一种同步整流Buck_flyback拓扑的研究_周岩
flyback同步整流

Design Considerations and Performance Evaluations of Synchronous Rectification in Flyback Converters Michael T.Zhang,Member,IEEE,Milan M.Jovanovi´c,Senior Member,IEEE,and Fred C.Y.Lee,Fellow,IEEEAbstract—Design tradeoffs and performance comparisons of various implementations of theflyback converter with a synchronous rectifier(SR)are presented.Specifically,the merits and limitations of the constant-frequency(CF)continuous-conduction mode(CCM),CF discontinuous-conduction mode (DCM),variable-frequency(VF)DCM,and zero-voltage-switched(ZVS)DCMflyback converters with SR’s are discussed.The theoretical efficiency improvements of the discussed synchronous rectification approaches relative to Schottky diode implementations are derived.Finally,theoretical results are verified on an experimental universal-input off-line 15-V/36-Wflyback prototype.Index Terms—Efficiency,flyback converter,synchronous rec-tification.I.I NTRODUCTIONG ENERALLY,in low-output-voltage power supplies,theconduction loss of the diode rectifier(DR)due to its forward voltage drop is the dominant loss component.In power supplies with the output voltage not too many times higher than the rectifier forward voltage drop,the DR loss accounts for more than50%of the total power loss.The rectification loss can be reduced by replacing the DR with a synchronous rectifier(SR),i.e.,with a low-on-resistance MOSFET[1],[2]. Synchronous rectification is most often applied to the buck and buck-derived isolated topologies,which are suitable for step-down low-output-voltage applications[2].Generally,in the isolated buck-derived topologies,such as the forward,bridge-type,and push–pull converters,synchronous rectification can be implemented by a direct replacement of the DR’s with low-voltage MOSFET’s[3],[4].Namely,in these self-driven SR implementations,the secondary voltage of the transformer is used to directly drive the SR’s,thus reducing the circuit complexity and cost without sacrificing the efficiency.A number of applications of the SR in theflyback converter have also been reported[5]–[7].However,in all of these applications,the main purpose of the SR was to provide the postregulation of the output voltage and not to maximize the conversion efficiency.Specifically,in[5]–[7],the SR is used Manuscript received January7,1997;revised July28,1997.This work was supported by Delta Electronics,Inc.,Taiwan.Recommended by Associate Editor,R.Steigerwald.M.T.Zhang is with the Platform Architecture Laboratory,Intel Corpora-tion,Hillsboro,OR97124-5916USA.M.M.Jovanovi´c is with the Delta Power Electronics Laboratory,Inc., Blacksburg,V A24060USA.F. C.Y.Lee is with the Virginia Power Electronics Center,Bradley Department of Electrical Engineering,Virginia Polytechnic Institute and State University,Blacksburg,V A24061-0111USA.Publisher Item Identifier S0885-8993(98)03343-2.Fig.1.Flyback converter with SR.as a voltage-controlled resistor in a control loop which adjusts the SR’s resistance so that the output voltage is maintained within the regulation range.Generally,the regulation range of these postregulation