储、量子计量、量子逻辑门操控等量子信息网络通信提供了可能.以上FWM属于非简并FWM过程, 当注入探测光频率与泵浦光频率一致时, 能量守恒决定了产生的(反)斯托克斯光场也具有相同的频率. 因此, 双L型的非简并FWM变为二能级的简并四波混频(degenerate FWM, DFWM). 实验研究发现, 该DFWM效率依赖于基态和激发态能级的角动量[18], 且增益非常小. 与非简并情况类似, 增益光谱仍然是一个单频段的包络.在通信网络的实际应用中, 为了更大限度地实现信息的传递, 常采用频分复用技术: 即两路以上信号同时在一个信道内传输. 此时就需要将用于传输信道的总带宽划分为若干个子频带. “缀饰四波混频”(dressed-FWM)就是一种可以使得增益光谱发生Autler-Townes (AT)分裂的效应, 可以在Y型、N型、级联型等能级系统中研究[19−24]. 本文* 国家自然科学基金(批准号: 11704235)、山西省青年科技研究基金(批准号: 201901D211166)和山西省高等学校科技创新项目(批准号: 2020L0038)资助的课题.† 通信作者. E-mail: wangdan63@© 2021 中国物理学会 Chinese Physical Society 通过在上述DFWM 系统中额外引入一束光场来诱导激发态能级发生缀饰分裂, 由于量子干涉DF-WM 两个信道的增益谱均被划分为两个子频段,从而获得具有双信道双频段特性的增益光谱. 另一方面, 该光场同参与DFWM 的光场构成了一个L 型的三能级封闭原子体系, 通过抽运作用可以增强DFWM 基态的原子布居数, 从而大幅度提升信道的增益指标. 文章先从理论上对L 型的dressed-DFWM 进行了计算、模拟与分析, 接下来是对实验过程的描述、实验结果的展示与讨论以及通过调节实验参数去验证双增益峰的AT 分裂.2 理论分析E 1(ω1,k 1)E p (ωp ,k p )|1⟩↔|2⟩∆1=ω1−ω21=∆p E 2(ω2,k 2)|0⟩↔|2⟩∆2=ω2−ω20ω21ω20|1⟩↔|2⟩|0⟩↔|2⟩E i ωi k i i =1,2,p ,f Ωi =µmn E i /ℏµmn 光与原子相互作用构成的能级系统及空间光场矢量配置如图1(a)—(c)所示. 泵浦场 与探测场 始终保持同频并共同作用于的能级跃迁, 对应的频率失谐 . 缀饰场 作用于 的能级跃迁, 对应的失谐量为 . 其中, 和 分别为 以及 能级跃迁的共振频率, 为光场电场强度, 为光场角频率, 为光波矢量, 下角标 分别表示泵浦场、缀饰场、探测场以及产生的FWM 场. 因此, 相应的拉比频率定义如下: , 用于描述光与原子跃迁之间的相互作用强度. 其中 为能级|m ⟩↔|n ⟩ℏk 1k p yz k p k 1ωf =2ω1−ωp k f =2k 1−k p k f k p k 1k 2k p xz 的跃迁偶极矩, 为归一化普朗克常数.各光场的波矢量关系如图1(c)所示: 泵浦场 与探测场 同在 水平面内, 其中, 沿着z 轴正方向传播, 与之有一个很小的夹角. 由DFWM 满足能量守恒 和动量守恒 可知, 产生的FWM 场 和探测场 对称分布在 两侧. 缀饰场 与 同在 水平面内传播,二者之间有一个小的夹角.ρ(0)11Ω1−−→ρ(1)21(Ωp )∗−−−→ρ(2)11Ω1−−→ρ(3)21ρij =⟨i |ˆρ|j ⟩|1⟩E 1|2⟩E p |1⟩E 1|2⟩E f |1⟩在图1(a)所示的二能级系统中, DFWM 的Liouville 路径跃迁微扰链为: , 这里 表示系统的密度矩阵元. 即初始时刻处于 态的原子吸收一个泵浦光子 被激发到 态, 辐射出一个同频的探测光子 回到 态, 随后原子再次被 泵浦至 态后产生一个同频的新光子 重新回到 态. 由双边Feynman 图解的方法[25], 可得DFWM 信号对应的密度矩阵元为Γij |i ⟩|j ⟩|1⟩ρ(0)11≈0.5其中 为能级 与能级 之间的横向弛豫系数.对于图1(a)所示开放的二能级系统, 稳态下处于基态 的原子布居数为 .E 2|0⟩|1⟩ρ(0)11≈1E 2|2⟩|±⟩ρ(0)11Ω1−−→ρ(1)±1(Ωp )∗−−−→ρ(2)11Ω1−−→ρ(3)±1当打开缀饰场 后, 原子系统由图1(a)所示的开放二能级变为图1(b)所示的L 型封闭三能级. 其中, 态上的原子被抽运到 态上使得, 并且 使得激发态 缀饰分裂为 两个能态, 从而影响DFWM 信号. 此时DFWM 信号的Liouville路径被修饰为 , 该效应被称之为dressed-DFWM [19],相应的密度矩阵元表达式为|Ω2|24[i (∆p −∆2)−Γ10]E 2IF ∝ ρ(3)21 2 ρ(3)21 2 ρ(3)±1 2其中(2)式分母中的双光子项表示缀饰场 对DFWM 的修正. 因为FWM 信号的强度 , 因此可通过分析 和实现对DFWM 以及dressed-DFWM 信号的分析.|2>(b)|2>1|1>|0>|1>|0>(a)图 1 能级图与光场空间波矢量配置图 (a) 二能级DFWM; (b) L 型三能级dressed-DFWM; (c) 光场空间矢量的相位配置图Fig. 1. Energy level and laser fields’ geometric configura-tion: (a) Two-level DFWM; (b) L -type three-level dressed-DFWM; (c) phase-matching configuration of laser fields’wave vectors.∆p I F v ∆i −k i .v (i =1,2,p )k i .v ∆p ∆p −k p v f (v )=exp(−v 2/u 2)u √πu =√2k B T /m k B 为了展示DFWM 信号的产生过程, 选择扫描探测场失谐 的方法来研究 的变化. 另外, 系综内原子的热运动会引起多普勒效应, 速度为 的原子群感受到的光场失谐量变为 .对于实验中的三束激光, 原子群感受到的多普勒频移 近似相等, 因此(2)式中双光子失谐几乎不依赖原子的运动速度. 记z 方向的原子运动速度大小为v , (1)式和(2)式中的单光子失谐量 应替换为 , 并对速度分布 求积分, 可得到多普勒展宽原子系综内的DFWM 信号强度. 其中, 为最概然速率,m 为单个原子质量, 为玻尔兹曼常数, T 为原子系综温度.ρ(3)21 2∆p =0∆p =0∆p <0∆p >0|∆p |E 2∆p −∆2=0由图2可以看出, 虚线所示的DFWM 信号强度 是关于单光子共振频率 对称的包络, 并在 处取得最大值, 在 和 的区域, 随着 的增大, 函数逐渐减小. 打开缀饰场 后, 由(2)式分母上的双光子缀饰项可知, 当信号满足双光子共振条件 时, 信号强度最小, 如图2的实线所示, dressed-DFWM 增益曲线在共振处产生一个“深坑”即单频段的增益谱线经Autler-Townes 分裂后变为“M”型的双频段包络.-600-400-2002004006000.0050.0100.0150.020F W M i n t e n s i t y /a r b . u n i tDFWMDressed -DFWMp /(2p ⋅MHz)Ω1=Ω2=2π·110MHz Ωp =2π·10MHz Γ10=2π·1kHz Γ21=Γ11=2π·4.6MHz T =60◦C图 2 FWM 强度增益谱的理论模拟曲线, 其中虚线为DFWM,实线为dressed-DFWM, 使用参数为: ,, , , Ω1=Ω2=2π·110MHz Ωp =2π·10MHz Γ10=2π·1kHz Γ21=Γ11=2π·4.6MHz T =60◦C Fig. 2. The theoretical curves of FWM intensity gain spec-trum, the dashed curve is for the DFWM, and the solid curve is for the dressed-DFWM. The parameters:, , , , .E 2|0⟩↔|2⟩采用缀饰态图像解释增益谱线的AT 分裂.缀饰场 与原子的 跃迁耦合后产生两个|±⟩|2⟩(∆2±√∆22+Ω22)/2∆p =(∆2−√∆22+Ω22)/2|0⟩↔|−⟩∆p =(∆2+√∆22+Ω22)/2|0⟩↔|+⟩√∆22+Ω22∆p =∆2缀饰态 , 它们相对原来能态 的失谐量为. 因此, 扫描探测光频率刚好满足 时, 诱导 跃迁的共振激发, 产生图2中实线所示的左侧增益峰; 当 时, 光场与 的跃迁共振, 产生右侧增益峰, 左右两增益峰之间的AT 分裂间距为 ; 当满足 时,量子干涉使得增益信号被抑制, 形成两增益峰之间的“深坑”.3 实验及结果分析62S 1/2,F g =3,4|0⟩|1⟩62P 1/2,F e =4|2⟩E 1E p |1⟩↔|2⟩E 2|0⟩↔|2⟩E 1E p 0.2◦E 2E p 0.3◦E 1E 2E p 选取133Cs 原子的D1线(中心吸收波长895 nm)跃迁能级开展相关实验研究. 