21-多重线性回归

合集下载

9.1.2线性回归方程讲义-2021-2022学年高二下学期数学苏教版(2019)选择性必修第二册

9.1.2线性回归方程讲义-2021-2022学年高二下学期数学苏教版(2019)选择性必修第二册

编号032 §9.1.2 线性回归方程目标要求1、结合具体实例,了解一元线性回归模型的含义.2、结合具体实例,了解模型参数的统计意义.3、结合具体实例,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.4、结合具体实例,会使用相关的统计软件.5、针对实际问题,会用一元线性回归模型进行预测.学科素养目标本章内容是在学生已经学习过必修课程中的统计知识和概率知识的基础上,通过对典型案例的研究,了解和使用一些常用统计分析方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用,从而形成运用统计的观点认识客观事物的习惯.在本章教学中,应突出对学生应用意识的培养,不能只限于要求学生会解书本上的习题,还要关注学生应用与解决实际问题的能力.应引导、鼓励学生从现实生活中发现问题,并能自觉地运用所学的统计方法加以理解,应尽量给学生提供一定的实践活动机会,可结合数学建模活动,选择一个案例,要求学生亲自实践.重点难点重点:一元线性回归模型参数的最小二乘估计方法; 难点:用一元线性回归模型进行预测.教学过程基础知识点 1.线性回归模型我们将y =___________称为线性回归模型. 2.线性回归方程与最小二乘法(1)线性回归方程:直线=__________称为线性回归方程.其中__称为回归截距,__称为回归系数,__称为回归值. (2),的计算公式=∑i =1n(x i -x)(y i -y )∑i =1n(x i -x )2=________________ ,=______________.【课前小题演练】题1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,响应变量在y 轴 C .回归模型中一定存在随机误差 D .散点图能明确反映变量间的关系题2.根据如下样本数据:x2 3 4 5 6Y 4 2.5 -0.5 -2 -3得到的经验回归方程为=x+,则( )A.>0,>0 B.>0,<0C.<0,>0 D.<0,<0题3.已知变量x,Y之间具有线性相关关系,其散点图如图所示,则其经验回归方程可能为( )A.=1.5x+2 B.=-1.5x+2C.=1.5x-2 D.=-1.5x-2题4.若某地财政收入x与支出Y满足经验回归方程=x++e i(单位:亿元)(i=1,2,…),其中=0.8,=2,|e i|<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( )A.10亿元B.9亿元C.10.5亿元D.9.5亿元题5.若施肥量x(kg)与水稻产量Y(kg)的经验回归方程为=5x+250,当施肥量为80 kg时,预计水稻产量约为________kg.题6.某种产品的广告费用支出x与销售额Y(单位:百万元)之间有如下的对应数据:x/百万元 2 4 5 6 8Y/百万元30 40 60 50 70(1)画出散点图;(2)求经验回归方程;(3)试预测广告费用支出为10百万元时,销售额多大?【当堂巩固训练】题7.已知x,y的取值如表所示:x234 5y 2.2 3.8 5.5m若y与x线性相关,且回归直线方程为=1.46x-0.61,则表格中实数m的值为( )A.7.69 B.7.5 C.6.69 D.6.5题8.某药厂为了了解某新药的销售情况,将2019年2至6月份的销售额整理如下:月份 2 3 4 5 6 销售额(万元)1925353742根据2至6月份的数据可求得每月的销售额y 关于月份x 的线性回归方程=x +为( )(参考公式及数据:=∑i =1nx i y i -n x y∑i =1n x 2i -n (x )2,=y -x ,∑i =15x i y i =690,∑i =15x 2i =90)A .=5.8x +8.4B .=8.4x +5.8C .=6x -9D .=4x +31.6题9.登山族为了了解某山高y (km )与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x (℃) 18 13 10 -1 山高y (km )24343864由表中数据,得到线性回归方程=-2x +()∈R ,由此请估计出山高为72(km )处气温的度数为( )A .-10B .-8C .-4D .-6题10.根据如下的样本数据:x 1 2 3 y2.133.9得到的回归方程为=bx +a ,则直线ax +by -3=0经过定点( ) A .(-1,-2) B .(-1,2) C .(1,-2)D .(1,2)题11.某同学在研究学习中,收集到某制药厂今年5个月甲胶囊生产产量(单位:万盒)的数据如表所示:x (月份) 1 2 3 4 5 y (万盒)55668若x ,y 线性相关,线性回归方程为=0.7x +,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加0.7个单位长度 B .x 每增加1个单位长度,则y 必减少0.7个单位长度C.当x=6时,y的预测值为8.1万盒D.线性回归直线=0.7x +经过点(2,6)题12.下列说法:①设有一个回归方程=3-5x,变量x增加一个单位时,y平均增加5个单位;②线性回归方程=x+必过()x,y;③设某地女儿身高y对母亲身高x的一个回归直线方程是=34.92+0.78x,则方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分.其中正确的个数是( )A.0 B.1 C.2 D.3题13.(多选题...)两个相关变量x,y的5组对应数据如表:x8.3 8.6 9.9 11.1 12.1y 5.9 7.8 8.1 8.4 9.8根据表格,可得回归直线方程=x+,求得=0.78.据此估计,以下结论正确的是( )A.x=10 B.y=9C.=0.2 D.当x=15时,=11.95题14.(多选题...)已知x与y之间的几组数据如表:x 1 2 3 4 5 6y0 2 1 3 3 4假设根据表格数据所得线性回归直线方程为=x+,若某同学根据上表中的前两组数据()1,0和()2,2求得的直线方程为y=b′x+a′,则以下结论正确的是( )参考公式:=∑i=1nx i y i-n x y∑i=1nx2i-n(x)2,=y-b x .A.a′=-2 B.b′=2 C.>b′ D.>a′【综合突破拔高】题15.对于指数曲线y=ae bx,令U=ln y,c=ln a,经过非线性回归分析后,可转化的形式为( ) A.U=c+bx B.U=b+cxC.y=c+bx D.y=b+cx题16.若一函数模型为y =sin 2α+2sinα+1,为将y 转化为t 的经验回归方程,则需作变换t 等于( ) A .sin 2αB .(sinα+1)2C .⎝ ⎛⎭⎪⎫sin α+12 2D .以上都不对题17.在生物学上,有隔代遗传的现象.已知某数学老师的体重为62 kg ,他的曾祖父、祖父、父亲、儿子的体重分别为58 kg 、64 kg 、58 kg 、60 kg .如果体重是隔代遗传,且呈线性相关,根据以上数据可得解释变量x 与预报变量的回归方程为=x +,其中=0.5,据此模型预测他的孙子的体重约为( ) A .58 kgB .61 kgC .65 kgD .68 kg题18.