approaches is limited to the forward voltage drop of the SR body diode,i.e.,Generally,the circuit sown in Fig.1can work in CCM or DCM either with a constant or variable switching frequency pulse-width-modulation(PWM)control.Design considera-tions and SR loss estimates for various modes of operation and different control approaches are given next.A.Constant-Frequency CCMThe key waveforms of theflyback converter with the SR operating in CCM are given in Fig.2.As can be seen fromFig.2,during delaytimesnot onlyincreases the conduction loss,but also introduces a reverse recovery loss when primary switch SW is turned on.The total conduction loss of the SR is given by the sum of the channel-resistance loss(unshadedis the SR onresistance,is theduty ratio of the primaryswitch,is the turns ratio of the transformer,ing(1),the total conduction loss of the SR can be calculatedas,currents).whereand losses,the CF CCM converterin Fig.1exhibits a loss each time the SR is turned off(i.e.,each time the SW is turned on)because of a parasitic resonancebetween)must be terminated at themomentstarts resonating,as shown in Fig.3.For a converter with aregulated output,the duration of resonantintervalFig.3.Key waveforms of CF DCMflyback converter with SR.Body diode of SR conducts in shaded area(C.Variable-Frequency DCMCapacitive switchinglosscan be eliminated if the primary switch SW is turned on at themoment,which isequal to one half of the parasitic-resonance period,i.e.,).and full load,and it increases as the line increases and/or loaddecreases.The conversion efficiency at low line of the VF DCMconverter can be always made higher than the efficiencyof the corresponding CF counterpart.In addition,the high-line efficiency of the VF DCM converter can also be higherthan that of the CF DCM implementation if the power-losssavings due to elimination of the parasitic oscillations andthe minimization of the turn-onvoltage.Therefore,forTABLE IP OWER L OSS C OMPARISONSOFF LYBACK C ONVERTERSWITHDRANDSRFig.5.Key waveforms of VF ZVS DCM operation.Therefore,to build up thenecessary,rectifier switchinglosses,(11)where is the loss other than the conduction and switching losses of the rectifier and the capacitive turn-on switching loss of the primary switch.Specifically,includes the transformer,input [electromagnetic interference (EMI)]filter,output filter,and control circuit losses,i.e.,the losses which are virtually the same for both the SR and rectifier diode implementations of the converter.Similarly,the efficiency of the flyback converter with the SR can be writtenasfrom (11)and (12),the efficiencydifference between the SR and the DR implementations canFig.6.Theoretical efficiency estimates. be calculatedas(13)whereA)because the switching turn-onloss of the primary switch contributes significantly to the totalloss in the other implementations.For the same range of theoutput power,the CF CCM implementation exhibits the lowestefficiency due to the dominant effect of the turn-on switchingloss of the primary switch and the turn-off switching loss ofthe SR.For example,at A(which corresponds to thefull-load current of the experimental