如图1(b)所示的L 三能级结构: 铯原子的两个超精细基态 分别对应能态 和 , 超精细激发态 作为能态 . 其中, S 、P 分别表示轨道角动量为0和1的原子能态, F 表示原子态的总角动量量子数, 下标g 和e 用于区分基态和激发态. 图3所示为实验装置示意图: 垂直偏振的 光束与水平偏振的 光束来自同一台半导体激光器(Toptica: DL 100), 其频率在 跃迁的共振中心附近连续扫描; 垂直偏振的 光束来自另外一台895 nm 半导体激光器, 其频率锁定在的能级跃迁附近. 三束激光由消光比为105∶1的格兰-泰勒棱镜GT1耦合, 同向穿过直径为25 mm 、长度为25 mm 的Cs 原子泡. 其中 与 之间夹角为 , 与 之间夹角为 ,, 和 的有效光斑直径分别为2 mm, 2 mm和0.3 mm. Cs 泡采用温控装置稳定工作于61 ℃,并包裹了三层µ箔来屏蔽外界磁场. 激光和原子相GT1Cs cellGT2CCD SE 图 3 实验装置示意图, 双向箭头代表光场偏振方向, GT:格兰-泰勒棱镜, S: 光屏, PD: 光电探测器Fig. 3. The sketch of experimental setup. The double-headed arrow stands for the light polarization. GT: Glan-Taylor prism, S: screen, PD: photo detector.E f E p E f 互作用后将产生一个同为水平偏振的DFWM 信号 , 如图3中的虚线所示. Cs 泡后端放置另一块格兰-泰勒棱镜GT 2用于分离相互垂直的偏振光束, 透过GT 2的为水平偏振光 和 (对应文中所述的双信道), 它们由一对平衡光电探测器PD 1和PD 2记录其信号强度. PD 前放置一块可以移动的接收光屏S 并采用CCD 收集屏上的光斑图样.E p E f E 1E 2E p E p E 2∆p =0E 2E 1E p |1⟩|2⟩E f E 1E p G f G p G f =G p −1实验现象如图4所示: 上排为CCD 采集到的光斑图样, 下排对应PD 记录的 和 的归一化信号强度随单光子失谐的变化曲线(即增益谱), 增益谱采用远失谐处的入射探测光强度进行归一化.当关闭泵浦场 时, 和 构成一个典型的L 型三能级EIT 系统, 由于偏振旋转效应[26]和GT2的不完美消光, 图4(a)显示接收屏上同时出现有和 两个光斑; PD1接收到的光谱信号在 处呈现透明窗口, PD2处无信号产生, 见图4(b). 当关闭缀饰场 时, 和 共同作用于由 和 构成的二能级系统, 发生DFWM 效应,因此接收屏上出现一个新产生的DFWM 光斑 ,它与 和 同在oy 轴上, 如图4(c)所示; PD1和PD2在相同的频段内均接收到增益信号, 且DFWM 信号增益 与探测光增益 之间满足, 如图4(d)所示. 与理论曲线不同的是,DFWM 增益峰值出现在共振频率的左侧, 这是因62S 1/2,F g =4↔62P 1/2,F e =3E 1E 2E p E f ∆p =∆2E 2|1⟩为受到邻近能级跃迁( )的影响. 当同时打开泵浦场 和缀饰场 时, 发生dressed-DFWM 效应, DFWM 两个信道和 的增益谱均发生AT 分裂呈现出具有双频段结构的“M”型包络, 增益信号在双光子共振频率处( )被抑制, 如图4(f)所示; 同时, 由于缀饰场 的光抽运作用, DFWM 基态能级 上的原子布居数提高了一倍, 因此, 图4(f)的增益强度以及图4(e)的光斑亮度都有明显的提高.√∆22+Ω22根据缀饰态理论的分析, dressed-DFWM 增益谱左右两峰之间的AT 分裂间距与缀饰场频率失谐和拉比频率之间的关系为: . 因此,在接下来的实验部分验证增益双峰的分裂间距随缀饰场频率失谐和光功率的变化.40mW Ω2≈2π·122MHz ∆2=02π·100MHz 2π·200MHz ∆p =∆2实验中固定缀饰场功率为 , 其拉比频率约为 , 当缀饰场失谐设定为 , 以及 时, dressed-DFWM增益谱双峰之间的AT 分裂理论上应为126, 161和236 MHz. 在图5所示的实验谱线中对探测光和DFWM 两个信道的增益双峰之间的频率间隔进行了标定, 得出其与理论值基本吻合. 自下而上观察图5(a)和图5(b)的三条谱线, 增益抑制坑发生的频率位置均严格满足双光子共振条件 .初步验证了信道的增益谱线由单频段变为双频段是基于缀饰场诱导的AT 分裂.-500-25025050000.40.81.21.62.0N o r m a l i z e d i n t e n s i t yp /(2p ⋅MHz) p f(b)-500-25025050000.40.81.21.62.0N o r m a l i z e d i n t e n s i t yp /(2p ⋅MHz) pf(d)-500-250025050000.40.81.21.62.02.4N o r m a l i z e d i n t e n s i t yp /(2p ⋅MHz)p f(f)E 1E 2E 1E 2P 1=40mW P 2=40mW ∆2=0图 4 光斑图样与增益谱线 (a), (b) 关闭泵浦场 时的EIT 效应; (c), (d) 关闭缀饰场 时的DFWM 效应; (e), (f) , 同时打开时的Dressed-DFWM 效应. 实验参数: 泵浦场光功率 , 缀饰场光功率 , 缀饰场失谐 E 1E 2E 1E 2P 1=40mW P 2=40mW ∆2=0Fig. 4. Laser beams’ pattern and gain spectrum: (a), (b) the EIT effect when the pump field is turned off; (c), (d) the DFWM effect when the dressed field is turned off; (e), (f) the Dressed-DFWM effect when both and are turned on. Experiment-al parameters: the pump field power: , the dressed field power: , the dressed field detuning .P 2=10mW 50mW 100mW ∆p =∆2=0Ω2∆2=0∆2=2π·200MHz 图6(a)和图6(b)的三条谱线自下而上依次为、 以及 时两个光信道的增益谱. 结果表明谱线的AT 分裂间距自下而上依次增加, 而增益抑制坑则处在 的位置保持不变. 图6(c)和图6(d)展示了AT 分裂与拉比频率 之间的定量关系, 实验上分别针对 和 两种情形分析了更多缀饰场Ω2Ω2光功率(这里将其换算为拉比频率)下的AT 分裂大小, 其中带有误差棒的黑色方块为实验数据, 红色实线为理论曲线. 实验结果与理论相吻合: 当缀饰场在共振频率附近, AT 分裂大小随 呈线性变化; 当缀饰场失谐较大时, 变化趋势呈现非线性.但是, 当 较大时, 理论拟合和实验数据存在明显差异, 这是由于没有考虑强光作用下自聚焦效应对p /(2p ⋅MHz)P r o b e i n t e n s i t y /a r b . u n i tp /(2p ⋅MHz)F W M i n t e n s i t y /a r b . u n i t∆22π·100MHz 2π·200MHz E p E f P 1=40mW P 2=40mW P p =30μW图 5 缀饰场失谐 分别为 (i) 0, (ii) 以及 (iii) 的增益谱 (a) 探测光信道 ; (b) DFWM 光信道. 实验参数: , , ∆202π·100MHz 2π·200MHz E p E f P 1=40mW P 2=40mW P p =30μW Fig. 5. Gain spectrum with dressed field detuning at (i) , (ii) , and (iii) : (a) The probe channel ;(b) the DFWM channel . Experimental parameters: , , .-400-2002004000246810(a)10 mW50 mW 100 mW P r o b e i n t e n s i t y /a r b . u n i t(b)-400-200200400024681010 mW50 mW100 mWF W M i n t e n s i t y /a r b . u n i t∆2=0∆2=2π·200MHz P 1=40mW P p =30μW 图 信道; (c),(d) AT 分裂间距随缀饰场拉比频率变化的关系曲线: (c) , (d) . 