(多选题...)月亮公转与自转的周期大约为30天,阴历是以月相变化为依据.人们根据长时间的观测,统计了月亮出来的时间y (简称“月出时间”,单位:小时)与天数x (x 为阴历日数,x ∈N *,且0≤x ≤30)的有关数据,如表,并且根据表中数据,求得y 关于x 的线性回归方程为=0.8x +.x 2 4 7 10 15 22 y8.19.41214.418.524其中,阴历22日是分界线,从阴历22日开始月亮就要到第二天(即23日0:00)才升起.则( ) A .样本点的中心为()10,14.4 B .=6.8C .预报月出时间为16时的那天是阴历13日D .预报阴历27日的月出时间为阴历28日早上4:00题19.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润Y 的统计分析知x ,Y 具备线性相关关系,经验回归方程为=10.47-1.3x ,估计该台机器最为划算的使用年限为______年.题20.以模型y =ce kx 去拟合一组数据时,为了求出非经验回归方程,设z =ln y ,其变换后得到经验回归方程=0.3x +4,则c =________.题21.为了响应中央号召,某日深圳环保局随机抽查了本市市区汽车尾气排放污染物x (单位:ppm )与当天私家车路上行驶的时间y (单位:小时)之间的关系,从某主干路随机抽取10辆私家车,已知x 与y 之间具有线性相关关系,其回归直线方程为=0.3x -0.4,若该10辆车中有一辆私家车的尾气排放污染物为6(单位:ppm ),据此估计该私家车行驶的时间为________小时.题22.某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月4日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下数据:日期 12月1日12月2日12月3日12月4日温差 11 13 12 8 发芽数(颗)26322617根据表中12月1日至12月3日的数据,求得线性回归方程=x +中的=-8,则求得的=________;若用12月4日的数据进行检验,检验方法如下:先用求得的线性回归方程计算发芽数,再求与实际发芽数的差,若差值的绝对值不超过2颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程________(填“可靠”或“不可靠”).题23.如表为收集到的一组数据:x 21 23 25 27 29 32 35 Y711212466115325试建立Y 与x 之间的回归方程.题24.宿州市公安局交警支队依据《中华人民共和国道路交通安全法》第90条规定:所有主干道路凡机动车途经十字路口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以100元罚款,记3分的行政处罚.如表是本市一主干路段监控设备所抓拍的5个月内,机动车驾驶员“不礼让行人”行为统计数据:月份x 1 2 3 4 5 违章驾驶员人数y1151101009085(1)若x 与y 之间具有很强的线性相关关系,请利用所给数据求违章驾驶员人数y 与月份x 之间的回归直线方程=x +;(2)预测该路段8月份的“不礼让行人”违章驾驶员的人数.参考公式:=∑i =1nx i y i -n x ·y∑i =1nx 2i -n (x)2,=y -x ,参考数据:∑i =15x i y i =1 420.编号032 §9.1.2 线性回归方程目标要求1、结合具体实例,了解一元线性回归模型的含义.2、结合具体实例,了解模型参数的统计意义.3、结合具体实例,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.4、结合具体实例,会使用相关的统计软件.5、针对实际问题,会用一元线性回归模型进行预测.学科素养目标本章内容是在学生已经学习过必修课程中的统计知识和概率知识的基础上,通过对典型案例的研究,了解和使用一些常用统计分析方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用,从而形成运用统计的观点认识客观事物的习惯.在本章教学中,应突出对学生应用意识的培养,不能只限于要求学生会解书本上的习题,还要关注学生应用与解决实际问题的能力.应引导、鼓励学生从现实生活中发现问题,并能自觉地运用所学的统计方法加以理解,应尽量给学生提供一定的实践活动机会,可结合数学建模活动,选择一个案例,要求学生亲自实践.重点难点重点:一元线性回归模型参数的最小二乘估计方法; 难点:用一元线性回归模型进行预测.教学过程基础知识点 1.线性回归模型我们将y =a +bx +ε称为线性回归模型. 2.线性回归方程与最小二乘法(1)线性回归方程:直线=+x 称为线性回归方程.其中称为回归截距,称为回归系数,称为回归值.(2),的计算公式=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=___∑i =1nx i y i -n x y∑i =1nx 2i -n (x)2___ ,=__y -x __.【课前小题演练】题1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,响应变量在y 轴 C .回归模型中一定存在随机误差 D .散点图能明确反映变量间的关系【解析】选D .用散点图反映两个变量间的关系时,存在误差. 题2.根据如下样本数据:x 2 3 4 5 6Y 4 2.5 -0.5 -2 -3得到的经验回归方程为=x+,则( )A.>0,>0 B.>0,<0C.<0,>0 D.<0,<0【解析】选B.由题干表中的数据可得,变量Y随着x的增大而减小,则<0,又回归方程为=x+经过(2,4),(3,2.5),可得>0.题3.已知变量x,Y之间具有线性相关关系,其散点图如图所示,则其经验回归方程可能为( )A.=1.5x+2 B.=-1.5x+2C.=1.5x-2 D.=-1.5x-2【解析】选B.设经验回归方程为=x+,由题干中散点图可知变量x,Y之间负相关,经验回归直线在Y轴上的截距为正数,所以<0,>0,因此方程可能为=-1.5x+2.题4.若某地财政收入x与支出Y满足经验回归方程=x++e i(单位:亿元)(i=1,2,…),其中=0.8,=2,|e i|<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( )A.10亿元B.9亿元C.10.5亿元D.9.5亿元【解析】选C.=0.8×10+2+e i=10+e i,因为|e i|<0.5,所以9.5<<10.5.题5.若施肥量x(kg)与水稻产量Y(kg)的经验回归方程为=5x+250,当施肥量为80 kg时,预计水稻产量约为________kg.【解析】把x=80代入经验回归方程可得其预测值=5×80+250=650(kg).答案:650题6.某种产品的广告费用支出x与销售额Y(单位:百万元)之间有如下的对应数据:x/百万元 2 4 5 6 8Y/百万元30 40 60 50 70(1)画出散点图;(2)求经验回归方程;(3)试预测广告费用支出为10百万元时,销售额多大?