converter presented in thenext section),the efficiency of the ZVS DCM implementationwith the SR is approximately3%higher than the efficiency ofthe corresponding circuit with the Schottky rectifier.However,at A,the efficiency of the CCM implementation withthe SRat A is1%lower than the efficiency of thesame circuit with the Schottky rectifier.At higher power levels,the conduction losses of the primaryswitch and the SR start dominating the total loss.As a result,the CF CCM implementation exhibits the highest efficiencyat.IV.E V ALUATION R ESULTSThe discussed SR implementations were experimentallyevaluated on a15-V/2.4-Aflyback converter designed to oper-ate in the100–370-Vdc input-voltage range.The diode-versionpower stages were implemented with Motorola MTP6N60(C,andpFpFV)Schottky diodes in parallel for the secondary rectifiers.Inimplementations of the power stages with SR’s,the Schottkydiodes were replaced with IXYS IXFK100N10(V)MOSFET’s.The turns ratio of thetransformer for the CCM implementationwaskHz[9].The transformer used for allother implementations(CF DCM,VF DCM,and ZVS DCM)had a turns ratioofcircuit which is connected to the output of thezero-crossing detector comparator.ResistorsFig.7.Control and drive circuit for VF DCM flyback converter with SR.The thick lines belong to the powerstage.Fig.8.Measured efficiencies of CF CCM implementation with SR and Schottkies rectifier at full power.A.Constant-Frequency CCMFig.8shows the measured efficiencies of the CF CCM experimental converters with the Schottky diode and the SR.Because the SR body diode conducts current during delaytimes,causes large superimposed capacitor charging andbody reverse recovery currents.To suppress these currents,a saturable core was connected in series with the SR to slow down the rateofpF),causing a highercapacitor charging loss according to (5).Therefore,at 36-W power level the CCM converter with the Schottky rectifier exhibits higher efficiency than that with the SR.B.Constant-Frequency DCMFig.10shows an oscillogram with the key waveform of the CF DCM converter with the SR.During the resonantintervalresonance can be clearly seen inbothand.Toachieve the switch turn on with minimumvoltageispF,and since at themaximum inputvoltagein the experimentalconverterispF(a)(b)Fig.9.SR turn-off waveforms of CF CCM converter with SR:(a)without saturable core and (b)with saturablecore.Fig.10.Measured waveforms of CF DCM converter with SR at V in =250Vdc,V o =15V,and I o =2:4A.Fig.11.Measured efficiency of CF DCM implementation with SR and Schottky at full power.It should be notedthatis a function of inputvoltageonin the entire input-voltage range from 100to 370V is less than 20%.Therefore,Fig.12.Measured waveforms of VF DCM implementation with SR at V in =250Vdc,V o =15V,and I o =2:4A.Fig.13.Measured waveforms of ZVS DCM implementation at V in =250Vdc,V o =15V,and I o =2:4A.a simple low-cost drive circuit with a constant delay can be used in the implementations of the VF converters in Figs.12and 13without significantly affecting their performance.By eliminating the parasitic resonance duringtheFig.14.Measured efficiencies