实验参数: , 10mW 50mW 100mW ∆2=0E p E f ∆2=0∆2=2π·200MHz P 1=40mW P p =30μW Fig. 6. (a, b) Gain spectrum with dressed power at (i) , (ii) , and (iii) when . (a) The channel;(b) the channel; (c), (d) the curves for the AT splitting versus the dressed field’s Rabi frequencies: (c) , (d) . Experimental parameters: , .Ω2δn ∝Nµ402E 22/(ℏ∆2)3Ω2 的修正. 当缀饰光场功率较大时, 原子介质折射率的的横向分布将发生变化: (其中N 为原子数密度[27]), 在高斯光束横截面中心区域所引起的折射率增量较大, 而边缘区域引起的折射率增量较小, 原子介质犹如一个会聚透镜使入射光束发生自聚焦现象. 因此, 气室内缀饰场的光斑尺寸减小, 的实际值增大, 相应地增益谱线的AT 分裂也增大.4 结 论本文利用L 型三能级的铯原子系综研究了dressed-DFWM 效应, 借助缀饰光场诱导DFWM 光谱发生AT 分裂, 获得了具有双频段增益特性的两个光信道. 随后对AT 分裂随缀饰场光功率、失谐的变化进行了研究, 实验与理论相吻合. 另外,由于缀饰场通过光抽运的方式优化了基态上的原子布居, 被缀饰的DFWM 增益获得明显提高. 该研究工作为光通信应用提供了一种频分复用的可行性方案.参考文献L ukin M D, Matsko A B, Fleischhauer M, Scully M O 1999Phys. Rev. Lett. 82 1847[1]B alic V, Braje D A, Kolchin P, Yin G Y, Harris S E 2005Phys. Rev. Lett. 94 183601[2]M cCormick C F, Boyer V, Arimondo E, Lett P D 2007 Opt.Lett. 32 178[3]M otomura K, Tsukamoto M, Wakiyama A, Harada K,Mitsunaga M 2005 Phys. Rev. A 71 043817[4]G uo M J, Zhou H T, Wang D, Gao J R, Zhang J X, Zhu S Y[5]2014 Phys. Rev. A 83 033813M a R, Liu W, Qin Z Z, Jia X J, Gao J R 2017 Phys. Rev. A 96 043843[6]S waim J D, Glasser R T 2017 Phys. Rev. A 96 033818[7]W ang D, Hu L Y, Pang X M, Zhang J X, Zhu S Y 2013Phys. Rev. A 88 042314[8]Q in Z Z, Cao L M, Wang H L, Marino A M, Zhang W P,Jing J T 2014 Phys. Rev. Lett. 113 023602[9]B oyer V, Marino A M, Lett P D 2008 Phys. Rev. Lett. 100143601[10]P an X Z, Yu S, Zhou Y F, Zhang K, Zhang K, Lv S C, Li S J, Wang W, Jing J T 2019 Phys. Rev. Lett. 123 070506[11]B oyer V, McCormick C F, Arimondo E, Lett P D 2007 Phys.Rev. Lett. 99 143601[12]J ing J T, Zhou Z F, Liu C J, Qin Z Z, Fang Y M, Zhou J,Zhang W P 2014 Appl. Phys. Lett. 104 151103[13]P ooser R C, Marino A M, Boyer V, Jones K M, Lett P D 2009 Phys. Rev. Lett. 103 010501[14]K ong J, Hudelist F, Ou Z Y, Zhang W P 2013 Phys. Rev.Lett. 111 033608[15]H udelist F, Kong J, Liu C J, Jing J T, Ou Z Y, Zhang W P 2014 Nat. Commun. 5 3049[16]L iu W, Ma R, Zeng L, Qin Z Z, Su X L 2019 Opt. Lett. 442053[17]Z hou H T, Li R F, Dai Y P, Wang D, Wu J Z, Zhang J X 2019 J. Phys. B: At. Mol. Opt. Phys. 52 185002[18]Z hang Y P, Xiao M 2007 Opt. Express 15 7182[19]Z uo Z C, Sun J, Liu X, Wu L A, Fu P M 2007 Phys. Rev. A 75 023805[20]Z hang Y P, Anderson B, Xiao M 2008 J. Phys. B: At. Mol.Opt. Phys. 41 045502[21]L i C B, Zheng H B, Zhang Y P, Nie Z Q, Song J P, Xiao M 2009 Appl. Phys. Lett. 95 041103[22]L i X, Li P Y 2015 Las. Optoelect. Prog. 52 051901 (in Chinese) [李祥, 李培英 2015 激光与光电子学进展 52 051901][23]S ang S L 2019 Las. Optoelect. Prog. 56 081901 (in Chinese)[桑苏玲 2019 激光与光电子学进展 56 081901][24]S u J J, Yu I A 2003 Chin. J. Phys. 41 627[25]N ovikova I, Matsko A B, Welch G R 2002 J. Mod. Opt. 492565[26]G rischkowsky D 1970 Phys. Rev. Lett. 24 866[27]Degenerate four-wave mixing-based double-channel optical gain spectrum with two frequency bands* Wang Dan 1)2)† Guo Rui -Xiang 1)2) Dai Yu -Peng 1)2) Zhou Hai -Tao 1)2)1) (College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China)2) (Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China)( Received 26 October 2020; revised manuscript received 20 November 2020 )AbstractFocusing on the frequency division multiplexing technology in the applications of large scale optical communication, the double-channel optical gain spectrum with two frequency bands is studied in this paper. The double-channel gain spectrum, named probe channel and four wave mixing channel, comes from a co-propagating degenerate four wave mixing in a hot atomic ensemble. The intention is to divide the gain spectrum into several sub frequency bands through dressed four wave mixing. When a dressed field is exerted on one transition that shares the common excited