【解析】(1)散点图如图所示:(2)列出下表,并用科学计算器进行有关计算:i 1 2 3 4 5 合计 x i 2 4 5 6 8 25 y i 30 40 60 50 70 250 x i y i 60 160 300 300 560 1 380 x 2i416253664145所以x =255 =5,y =2505=50,∑i =15x 2i =145,∑i =15x i y i =1 380.于是可得=∑i =15x i y i -5x y∑i =15x 2i -5x 2=1 380-5×5×50145-52×5=6.5,=y -x =50-6.5×5=17.5. 所以所求的经验回归方程为=6.5x +17.5.(3)根据上面求得的经验回归方程,当广告费用支出为 10百万元时,=6.5×10+17.5=82.5(百万元),即广告费用支出为10百万元时,销售额大约为82.5百万元. 【当堂巩固训练】题7.已知x ,y 的取值如表所示:x 2 3 4 5 y2.23.85.5m若y 与x 线性相关,且回归直线方程为=1.46x -0.61,则表格中实数m 的值为( ) A .7.69 B .7.5 C .6.69 D .6.5 【解析】选D .因为x =2+3+4+54 =72, y =2.2+3.8+5.5+m 4 =11.5+m 4,所以11.5+m 4 =1.46×72-0.61,解得m =6.5.题8.某药厂为了了解某新药的销售情况,将2019年2至6月份的销售额整理如下:月份 2 3 4 5 6 销售额(万元)1925353742根据2至6月份的数据可求得每月的销售额y 关于月份x 的线性回归方程=x +为( )(参考公式及数据:=∑i =1nx i y i -n x y∑i =1n x 2i -n (x )2,=y -x ,∑i =15x i y i =690,∑i =15x 2i =90)A .=5.8x +8.4B .=8.4x +5.8C .=6x -9D .=4x +31.6【解析】选A .由表格中的数据得x =2+3+4+5+65=4,y =19+25+35+37+425=31.6,所以=∑i =15x i y i -5x y∑i =15x 2i -5(x)2=690-5×4×31.690-5×42=5.8, =31.6-5.8×4=8.4,因此,y 关于x 的线性回归方程为=5.8x +8.4.题9.登山族为了了解某山高y (km )与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x (℃) 18 13 10 -1 山高y (km )24343864由表中数据,得到线性回归方程=-2x +()∈R ,由此请估计出山高为72(km )处气温的度数为( )A .-10B .-8C .-4D .-6【解析】选D .由题意可得x =10,y =40,所以=y +2x =40+2×10=60.所以=-2x +60,当=72时,有-2x +60=72,解得x =-6. 题10.根据如下的样本数据:x 1 2 3 y2.133.9得到的回归方程为=bx +a ,则直线ax +by -3=0经过定点( ) A .(-1,-2)B .(-1,2)C .(1,-2)D .(1,2)【解析】选D .由所给数据得x =2,y =3,3i 1=∑(x i -x )(y i -y )=1.8,3i 1=∑(x i -x )2=2,所以b =0.9,a =3-0.9×2=1.2,所以直线ax +by -3=0方程为1.2x +0.9y -3=0,过点(1,2). 题11.某同学在研究学习中,收集到某制药厂今年5个月甲胶囊生产产量(单位:万盒)的数据如表所示:x (月份) 1 2 3 4 5 y (万盒)55668若x ,y 线性相关,线性回归方程为=0.7x +,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加0.7个单位长度 B .x 每增加1个单位长度,则y 必减少0.7个单位长度 C .当x =6时,y 的预测值为8.1万盒 D .线性回归直线=0.7x +经过点(2,6)【解析】选C .由=0.7x +,得x 每增(减)一个单位长度,y 不一定增加(减少)0.7,而是大约增加(减少)0.7个单位长度,故选项A ,B 错误;由已知表中的数据,可知x =1+2+3+4=55 =3,y =5+5+6+6+85=6,则回归直线必过点(3,6),故D 错误;将(3,6)代入回归直线=0.7x +,解得=3.9,即=0.7x +3.9,令x =6,解得=0.7×6+3.9=8.1万盒. 题12.下列说法:①设有一个回归方程=3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ②线性回归方程=x +必过()x ,y ;③设某地女儿身高y 对母亲身高x 的一个回归直线方程是=34.92+0.78x ,则方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分. 其中正确的个数是( ) A .0 B .1 C .2 D .3【解析】选C .设有一个回归方程=3-5x ,变量x 增加一个单位时,y 平均减少5个单位,故①错;线性回归方程=x +必过样本中心点()x ,y ,故②正确;设某地女儿身高y 对母亲身高x 的一个回归直线方程是=34.92+0.78x ,当x =0时,=34.92, 方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分,故③正确. 题13.(多选题...)两个相关变量x ,y 的5组对应数据如表:x 8.3 8.6 9.9 11.1 12.1 y5.97.88.18.49.8根据表格,可得回归直线方程=x +,求得=0.78.据此估计,以下结论正确的是( )A .x =10B .y =9C .=0.2D .当x =15时,=11.95【解析】选AC .易求得x =10,y =8⇒=y -x =8-0.78×10=0.2,所以=0.78x +0.2. x =15⇒=0.78×15+0.2=11.90.题14.(多选题...)已知x 与y 之间的几组数据如表:x 1 2 3 4 5 6 y21334假设根据表格数据所得线性回归直线方程为=x +,若某同学根据上表中的前两组数据()1,0 和()2,2 求得的直线方程为y =b ′x +a ′,则以下结论正确的是()参考公式:=∑i =1nx i y i -n x y∑i =1nx 2i -n (x)2,=y -b x . A .a ′=-2 B .b ′=2 C .>b ′ D .>a ′【解析】选ABD .因为某同学根据前两组数据()1,0 和()2,2 求得的直线方程为y =b ′x +a ′,所以b ′=2,a ′=-2,根据题意得:x =3.5,y =136,∑i =16x i y i =0+4+3+12+15+24=58,∑i =16x 2i =1+4+9+16+25+36=91,所以=∑i =16x i y i -6x y∑i =16x 2i -6(x)2=57 ,=y -x =136 -57 ×72 =-13 ,所以<b ′,>a ′. 【综合突破拔高】题15.对于指数曲线y =ae bx ,令U =ln y ,c =ln a ,经过非线性回归分析后,可转化的形式为( ) A .U =c +bx B .U =b +cx C .y =c +bxD .y =b +cx【解析】选A .