of VF DCM implementations with SR and Schottky and ZVS DCM implementation at fullpower.Fig.15.Switching frequency comparison of VF DCM implementations with SR and Schottky and ZVS DCM implementation.the efficiency comparisons in Fig.14shows that VF DCM implementation with the SR has a relatively constant 2.5%–4%efficiency improvement over VF DCM implementation with the Schottky,as has been predicted.However,in the VF DCM implementation,only partial ZVS can be achieved,since inthis design,input voltage(–Arequired toobtain[9]L.Huber and M.M.Jovanovi´c,“Evaluation offlyback topologiesfor notebook ac/dc adapter/charger applications,”in High Freq.Power Conversion Conf.Proc.,1995,pp.284–294.[10] B.Andreycak,“Power factor correction using the UC3852controlledon-time zero-current switching techniques,”Unitrode Product&Appli-cations Handbook1995–1996,Application Note U-132,pp.10-269–10-283.[11]J.G.Kassakian,M.F.Schelcht,and G.C.Verghese,Principle of PowerElectronics.Reading,MA:Addison-Wesley,1991.Michael T.Zhang(S’95–M’97)was born in Shang-hai,China,in1966.He received the B.S.degree inphysics from Fudan University,Shanghai,in1989and the M.S.degree in physics and Ph.D.degreein electrical engineering,both from Virginia Poly-technic Institute and State University,Blacksburg,in1992and1997,respectively.He joined Intel’s Platform Architecture Labora-tory(PAL),Hillsboro,OR,in1997as a SeniorDesign Engineer.His research interests include theanalysis and design of high-frequency computer power supplies and the techniques of computer EMI an M.Jovanovi´c(S’86–M’89–SM’89),for a photograph and biography, see this issue,p.486.Fred C.Y.Lee(S’72–M’74–SM’87–F’90),for a photograph and biography, see this issue,p.521.。
单端反激有源钳位和同步整流技术研究

单端反激有源钳位和同步整流技术研究桑泉;涂俊杰;许育林【摘要】The active clamp techniques is usually used in the forwad topology of DC/DC power supply. Study of active clamp and synchronous rectifying techniques in single out of flyback topology is introduced. By means of principle,de-signing of active clamp and synchronous rectifying techniques apply to single out of flyback topology, mixed assembling techniques of thick flim and modules to achieve the purpose of high efficiency and high power density. By the 5 V/20 W power sample machining and simulation testing,power density of the power sample is 50.8 W/inch3, power efficiency of the power sample is 89.2%,nose ripple of the power sample is 43 mV. The power sample proves that this techniques is efficient apptoaches to increase the power density of isolation DC/DC power supply.%有源钳位技术通常只在正激DC/DC功率电源拓扑结构中。
器件在电力电子变换器中的应用考核试卷

7.以下哪种器件在电力电子变换器中主要用于保护?()
A.保险丝
B.瞬态电压抑制器(TVS)
C.压敏电阻
D.所有以上
8.在一个Buck降压电路中,开关器件在截止状态下的损耗主要是什么?()
A.开关损耗
B.导通损耗
C.寄生损耗
D.线路损耗
9.以下哪种器件在电力电子变换器中用于改善电磁干扰?()
A.使用屏蔽电缆
B.接地处理
C.滤波器设计
D. PCB分层设计
18.以下哪些是电力电子变换器中的主要噪声源?()
A.开关器件
B.变压器
C.电感
D.电容
19.在电力电子变换器中,以下哪些因素会影响电感的选择?()
A.电感值
B.额定电流
C. DCR值
D.最大磁通密度
20.以下哪些技术可以用于电力电子变换器的远程监控和故障诊断?()
9.为了提高电力电子变换器的电磁兼容性,可以采用______措施。
10.在电力电子变换器的设计中,______的选择需要考虑其饱和电流和频率响应。
四、判断题(本题共10小题,每题1分,共10分,正确的请在答题括号中画√,错误的画×)
1.电力电子变换器中的二极管只能实现单向导通。()
2.在电力电子变换器中,开关频率越高,效率越高。()
A. Boost
B. Buck
C. Flyback