state with the degenerate four wave mixing, the excited state can experience dressed splitting. It opens two transition paths for the degenerate four wave mixing simultaneously. Because of quantum interference between the two paths, the degenerate four wave mixing are suppressed at two-photon resonance. Consequently, Autler-Townes splitting appears in the gain spectrum, i.e. spectrum is changed from single frequency band into two “M”-type bands. In this paper, the nonlinear density matrix element describing the degenerate (dressed) four wave mixing is solved through perturbation theory, and then the gain spectrum in Doppler broadening atomic medium is plotted, and its Autler-Townes splitting is analyzed by using the dressed-state theory. It shows that the Autler-Townes splitting depends on both the Rabi frequency and single photon detuning of the dressed field. Relevant experiment is performed in cesium vapor at 60 ℃, a pair of high-gain optical spectra with two frequency bands for both double channels is successfully obtained. Moreover, the Autler-Townes splitting as a function of the dressed field intensity and single photon detuning are studied quantitatively. The experimental results accord well with the theoretical predictions. Compared with the degenerate four wave mixing, the atom-field coupled system is changed from an original open two-level into a closed L three-level due to the external dressed field, which greatly improves the atomic population on the coherent ground state via optical pumping, and therefore enhancing the gain significantly. This work is important for the field of atom-based optical communication. It provides an optional way of conveying multi-frequency information to the two parallel channels as well as improving the gain of four wave mixing.Keywords: degenerate four-wave mixing, dressed-state, Autler-Townes splitting, double-channel with two frequency bandsPACS: 42.50.–p, 42.50.Gy, 42.65.Ky, 42.50.Nn DOI: 10.7498/aps.70.20201778* Project supported by the National Natural Science Foundation of China (Grant No. 11704235), the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 201901D211166), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (Grant No. 2020L0038).† Corresponding author. E-mail: wangdan63@。
V字仇杀队《V For Vendetta》经典台词校对版

THE CLASSIC LINES OF <V FOR VENDETTA>.☆小词汇allegedly据称Ulcerated 【溃疡的】Sphincter【括约肌】of Ass-Erica【帝王的】烂屁眼美国鬼子的leper【麻风病→申因行为人们避而远之的人】colony麻风病患集中地plague瘟疫disease-ridden【满足…的】degenerates散播瘟疫的下流种Strength through unity,unity through faith.力量来自团结团结来自信仰curfew宵禁exercise judicial discretion 【斟酌的自由权;谨慎】行使执法权 a load of bollocks胡扯bugger off滚开spare the rod,spoil the child.孩子不教训不成器We also doubled our random sweeps and are monitoring phone surveillance.我们将随机监听活动加倍对电话的监听We have spin 【蜘蛛纺纱→申捏造假消息】coverage on the network and throughout the Interlink.在电视网络上都会有报道integrity整体性;正直the mask obviously makes retinal[[【视网膜上的】identification impossible.Grand,albeit【尽管】improvised【没有提前看的→即兴表演】简陋但不失隆重espressos特浓crucify迫害折磨→压抑hysterical令人捧腹的Laser激光brat原煤→混蛋percussion instruments打击乐A more perfect stage could not be asked for.没有更完美的舞台了It is to Madame Justice that I dedicate this concerto in honor of the holiday she seems to have taken from this parts and in recognition of the impostor that stands in her stead.这一曲是献给正义女神的,这是为纪念被她从这片土地上夺走的节日同时向代替她的冒牌货致以敬意brass铜管crescendo高潮quarantine隔离Tchaikovsky柴可夫斯基demolition定向爆破edifice高楼大厦【挨地非死】Kerosene煤油vault 窟窿→地窖→银行金库mace锤茅(狼牙棒)→权杖interrogation审讯室intern关押military retook the shed军方重新控制局势gutless胆小如鼠sod草皮→混蛋neo-demagogue(s) 【蛊惑民心的政客】In wrong light,the loss of the Voice of London could be devastating to our credibility.