由y =ae bx 得ln y =ln (ae bx ), 所以ln y =ln a +ln e bx ,所以ln y =ln a +bx ,所以U =c +bx .题16.若一函数模型为y =sin 2α+2sinα+1,为将y 转化为t 的经验回归方程,则需作变换t 等于( ) A .sin 2αB .(sinα+1)2C .⎝⎛⎭⎪⎫sin α+12 2D .以上都不对 【解析】选B .因为y 是关于t 的经验回归方程,实际上就是y 是关于t 的一次函数,又因为y =(sin α+1)2,若令t =(sin α+1)2,则可得y 与t 的函数关系式为y =t ,此时变量y 与变量t 是线性相关关系. 题17.在生物学上,有隔代遗传的现象.已知某数学老师的体重为62 kg ,他的曾祖父、祖父、父亲、儿子的体重分别为58 kg 、64 kg 、58 kg 、60 kg .如果体重是隔代遗传,且呈线性相关,根据以上数据可得解释变量x 与预报变量的回归方程为=x +,其中=0.5,据此模型预测他的孙子的体重约为( ) A .58 kgB .61 kgC .65 kgD .68 kg【解析】选B .由于体重是隔代遗传,且呈线性相关, 则取数据(58,58),(64,62),(58,60),得x =58+64+583 =60,y =58+62+603 =60,即样本点的中心为(60,60),代入=x +, 得=60-0.5×60=30,则=0.5x +30, 取x =62,可得=0.5×62+30=61 kg . 故预测他的孙子的体重约为61 kg .题18.(多选题...)月亮公转与自转的周期大约为30天,阴历是以月相变化为依据.人们根据长时间的观测,统计了月亮出来的时间y (简称“月出时间”,单位:小时)与天数x (x 为阴历日数,x ∈N *,且0≤x ≤30)的有关数据,如表,并且根据表中数据,求得y 关于x 的线性回归方程为=0.8x +.x 2 4 710 15 22 y8.19.41214.418.524其中,阴历22日是分界线,从阴历22日开始月亮就要到第二天(即23日0:00)才升起.则( ) A .样本点的中心为()10,14.4 B .=6.8C .预报月出时间为16时的那天是阴历13日D .预报阴历27日的月出时间为阴历28日早上4:00 【解析】选AD .x =2+4+7+10+15+226=10,y =8.1+9.4+12+14.4+18.5+246=14.4,故样本点的中心为()10,14.4 ,选项A 正确;将样本点的中心()10,14.4 代入=0.8x +得=6.4,故选项B 错误;因为=0.8x +6.4,当y =16时,求得x =12,月出时间为阴历12日,选项C 错误;因为阴历27日时,即x =27,代入=0.8×27+6.4=28,日出时间应该为28日早上4:00,选项D 正确. 题19.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润Y 的统计分析知x ,Y 具备线性相关关系,经验回归方程为=10.47-1.3x ,估计该台机器最为划算的使用年限为______年. 【解析】当年利润小于或等于零时应该报废该机器, 当y =0时,令10.47-1.3x =0,解得x ≈8, 故估计该台机器最为划算的使用年限为8年. 答案:8题20.以模型y =ce kx 去拟合一组数据时,为了求出非经验回归方程,设z =ln y ,其变换后得到经验回归方程=0.3x +4,则c =________. 【解析】由题意,得ln (ce kx )=0.3x +4,所以ln c +kx =0.3x +4,所以ln c =4,所以c =e 4. 答案:e 4题21.为了响应中央号召,某日深圳环保局随机抽查了本市市区汽车尾气排放污染物x (单位:ppm )与当天私家车路上行驶的时间y (单位:小时)之间的关系,从某主干路随机抽取10辆私家车,已知x 与y 之间具有线性相关关系,其回归直线方程为=0.3x -0.4,若该10辆车中有一辆私家车的尾气排放污染物为6(单位:ppm ),据此估计该私家车行驶的时间为________小时.【解析】由=0.3x -0.4,令x =6,代入可得=0.3×6-0.4=1.4.所以估计该私家车行驶的时间为1.4小时. 答案:1.4题22.某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月4日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下数据:日期 12月1日 12月2日12月3日12月4日温差 11 13 12 8 发芽数(颗)26322617根据表中12月1日至12月3日的数据,求得线性回归方程=x +中的=-8,则求得的=________;若用12月4日的数据进行检验,检验方法如下:先用求得的线性回归方程计算发芽数,再求与实际发芽数的差,若差值的绝对值不超过2颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程________(填“可靠”或“不可靠”).【解析】由题得x =11+13+123 =12,y =26+32+263 =28,所以样本中心点为(12,28),所以28=×12-8,所以=3;因为=3x -8,所以12月4日的估计值为=3×8-8=16,又|17-16|=1,没有超过2,所以求得的线性回归方程可靠. 答案:3 可靠题23.如表为收集到的一组数据:x 21 23 25 27 29 32 35 Y711212466115325试建立Y 与x【解析】作出散点图,如图.从散点图中可以看出x 与Y 不具有线性相关关系,根据已有知识可以发现样本点分布在某一条指数函数曲线的周围.令Z =ln Y ,则变换后的样本点分布在直线=x +的周围,这样就可以利用线性经验回归模型来建立非线性经验回归方程了,数据可以转化为:x 21 232527 29 32 35 Z1.9462.3983.0453.1784.1904.7455.784求得经验回归方程为=0.272x -3.849, 所以=e0.272x -3.849.题24.宿州市公安局交警支队依据《中华人民共和国道路交通安全法》第90条规定:所有主干道路凡机动车途经十字路口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以100元罚款,记3分的行政处罚.如表是本市一主干路段监控设备所抓拍的5个月内,机动车驾驶员“不礼让行人”行为统计数据:月份x 1 2 3 45 违章驾驶员人数y1151101009085(1)若x 与y 之间具有很强的线性相关关系,请利用所给数据求违章驾驶员人数y 与月份x 之间的回归直线方程=x +;(2)预测该路段8月份的“不礼让行人”违章驾驶员的人数.参考公式:=∑i =1nx i y i -n x ·y∑i =1nx 2i -n (x)2,=y -x ,参考数据:∑i =15x i y i =1 420.【解析】(1)由表中数据得:x =15()1+2+3+4+5 =3,y =15()115+110+100+90+85 =100,=∑i =15x i y i-5x·y∑i=15x2i-5(x)2=1 420-5×3×10055-45=-8,=y-x=100+8×3=124.所以y与x之间的回归直线方程为=-8x+124;(2)由(1)得,=-8x+124,令x=8,得=-8×8+124=60,预测该路段8月份的“不礼让行人”违章驾驶员人数为60人.。