D. Forward
4.在电力电子变换器的设计中,以下哪些措施可以减少电磁干扰?()
A.使用屏蔽线
B.增加滤波电容
C.优化PCB布局
D.使用铁氧体磁珠
5.以下哪些器件可以用于电力电子变换器中的电流检测?()
A.霍尔传感器
基于UC2842同步整流技术的反激变换器的研究

独创性声明
本人声明所呈交的学位论文是我个人在导师的指导下进行的研究工 作及取得的研究成果。尽我所知,除文中已标明引用的内容外,本论文不 包含任何其他人或集体已经发表或撰写过的研究成果。对本文的研究做出 贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明 的法律结果由 SR to some proper circuit topologies can receive low-cost and high-efficiency converters. Flyback converter has the excellence of the simple topology, the insulated input and output, the wide input voltage range and the easily using of multiply outputs, as a result of these, it has been widely used in the circuit of the high input voltage and low input power, especially widely used in the SMPS of 5~150 watts.
The traditional converter always adopts common diode or schottky diode to rectify, thanks to the great positive turn-on voltage of the diode, the power dissipation is considerably great, the rectifying dissipation turns to the main dissipation and can’t content with the high efficiency and small volume of the low-voltage and high-current SMPS. In this situation, Synchronous rectification(SR) should be adopted. It adopts power MOSFET instead of traditional schottky diode and common diode to rectify. As a result of the low turn-on resistance, short switching time and high input resistance, the power dissipation of the switching converter has been greatly cut down between the rectifying process, the efficiency of the converter has also been increased, so the MOSFET becomes to the preferred rectifier of the low-voltage and high-current SMPS.
基于多端Flyback_拓扑的功率变换系统研究

Dynamical Systems and Control 动力系统与控制, 2023, 12(2), 98-104 Published Online April 2023 in Hans. https:///journal/dsc https:///10.12677/dsc.2023.122010基于多端Flyback 拓扑的功率变换系统研究杜吉飞1,2,穆云飞1,李小滨2,赵凌志3,缪永丽3,王 丽3,孙 强3*1天津大学电气自动化与信息工程学院,天津2珠海泰坦电力电子集团有限公司,广东 珠海3天津农学院工程技术学院,天津收稿日期:2023年3月24日;录用日期:2023年4月18日;发布日期:2023年4月25日摘要 反激式功率变换器结构简单,转换效率高,损耗小,能提供多路直流输出,因而得以广泛应用。
本文首先分析了当前功率变换器的研究现状与发展趋势,明确了设计与改进的方向。
其次,分析了单端Flyback 型功率变换器的工作原理,并对一些重要模块进行了详细的研究。
对于变换器功率因数不高的问题、谐波治理的问题,提出了改进思路,进行了电路拓扑结构优化。
仿真实验结果表明,本文所设计的基于反激式拓扑的功率变换系统具有电路结构简单、效率高、电路稳定性高、电路损耗小等特点,能实现单相输入交流电压转变为多路隔离输出的直流电压,具有很高的应用价值。
关键词功率变换器,反激式拓扑,多路输出The Study on Power Converter System Based on Multi-End Flyback TopologyJifei Du 1,2, Yunfei Mu 1, Xiaobin Li 2, Lingzhi Zhao 3, Yongli Miao 3, Li Wang 3, Qiang Sun 3* 1School of Electrical and Information Engineering, Tianjin University, Tianjin 2Zhuhai Titans Power Electronics Group Co., Ltd., Zhuhai Guangdong 3College of Engineering and Technology, Tianjin Agricultural University, Tianjin Received: Mar. 24th , 2023; accepted: Apr. 18th , 2023; published: Apr. 25th , 2023AbstractAs an important type of power converter, flyback switching power supply has simple circuit struc-ture, high conversion efficiency, small loss, and it can provide multi-channel AC output, so it is widely *通讯作者。
多功能、多种拓朴高频PWM控制器TPS43000

多功能、多种拓朴高频PWM控制器TPS43000TPS43000是一款高频电压型同步PWM控制器,它能用于BUCK、BOOST、SEPIC 或flyback拓朴的控制。
该款高度柔性,全新特色的控制器设计成可驱动一对外部功率MOSFET(一个为N沟,一个为P沟)的结构,因而具有很宽范围的输出电压和功率水平,还有自动的PFM模式工作,关断电流小于1μA,休息模式工作电流小于100μA,在1MHz时整个工作电流小于2mA,因而是一个高效率多用途的DC/DC控制器。