在错误的观察角度下,失去伦敦之音会使我们信誉扫地It is not my sword,Mondego,but your past that disarmed you.As only celluloid【赛璐璐】can deliver电影特有的结局forensics【法庭的】pharmaceutical 制药的National wide were devastated as news of…得知这个消息后举国致哀apparent heart failure心脏病突发a man after my own heart一个深得我心的人itinerary行程表remittance汇款Mea culpa是我的错amnesty特赦balance it out抵消procure经特别努力获得abbey修道院prominent重要paramount压倒一切的In these volatile times在这个敏感的时候it would behoove you合适的做法是coroner验尸官Oppenheimerwas able to change more than the course of a war.奥本海默改变的不只是战争的走向constitute an assault on the character of构成对…形象的抨击a blatant violation of对…明目张胆的违反allegiance忠贞authenticity真实性verify证实forgery赝品deranged精神错乱的sedition煽动叛乱intact完好无损的◇He exhibits none of the immune-system pathologies the other subjects developed.I’ve discovered cellular anomalies in his blood that I’ve been unable to categorize.The mutations seem to have triggered the abnormal development of basic kinesthesia and reflexes.他身上没有任何其他病人身上的免疫系统病理特征我在他的血液中发现了集中无法归类的细胞变异看来变异引发了异乎寻常的运动能力和反应stunned非常惊讶fetish迷恋【物】greedy hypocrites贪婪无比的伪君子censor-approved审查通过的neutralize中和抵消→消灭[恐怖分子] fraud赝品penalty处罚squad小队collateral附带伤害rendition特别移交tribunal法庭asthma哮喘eventuality,contingency可能性vet调研oblivion边缘coupon息票→折扣券 a new airborne pathogen[病原体] collywobbles毛骨悚然up-and-coming politician冉冉升起的政客zealotry狂热份子hegemonic domination霸权统治it’s at this point in our story that along comes a spider.在故事的这个当口我们的反角登台了the ends always justify the means.为了结果不择手段contaminated污染Fueled by the media,在媒体的推波助澜下canonize将…封为圣徒custody拘留cheerio回见spoon-fed me that bullshit一勺一勺地给我灌迷魂汤We are being buried beneath the avalanche of your inadequacies.我们就要被你的无能埋葬了siren[死人]警笛instigator煽动agitator蛊惑infantry步兵insidious阴险的steadfast咬紧牙关leniency慈悲solemn郑重的defiant目空一切的karate空手道gimmick伎俩★we are told to remember the idea and not the man.Because a man can fail.He can be caught,he can be killed and forgotten.I have witnessed firsthand the power of ideas.I’ve seen people kill in name of them and die defending them.But you cannot kiss an idea,cannot touch it or hold it.Idea do not bleed.They don’t feel pain.They do not love.1.☆The multiplying villainies of nature do swarm upon him.无数奸恶的天性都集丛于他的一身Disdaining fortune,with his brandished steel which smoked with bloody execution.不以命运的喜怒为意挥舞着他血腥的宝剑We are often to blame in this…It’s too much proved.这样的例子实在是太多了-That with devotiors visage and pious action we do sugar over the devil himself.人们往往用挚诚的外表和虔诚的行动掩饰一颗魔鬼般的心2.☆Who is but the form following the question of what,and what I’m is a man in the mask.身份只是本质的一种形式而我的本质是一个戴面具的人…I merely remarking upon the paradox of asking a masked man who he is.But on this most auspicious of nights,permit me then,in lieu of the more commonplace sobriquet to suggest the character of this dramatics persona.那么在这最吉祥的夜晚请允许我用不那么平庸的方式来引出人物表中的这个角色3.V oila!In view,a humble vaudevillian veteran cast vicariously as both victim and villain by thevicissitudes of fate.This visage,no more veneer of vanity,is a vestige of the voxpopuli,now vacant, vanished.看哪!在您眼帘中的是一位低贱的杂耍老手他在命运的沉浮中随波逐流扮演着受害与加害者的双重角色。
2024年四川省绵阳市游仙区中考一模英语试题(原卷版)

If you just want to see giant pandas, we recommend you go to Chengdu Panda Breeding and Research Base. It is the most easily accessible panda base. You can see pandas at different ages, from the oldest to the newborns. This base is huge but usually crowded. A private tour is the best way to get around the base to see the most pandas and get the best experience.
6.Which of the following has the similar meaning to the underlined word “stray”?
研究生英语阅读教程(提高级 第三版)课后翻译答案(单独整理的)

Lesson 11.就连乔·巴顿,对全球变暖持怀疑态度、来自得克萨斯州的共和党众议员,都谴责BP 管理人员“对安全和环境问题表现得漠不关心”。
2.显然,考虑到清理费用和对BP 声誉的影响,高管们真希望可以回到过去,多花些钱让“深水地平线”更安全。
他们没有增加这笔费用就表明他们认为钻机在当时的状态下不会出问题。
3.埃克森公司瓦尔迪兹漏油事件发生后,在1990 年的一个法案很少引人注意的一项条款中,美国国会将钻机泄漏清理费用的责任上限定为7 500 万美元。
即使对旅游业、渔业等造成的经济损失高达数十亿美元,责任方也仅需要支付7 500 万美元。
4.不过,如果认为我们目前仍然低估的只是那些突然间引人注目的风险,那是非常愚蠢的。
Lesson21It is a cliché,as it is to talk of apocalypse and nightmare,but when something is beyond our experience,we reach for the points of reference we have.说到世界末日和噩梦又是老生常谈,但是当事情超出我们的经验时,我们总会寻找现有的东西作为参照。