多元线性回归、logistic回归

多元线性回归、logistic回归
多因素分析
温州医学院环境与公共卫生学院 叶晓蕾
1
概念 多因素分析是同时对观察对象的两个或两个以上
的变量进行分析。 常用的统计分析方法有:
多元线性回归、Logistic回归、COX比例风险回归 模型、因子分析、主成分分析,等。
2
多变量资料数据格式
例号 X1
X2

Xp
Y
1
X11
X12

X1p
Y1
2
H0:β1=β2=…=βm= 0 H1:β1、β2、…βm不等于0或不全等于0
13
ANO VAb
Mo del
Sum of Square s
1
Re g re ssi o n
13 3.71 1
df Me an Square
4
33 .4 28
F
S i g.
8.278 .000a
Re si dua l
88 .8 41
•最后获得回归方程为:
Yˆ 6.500 0.402X2 0.287X3 0.663X4
18
三、回归方程的评价 1、确定系数(R2):
R2 SS回 归 SS总
意义:在y的总变异中,由x变量组建立的线性回归方程所能
解释的比例。 0~1,越大越优。
特点:R2是随自变量的增加而增大。
因此,在相近的情况下,以包含的自变量少者为优。
22
4.03 8
To tal
22 2.55 2
26
a. P redict ors: (Const ant ), 总 胆 固醇 x1, 胰 岛 素x3, 糖 化 血红 蛋 白 x4, 甘 油 三脂 x2
b. Dependent Vari abl e: 血 糖 y

多元线性回归

多元线性回归



Y
X
i
Y
1i i




X ki
XX 1i ki
XX 2i ki
X 2 ki


bˆk



X
k
Y
ii

正规方程
矩阵形式
n

X
X


X 1i

X 1i
X2 1i
X 2i
X X 2i 1i
2
ee ~ (n k 1)
ˆ
t
i
i ~ t(n k 1)
c ee ii n k 1
H : 0成立下,t
0
i
ˆ i
c ee ii n k 1
若 |t | t临
拒绝 H 0
认为 与0有显著的差异 i
或者根据t 查t分布表的概率p, 若
p
E[((X X )1 X ( XB N ) B)((X X )1 X ( XB N ) B)]
E[(X X )1 X NN X ( X X )1]
( X X )1 X E(NN ) X ( X X )1
E(NN )(X X )1 X X ( X X )1
最小的)
线性
Bˆ ( X X )1 X Y
无偏性
E(Bˆ) E[(X X )1 X Y ] E[(X X )1 X ( XB N )] E[(X X )1 X XB ( X X )1 X N ] B ( X X )1 E( X N ) B
i
i
ESS
2