2Lest you should ever forget the smallness of being human,the iconic Mount Fuji,instantly reco gnisable yet somehow different on every viewing,is an extinct volcano.唯恐你会忘记作为人类的渺小,标志性富士山,一眼即能认出但不知何故每次观看又呈现出不同景象,就是一座死火山。
3It surprised me,over the following months that the gas attack seemed to dominate the national media coverage,whereas Kobe,after the initial weeks of horrifying footage,slipped somewhat i nto the background.在随后的几个月里,让我吃惊的是毒气攻击似乎占据了国家媒体报道的主要内容,而阪神大地震经过了最初几周骇人听闻的电视报道后,已经退居次位了。
三种激光冷却机制的理论分析(理学)

华中科技大学硕士学位论文三种激光冷却机制的理论分析姓名:***申请学位级别:硕士专业:理论物理指导教师:***20070202摘 要激光冷却广泛运用于科学技术中,比如波色-爱因斯坦凝聚的研究、广义相对论的验证、原子频标和原子干涉仪的研制等。
在光学粘胶中冷却原子,可达到多普勒冷却极限温度。
这时,再通过减弱激光强度和增大失谐量来继续冷却原子,能使其温度低于多普勒冷却极限。
要对原子进行深度冷却,即要突破反冲极限温度,可利用选择速度的方法,挑选出窄速度分布的原子。
虽然牺牲掉一部分原子,却得到单一速度的原子,故原子的温度就比较低。
本文主要讨论了三种冷却机制:多普勒冷却机制、亚多普勒冷却机制和亚反冲冷却机制。
多普勒冷却是基于光子的辐射压力来使原子减速;亚多普勒冷却是基于运动诱导造成的偏振梯度力使原子减速;亚反冲冷却是基于对原子的速度选择来获得单一速度分布原子,其可分为相干布陷冷却和拉曼激光冷却。
本文计算了速度选择的受激拉曼跃迁的三能级方程运动解析解。
得到了利用拉曼激光可以选择出特定速度分布的原子的结论。
首先利用半经典理论,作偶极近似,讨论了三能级原子系统和双光子的拉曼激光相互作用过程,在波函数中加入了速度参量,得到了三能级系统的演化方程。
然后,在弱场和大失谐条件下,把三能级方程退化为二能级方程。
最后用代换法把二能级方程化为常系数方程,得到了方程的解,理论结果和实验基本吻合。
本文还系统总结了一些其它文献中比较模糊的概念,比如相互作用哈氏量中磁场分量的忽略、激光选可见光、旋波近似等。
关键词:多普勒冷却,亚多普勒冷却,亚反冲冷却,相干布陷,拉曼激光,偏振梯度AbstractLaser cooling is widely applied in science and technique, such as Bose-Einstein condensation, verification for general relativity theory, atomic frequency scale and atomic interferometer etc. The temperature of atoms in the optical molasses could be cooled to the Doppler limit, and through weakening the laser intensity and increasing the detuning of the laser from the resonant frequency, the atoms could be further cooled below the Doppler limit. By velocity selection, one could get an atomic source with a narrow distribution in velocity and challenge the recoil limit temperature. Although some parts of the atoms are lost, the temperature of the remaining atoms, which have a uniform velocity, is quite low compared to the former.It discusses three mechanisms of laser cooling in this paper: the Doppler cooling mechanism, the Sub-Doppler cooling mechanism and the Sub-recoil cooling mechanism. The Doppler cooling which makes atoms slowdown is based on the radiation pressure of the laser; The Sub-Doppler cooling slows atoms down on the basis of polarization gradient forces caused by motive inductions; The Sub-recoil cooling including the coherent population trapping cooling and the Raman laser cooling, gets atoms with a slice velocity distribution depended on the velocity selection.It presents the analytical solutions of the three-level equations on the velocity-selective stimulated Raman transitions in this paper, and concludes the principle of selecting atoms with a uniform velocity out of an initial distribution. In the semi-classical theory and dipole approximation, we gets the evolution equations of the interaction of the three-level atoms with the two-photon Raman laser system, and the velocity parameter are also taken into account in the wave function. For weak lasers and large detunings, the three-level equations degenerate into two-level equations. Through transforming two-level equations into constant coefficient equations by substitution it gives the solutions of them. The theoretical analysis corresponds with the experimental results generally. It also generalizes a few concepts obscure in some papers systematically, such as ignoring the magnetic field component in theinteraction Hamiltonian, the choice of visible light for laser and rotating wave approximation etc.Key Words:Doppler Cooling, Sub-Doppler Cooling, Sub-Recoil Cooling,Coherent Population Trapping, Raman Laser, Polarization Gradient.独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
Math model of metal heating under actio智慧树知到课后章节答案