regression_multi-2013

regression_multi-2013
回 残
表 3 多元线性回归方差分析表 变异来源 总变异 回 残 归 差 自由度 n-1 m n-m-1 SS SS 总 SS 回 SS 残 SS 回/m SS 残/(n-m-1) MS 回/MS 残 MS F P
表 4 多元线性回归方差分析表 变异来源 总变异 回 归 残 差 自由度 26 4 22 SS 222.5519 133.7107 88.8412 33.4277 4.0382
1、对模型的假设检验—F检验
SS SS
剩余
检验统计量为 F : F
回归
/ m
/( n m 1 )
S S 回 归 为回归项的平方和,反映由于方程中 m 个自变量与因变量 Y
的线性关系引起因变量 Y 的变异;
SS 回归 b 1 l 1Y b 2 l 2 Y b m l mY b i l iy
l iy ( X i X i )( Y Y ) X i Y [( X i )( Y )] / n
l ij l ji ( X i X i )( X
j
X j ) X i X
j
[( X i )( X j )] / n
b 0 Y b1 X 1 b 2 X 2 ... b m X m
F SS 剩 余 Ui 1
n m
1

SS 回 归 X ) 1 ( i SS 剩 余
n m
1
②偏回归系数的假设检验— t 检验
t 检验法与方差分析法完全等价,
公式为: t
bi SE b i

n m 1
式中 b i 是偏回归系数的估计值, S E ( bi ) 是 b i 的标准误。

报告中的回归分析和拟合度检验

报告中的回归分析和拟合度检验

报告中的回归分析和拟合度检验回归分析和拟合度检验是统计学中常用的方法,用于研究变量之间的关系和预测未来的趋势。

本文将详细论述回归分析和拟合度检验的相关概念、方法和应用。

1. 概述回归分析回归分析是一种研究因变量与自变量之间关系的方法。

它通过拟合数学模型来描述变量之间的线性或非线性关系,并根据模型的统计显著性和拟合度来评估此关系的强度。

本节将介绍回归分析的基本原理、假设条件和常见的回归模型。

2. 简单线性回归分析简单线性回归分析是回归分析中最基础的方法之一。

它用于研究一个自变量与一个因变量之间的关系。

本节将详细介绍简单线性回归模型的构建步骤,包括假设检验、参数估计和模型解释等。

3. 多重线性回归分析多重线性回归分析是回归分析中常用的方法。

它用于研究多个自变量与一个因变量之间的关系,并且考虑了各个自变量之间的相互作用。

本节将介绍多重线性回归模型的构建步骤和参数估计方法,以及如何进行模型选择和诊断。

4. 拟合度检验拟合度检验是用于评估回归模型拟合程度的方法。

它衡量了模型预测与实际观测之间的偏差程度,常用的拟合度检验包括决定系数R²、调整决定系数和F检验等。

本节将详细说明这些拟合度检验的原理和应用。

5. 模型诊断模型诊断是回归分析中不可或缺的步骤。

它用于检验模型的合理性和假设前提是否满足。

本节将介绍常见的模型诊断方法,包括残差分析、异常值检验和多重共线性检验等,并说明如何通过模型诊断改进回归分析结果。

6. 回归分析的应用领域回归分析广泛应用于各个学科领域。

本节将以实际案例为例,介绍回归分析在经济学、医学、市场营销和社会科学等领域的应用。

通过具体案例分析,展示回归分析在实际问题中的解释和预测能力。

综上所述,回归分析和拟合度检验是统计学中重要的分析方法。

通过本文的阐述,读者将获得对回归分析的全面理解,包括基本原理、模型构建、拟合度检验、模型诊断和实际应用等方面的知识。

同时,读者也将了解如何正确使用回归分析方法,并对结果的解释和评估具备一定的能力。

计量经济学-3章:多元线性回归模型PPT课件

计量经济学-3章:多元线性回归模型PPT课件

YXβ ˆe
Y ˆ Xβ ˆ
4/5/2021
.
17
2 模型的假定
(1) 零均值假设。随机误差项的条件期望为零,即 E(ui)=0 ( i=1,2,…,n)
其矩阵表达形式为:E(U)=0 (2)同方差假设。随机误差项有相同的方差,即
Var(ui)E(ui2) 2 (i=1,2,…,n)
(3)无自相关假设。随机误差项彼此之间不相关,即
(i=1,2,…,n)
上式为多元样本线性回归函数(方程),简称样本回归函 数(方程)(SRF, Sample Regression Function).
ˆ j (j=0,1,…,k)为根据样本数据所估计得到的参数估计量。
4/5/2021
.
13
(4)多元样本线性回归模型
对应于其样本回归函数(方程)的样本回归模型:
4/5/2021
.
3
教学内容
一、模型的建立及其假定条件 二、多元线性回归模型的参数估计:OLS 三、最小二乘估计量的统计性质 四、拟合优度检验 五、显著性检验与置信区间 六、预测 七、案例分析
4/5/2021
.
4
回顾: 一元线性回归模型
总体回归函数 E (Y i|X i)01X i
总体回归模型 Y i 01Xiui
0 0
2 0 0 2
0
0
0 0 0 2
2I n
4/5/2021
.
u1un
u2un
un2
20
(4)解释变量X1,X2,…,Xk是确定性变量,不是随机 变量,与随机误差项彼此之间不相关,即
Cov(Xji,ui)0 j=1,2…k , i=1,2,….,n