Math model of metal heating under action by laser beam智慧树知到课后章节答案2023年下11第一章测试1.Steps at the math modeling are()。
答案:Writing of the differential (and other) equations describing the processunder consideration.2.Which of the following options is the requirement for the numerical method?()。
答案:All of the above3.The following are applications of laser radiation in the field of physics?()。
答案:Nanophotonics;Optical data storage(CD, SVD, 5D opticalmemory);Astrophysics4.What fields can laser radiation be used in?()。
答案:LaserMedicine;LaserBiology;Laser Chemistry;Physics5.What are the properties of laser radiation?()。
答案:Divergence of laser beam is small.;Coherence (spatial,temporal).;Stimulated emission.;Laser emits monochromatic wave.Usually laser emits single wavelength.;Polarization.6.The one that can explain the experimental curve of blackbody radiationperfectly is ()答案:null7. A concave cavity with a concave mirror of radius R equal to the cavity lengthL is a ().答案:Critical cavity8.The wavelength of the CO2 laser is()答案:10.6μm9.The basic structure of the laser consists of electrical working matter, pumpsource and () three parts.答案:Optical resonant cavity10.Carbon dioxide lasers commonly used gas mixture composition is composedof (), helium, argon, nitrogen.答案:Carbon dioxide第二章测试1.What type of laser does the carbon dioxide laser belong to?()答案:Gas laser2.When the pulse energy is certain, the narrower the pulse width, it means thetime energy density with time as the denominator ().答案:The greater3.For a uniformly broadened medium, the small-signal gain coefficient at thecenter center frequency is G0(v0), and when I=Is, saturation is significant,and the non-small-signal center-frequency gain coefficient is: ().答案:4.The following statement about the electric field induction formula is correct()。
江西武山铜矿区新发现钨矿(化)_体特征和其成因——来自矿相学、白钨矿原位U-Pb_年代学和元素地球化

矿床地质MINERAL DEPOSITS2023年12月December ,2023第42卷第6期42(6):1139~1158文章编号:0258-7106(2023)06-1139-20Doi:10.16111/j.0258-7106.2023.06.004江西武山铜矿区新发现钨矿(化)体特征和其成因——来自矿相学、白钨矿原位U-Pb 年代学和元素地球化学的约束*高任1,2,谢桂青1,3**,冯道水2,纪云昊1,钟浩2,张磊2(1中国地质大学(北京)地球科学与资源学院,北京100083;2江西省地质局第二地质大队,江西九江332000;3中国地质大学(北京)战略性金属矿产找矿理论与技术自然资源部重点实验室,北京100083)摘要钨和铜有明显不同的地球化学性质,但钨、铜在矿床中可以共伴生,原因还不清楚。
长江中下游成矿带发育典型的斑岩-矽卡岩-层状铜(钨)多金属成矿系统,其中层状铜(钨)矿体成矿时代数据相对较少。
作者以该带九瑞矿集区武山铜矿区新发现的钨矿(化)体为研究对象,开展了矿相学、白钨矿原位U-Pb 年代学和元素地球化学的研究。
研究发现,武山矿床具有层状、矽卡岩型、斑岩型3类铜矿体均有白钨矿矿化,矿床整体由浅至深存在Cu →Cu-W 的分带规律。
3类矿石中的白钨矿产状类似,充填在粗粒黄铁矿晶体间隙,或呈浸染状分布,被黄铜矿、闪锌矿等交代,产于退化蚀变阶段;其中斑岩中还存在少量晚世代白钨矿,与石英、黄铁矿共生,形成细脉并穿切花岗闪长斑岩,为石英-硫化物阶段产物。
通过对退化蚀变阶段白钨矿进行测年和地球化学研究,作者获得了层状矿体含钨黄铜矿矿石中的白钨矿原位LA-ICP-MS U-Pb 同位素年龄为(140.6±1.5)Ma ,代表层状铜钨矿体成矿时代,在误差范围内与前人获得的斑岩、矽卡岩型矿体的成矿时代基本一致。
层状矿体中白钨矿的稀土元素特征和Sr/Mo 值符合岩浆热液矿床特征,相比矽卡岩型、花岗岩型白钨矿,层状矿体中白钨矿具有明显较低Mo 含量,反映了形成于相对低氧逸度条件;另外,层状矿体中白钨矿具有正Eu 异常和与围岩相近的高Y/Ho 值的特征,推测其是流体充分交代了含碳围岩地层导致流体性质的明显改变,并且有利于白钨矿和黄铁矿的沉淀,可从深部黄龙组层间部位形成钨品位更富的黄铁矿矿石得到佐证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
II. STOCHASTIC DIFFERENTIAL EQUATIONS
Three-level atoms in a cascade configuration are injected into the laser cavity at a constant rate ra and removed from the cavity after a certain time τ . We represent the top, middle, and bottom levels of a three-level atom by |a , |b and |c , respectively. We assume the transitions between levels |a and |b and between levels |b and |c to be dipole allowed, with direct transitions between levels |a and |c to be dipole forbidden. We consider the case for which the cavity mode is at resonance with the two transitions |a → |b and |b → |c (see Fig. 1).
The Hamiltonian describing the coupling of levels |a and |c by the pump mode emerging from the parametric amplifier can be expressed as
Hˆ ′ = i Ω (|c a| − |a c|),
In this paper we consider a degenerate three-level laser whose cavity contains a degenerate parametric amplifier
∗Electronic address: yob˙a@
(DPA) and coupled to a vacuum reservoir. The top and bottom levels of the three-level atoms injected into the cavity are coupled by the pump mode emerging from the parametric amplifier. And the three-level atoms are initially prepared in such a way that the probabilities of finding the atoms at the top and bottom levels are equal. We expect that a highly squeezed light can be generated by the quantum optical system under consideration. Thus our interest is to analyze the squeezing and statistical properties of the light generated by this system.
There has been a considerable interest in the analysis of the quantum properties of the squeezed light generated by various quantum optical systems [1, 2, 3, 4, 5, 6, 7, 8, 9]. In squeezed light the fluctuations in one quadrature is below the vacuum level at the expense of enhanced fluctuations in the other quadrature, with the product of the uncertainties in the two quadratures satisfying the uncertainty relation. In addition to exhibiting a nonclassical feature, squeezed light has potential applications in precision measurements and noiseless communications [10, 11].
We obtain, applying the master equation, stochastic differential equations for the cavity mode variables associated with the normal ordering. The solutions of the resulting equations are used to determine the quadrature variance, the squeezing spectrum, and the mean photon number. Moreover, applying the same solutions, we determine the antinormally ordered characteristic function with the aid of which the Q function is obtained. Then the Q function is used to calculate the photon number distribution.
x
a
Z
b
Z
c
FIG. 1: A degenerate three-level laser with a degenerate parametric amplifier.
In addition, the interaction of a three-level atom with the cavity mode can be described by the Hamiltonian
(Dated: February 9, 2008)
The aim of this paper is to study the squeezing and statistical properties of the light produced by a degenerate three-level laser whose cavity contains a degenerate parametric amplifier. In this quantum optical system the top and bottom levels of the three-level atoms injected into the laser cavity are coupled by the pump mode emerging from the parametric amplifier. For a linear gain coefficient of 100 and for a cavity damping constant of 0.8, the maximum intracavity squeezing is found at steady state and at threshold to be 93%.
A degenerate three-level laser with a parametric amplifier
Eyob Alebachew∗ and K. Fesseha Department of Physics, Addis Ababa University, P. O. Box 33085, Addis Ababa, Ethiopia
Some authors have studied the squeezing and statistical properties of the light produced by three-level lasers when either the atoms are initially prepared in a coherent superposition of the top and bottom levels [12, 13, 14] or when these levels are coupled by a strong coherent light [13]. These studies show that a three-level laser can under certain conditions generate squeezed light. In such a laser, three-level atoms in a cascade configuration are injected at a constant rate into the cavity coupled to a vacuum reservoir via a single-port mirror. When a three-level atom makes a transition from the top to bottom level via the intermediate level, two photons are generated. The two photons are highly correlated and this correlation is responsible for the squeezing of the light produced by a three-level laser. On the other hand, it is well known that a parametric oscillator is a typical source of squeezed light [2, 3, 4, 5, 6], with a maximum intracavity squeezing of 50%. Recently Fesseha [12] has studied a three-level laser with a parametric amplifier in which three-level atoms, initially prepared in a coherent superposition of the top and bottom levels, are injected into the cavity. He has found that the effect of the parametric amplifier is to increase the intracavity squeezing by a maximum of 50%.