第四章多元线性回归分析

第四章多元线性回归分析

21
三、离回归标准误 在简单线性回归分析中,我们知道用Sy/x可以用来 反映回归方程估测精确度,在多元线性回归分析中也同 样可用离回归标准误反映回归方程的估测精确度。
Sy/x
Q dfQ
2 ˆ ( y y )
n2
简单线性回归
S y /1, 2,m
多元线性回归方程
一、多元线性回归的数学模型 设有m个自变数,以变数为y,共有n组实际观测数据,则 可以整理为表1。假如y与x1、x2、…… xm之间存在线性关系, 则m元线性回归模型为:
y j y / x1 , x2 xm j
y j 1x1 j 2 x2 j m xmj j
1
16 b1 4 b 2 25 b 3
15
1. 先将相关数据填入表2的算阵A;
2. 计算算阵B的各数值:计算方法分两种: (1)主对角线及其以下各Bij值:
Bij Aij Bi. B. j
(2)主对角线以上各Bij值
7
在回归模型中:α为x1、x2、…xm皆取0时的y总体的
理论值;βi为在其它自变数x固定时xi对y的偏回归系数,
例如β1表示x2、x3、…xm皆保持一定时,x1每增加一个单
位对y总体的的平均效应,叫做x2、x3、…xm固定时,x1对y 的偏回归系数,其余同; y / x1 , x2 ,xm 为y依x1、x2、…xm 的条件总体平均数(简写作 y / 1, 2,m );εj为m元随机
依变数依两个或两个以上自变数的回归叫多元回
归或复回归(multiple regression)。
2
多元回归有多种类型(如多元线性回归、
多元非线性回归、正交多元回归等),而其中 最简单、常用、具有基础性质的是多元线性回 归分析。 多元线性回归分析的思想、方法和原理与 简单线性回归分析基本相同,但会涉及一些新 概念及更细致的分析,尤其是计算要繁杂些, 当自变数较多时可借助计算机进行计算。

SAS多重线性回归

SAS多重线性回归

0.0000 0.5460 0.5110 .31366
-----------------------------------------------------------------------------y | Coef. Std. Err. t P>|t| Beta -------------+---------------------------------------------------------------x1 | .0050165 .0105754 0.47 0.639 .0935215 x2 | .0540611 .0159838 3.38 0.002 .6668242 _cons | -.5656643 1.240127 -0.46 0.652 . ------------------------------------------------------------------------------
-----------------------------------------------------------------------------y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------x2 | .0596878 .0105587 5.65 0.000 .0380232 .0813524 _cons | -.0091673 .3961987 -0.02 0.982 -.8221 .8037653 ------------------------------------------------------------------------------
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)回归方程的检验有统计学意义,而各偏回归系数
的检验均无统计学意义。 (2)偏回归系数的估计值大小或其符号与实际情况和
专业知识相违背,难以解释。
45
三、分析步骤
• 2.6 共线性诊断
多重线性回归分析中,可能会出现以下问题:
(3) 某个(些)与因变量关系密切的自变量,因为参
数标准误的估计值较大,相应t值就会变得较小, 造成其偏回归系数无统计学意义。
48
三、分析步骤
• 2.6 共线性诊断
多重共线性的分类:
(1)严重的多重共线性
此时,自变量之间存在着较高甚至完全的线 性相关关系,虽然最小二乘法仍可应用,但由于 观测误差的稳定性变差,所得的估计值可能面目 全非。这类情况较为少见。
49
三、分析步骤
• 2.6 共线性诊断
• 2. 具体步骤
• 2.3 参数检验
第三步,确定P值。
根据自由度和临界水平,查t分布表,可得双 侧界值为ta/2(n-k-1)。
20
三、分析步骤
• 2. 具体步骤
• 2.3 参数检验
若t > ta/2(n-k-1)或t <- ta/2(n-k-1),则P<a。此
时,拒绝H0,接受H1,认为该回归系数不等于0。 反之,则接受H0,认为该回归系数为0。
选择时, 一要尽可能地不漏掉重要的自变量; 二要尽可能地减少自变量的个数,保持模型 的精简。
23
三、分析步骤
• 2. 具体步骤
• 2.4 变量筛选
常用的变量筛选方法有以下8种:
前进法 逐步回归法 最小R2增量法 修正R2选择法 后退法 最大R2增量法 R2选择法 Mallow’s Cp选择法
24
三、分析步骤
• 2.5.2 校正决定系数(Rc2)
故在评价两个包含不同个数自变量的回归模
型的拟合效果时,不能简单地用决定系数作为评 价标准。 此时,必须考虑回归模型中自变量个数的影 响。
41
三、分析步骤
• 2.5 模型拟合效果评价
• 2.5.2 校正决定系数(Rc2)
构造校正决定系数,其公式为:
MS误差 n 1 2 R =1 1 1 R MS总 n p 1
ˆ Y b0 + b1 X1 + b2 X 2 + + bk X k
ˆ Y 表示Y的估计值
10
三、分析步骤
• 2. 具体步骤
• 2.2 模型检验
根据方差分析的思想,将总的离均差平方和
SS总分解为回归平方和SS回和残差平方和SS残两部 分。 SS总的自由度为n-1, SS回的自由度为k,SS残 的自由度为n-k-1。
为止。
29
三、分析步骤
• 2.4.2 后退法
局限性:
排除标准大时,任何一个自变量都不能被剔
除; 排除标准小时,开始被剔除的自变量后来在 新条件下即使变得对因变量有较大的贡献了,也 不能再次被选入回归方程并参与检验。
30
三、分析步骤
• 2.4.3 逐步回归法(STEPWISE)
此法是前进法和后退法的结合。
义;
其二,回归方程中各回归参数的估计值的假 设检验结果都有统计学意义; 其三,回归方程中各回归参数的估计值的正 负号与其后的变量在专业上的含义相吻合;
36
三、分析步骤
• 2.4.5 变量筛选方法的选择
其四,根据回归方程计算出因变量的所有
预测值在专业上都有意义。
其五,若有多个较好的多重线性回归方程 时,残差平方和较小且多重线性回归方程中所 含的自变量的个数又较少者为最佳。
回归方程中的变量从无到有像前进法那样,
根据F统计量和P值大小按纳入标准水平决定该自 变量是否入选。
31
三、分析步骤
• 2.4.3 逐步回归法(STEPWISE)
当回归方程选入自变量后,又像后退法那样,
根据F统计量和P值按排除标准水平剔除无统计学
意义的各自变量,依次类推。
这样直到没有自变量可入选,也没有自变量
2 C
其中,n为样本含量,p为模型中自变量个数。 决定系数相同时,自变量个数越多, Rc2越小。
42
三、分析步骤
• 2.5 模型拟合效果评价
• 2.5.3 剩余标准差s
即残差之标准差,计算公式为:
SS残 s n k 1
剩余标准差越小,说明回归模型的拟合效果越好。
43
三、分析步骤
• 2.5 模型拟合效果评价
34
三、分析步骤
• 2.4.5 变量筛选方法的选择
究竟哪一种筛选变量的方法最好?这个问题
没有绝对的定论。
一般来说,逐步回归法和最优回归子集法较 好。对于一个给定的资料,可试用多种变量筛选 的方法,结合以下几条判断原则,从中选择最佳
者。
35
三、分析步骤
• 2.4.5 变量筛选方法的选择
其一,拟合的回归方程在整体上有统计学意
11
三、分析步骤
• 2. 具体步骤
• 2.2 模型检验
SS总 y y ˆ SS回 y y
2
2
ˆ SS残 y y
2
12
三、分析步骤
• 2. 具体步骤
• 2.2 模型检验
模型的显著性检验步骤为:
第一步,建立检验假设。 H0:b1=b2= … =bk=0 H1: b1, b2, …, bk不同时为0
8
三、分析步骤
• 1. 基本任务
求出模型中参数的估计值,对模型和参数进
行假设检验;
对自变量进行共线性诊断,对观测值进行异 常点诊断; 结合统计学知识和专业知识,对回归方程进 行合理的解释,并加以应用。
9
三、分析步骤
• 2. 具体步骤
• 2.1 回归参数估计
多重线性回归分析的参数估计,常采用最小
二乘法(OLS)进行。该方法使残差平方和达到最 小,从而得出模型参数估计值
17
三、分析步骤
• 2. 具体步骤
• 2.3 参数检验
对自变量Xi的系数是否为0进行假设检验,
步骤为: 第一步,建立检验假设。 H0:bi=0 H1: bi≠0
18
三、分析步骤
• 2. 具体步骤
• 2.3 参数检验
第二步,计算检验统计量。
bi t S bi
v n k 1
19
三、分析步骤
46
三、分析步骤
• 2.6 共线性诊断
导致这些问题的原因可能有:
(1)研究设计不够合理; (2)资料收集存在问题;
(3)自变量间近似线性; (4)数据中存在异常点;
(5)样本少而自变量多。
47
三、分析步骤
• 2.6 共线性诊断
何谓多重共线性?
自变量间的近似线性关系,即是多重共线性。
由于数据自身的特征,回归模型中的自变量 之间或多或少地存在一些相关性,这违反了自变 量间相互独立的假设条件,称为多重共线性。
37
三、分析步骤
• 2.5 模型拟合效果评价
• 2.5.1 决定系数(R2)
即复相关系数的平方,其值等于因变量观测
值与预测值之间简单相关系数的平方。计算公式 为:
SS残 SS回 R 1 SS总 SS总
2
38
三、分析步骤
• 2.5 模型拟合效果评价
• 2.5.1 决定系数(R2)
R2取值介于0到1之间,其含义为自变量能够
27
三、分析步骤
• 2.4.2 后退法(BACKWARD)
从模型中包含全部自变量开始,计算留在回
归方程中的各个自变量所产生的F统计量和P值,
当P值小于排除标准(规定的从方程中剔除变量的
临界水准)则将此变量保留在方程中。
28
三、分析步骤
• 2.4.2 后退法
否则,从最大的P值所对应的自变量开始逐
一剔除,直到回归方程中没有变量可以被剔除时
21
三、分析步骤
• 2. 具体步骤
• 2.4 变量筛选
由例1的分析结果可知,不是所有的自变量对
因变量的作用都有统计学意义。 故需要找到一个较好的回归方程,使之满足: 方程内的自变量对回归都有统计学意义,方程外 的自变量对回归都无统计学意义。
22
三、分析步骤
• 2. 具体步骤
• 2.4 变量筛选
这就是自变量的选择问题,或称为变量筛选。
表1 进行多重线性回归分析资料的数据结构 编号 1 2 : X1 X11 X21 : X2 X12 X22 : … … … Xk X1k X2k : Y Y1 Y2 :
n
Xn1
Xn2

Xnk
Yn
3
二、基本原理
• 2.1 原理简介
多重线性回归模型:
Y=b0+b1X1+b2X2+…+bkXk+e
其中,bj (j=0, 1 , 2 … , k)为未知参数,e为随机 误差项。
6
二、基本原理
• 2.2 前提条件
多重线性回归分析要求资料满足线性(Linear)、
独立性(Independence)、正态性(Normality)和方
差齐性(Equal variance) 。
除此之外,还要求多个自变量之间相关性不 要太强。
7
二、基本原理
• 2.2 前提条件
线性——指自变量与因变量之间的关系是线性的 独立性——指各观测值之间是相互独立的 正态性——指自变量取不同值时,因变量服从正 态分布 方差齐性——指自变量取不同值时,因变量的方 差相等
多重线性回归分析
医学统计学教研室
柳伟伟
一、方法简介
• 1.2 概念
用回归方程定量地刻画一个因变量与多个自
相关文档
最新文档