TPS43000输入电压范围从1.8V~9.0V,给分布式系统供电,可以由镍镉电池供电,也可以由锂电池供电,产生0.8V~8V的各输出电压(还可更高),用户可调节其PWM频率最高达2MHz,也可令其进入PFM模式,在此时若电感电流进入断续,则IC进入休息模式,在输出电压降下2%时再工作,在此工作模式,在很宽的负载电流时都有非常高的效率,器件还可以同步到外时钟频率。
TPS43000可选择两个水平的限流电路,它检测主功率MOSFET的压降,用户可选择逐个脉冲式限流,或打呃式过流保护。
TPS43000可以在低功耗模式下工作,有欠压锁定,软起动等功能,最高工作频率达2MHz。
IC的内部等效电路如图1所示。
其16PIN功能描述如下:1 PIN SYNC/SC此功能端用于外同步及关断控制,要求外脉冲从0V~2V,占空比不限,但脉宽必须大于100ns。
保持此端高于2V,或保持此电压达35μS,IC 即关断。
2 PIN CCS限流端子,可逐个脉冲电流限制及打呃式限制,将此端接于VIN,为逐个脉冲限流,接此端到GND,进入打呃式过流保护。
3 PIN RT外接电阻到GND设置工作频率。
4 PIN CCM无论输入端检测有没有信号,I ZERO比较器都允许断续型工作,将此端电平拉高,可忽视I ZERO比较器的输出,强制连续导通模式工作,将其接地,即使能I ZERO,允许断续导通模式工作。
dcdc降压电路案例

dcdc降压电路案例DC/DC降压电路是一种常见的电路设计,用于将高电压转换为低电压。
这种电路通常由多个元件和电子器件组成,通过控制电流和电压来实现对输入电压的降压。
以下是10个DC/DC降压电路案例的介绍。
1. Buck降压电路Buck降压电路是最常见的DC/DC降压电路之一。
它通过开关管(如MOSFET)和电感来控制电流和电压,从而将输入电压降低到所需的输出电压。
这种电路具有高效率和较低的成本,适用于各种应用领域。
2. Boost降压电路Boost降压电路是另一种常见的DC/DC降压电路。
它通过开关管和电感来将输入电压升高到所需的输出电压。
Boost降压电路通常用于需要较高输出电压的应用,例如LED驱动器和太阳能电池充电器。
3. Buck-Boost降压电路Buck-Boost降压电路是一种可以将输入电压降低或升高到所需输出电压的DC/DC降压电路。
它结合了Buck和Boost电路的特点,适用于需要输入和输出电压具有相对独立性的应用,例如锂电池充电器。
4. Cuk降压电路Cuk降压电路是一种特殊的DC/DC降压电路,它使用电感和电容来实现电压降低。
相比于传统的Buck或Boost电路,Cuk降压电路具有更高的输出电流和更低的输入电流纹波。
5. Flyback降压电路Flyback降压电路是一种常用的DC/DC降压电路,它使用变压器来实现电压转换。
这种电路具有简单的结构和低成本,广泛应用于电源适配器和开关电源等领域。
6. SEPIC降压电路SEPIC降压电路是一种特殊的DC/DC降压电路,它可以将输入电压降低或升高到所需的输出电压。
SEPIC电路适用于需要输入电压具有相对独立性的应用,例如电动汽车充电器和太阳能逆变器。
7. Zeta降压电路Zeta降压电路是一种变换器拓扑,它可以将输入电压降低到所需的输出电压。
Zeta电路与Buck电路类似,但具有更高的输入电压范围和更低的纹波。
8. Ćuk降压电路Ćuk降压电路是一种特殊的DC/DC降压电路,它使用电容和电感来实现电压转换。
开关电源中常见变换器主电路拓扑

开关电源中常见变换器主电路拓扑1.1 Buck变换器Buck变换器又称降压变换器,Buck型电路拓扑由有源开关(功率MOSFET)、续流二极管D(或由同步整流开关代替)、储能电感L、滤波电容C组成。
其电路如图1-1所示。
电感和输出电容组成一个低通滤波器,滤波后电压以很小的纹波呈现在输出端。
图1-1 Buck变换器拓扑结构1.2 Boost变换器Boost变器又称升压变换器,其电路如图1-2所示。
改变降压变换器中元件的位置就可把它变成升压变换器。
在升压变换器中,开关管导通时在电感中有斜波电流流过。
当开关管断开时,电感中的电流必须保持流动,电感上的电压改变极性,使二极管正向偏置,并释放能量到输出端和输出电容器。
图1-2 Boost变换器拓扑结构1.3 反激变换器反激变换器又称Flyback式变换器,其电路如图1-3所示。
由于反激变换器的电路拓扑结构简单,能提供多组直流输出和升降范围宽,因此广泛应用于中小功率变换场合。
其结构相当于在Boost变换器中,用一个变压器代替升压电感,即构成了反激式变换器。
图1-3 反激电路原理图V1213T111423131211109867451516R12C1R14VZ112R11C5C6VZ212R9R1C10R18R13C8VD312R15VD112R7C3N1MC33262VFB1Comp2Multi3CS 4Z c d5G N D6Dri 7Vcc 8R10R19VD212C7R6VCC Vpfc,inVpfc,out 当开关晶体管VS 被驱动脉冲激励而导通时,Vin 加在开关变压器T 的初级绕组L1上,此时次级绕组L2的极性使VD 处于反偏而截止,因此L2上没有电流流过,此时电感能量储存在L1中,当VS 截止时,L2上电压极性颠倒使VD 处于正偏,L2上有电流流过,在VS 导通期间储存在L1中的能量此时通过VD 向负载释放。
反激式变换器工作波形见图 1-4。
图1-4 反激式变换器工作波形2.PFC 电路PFC 的英文全称为Power Factor Correction ,意思是功率因数校正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Study of a Synchronous Rectifier Buck-flyback Topology
ZHOU Yan, WANG Bo-lin, WANG Meng-ting
(Hohai University,Nanjing 210013,China) Abstract:For the digital controller used more and more popular in the module power supply,its high standby quiescent current and power consumption make the traditional auxiliary power supply approach difficult to meet the design requirements.The proposed synchronous rectifier Buck-flyback (SR Buck-flyback) topology is analyzed.The steady state operation principles is given.The experimental results verify the correctness of the analysis. Keywords:synchronous rectifier;digital control;module power supply;flyback
LN1
diN1 dt
=-Uo1
(15)
当 t=Ts 时,iN1 达到最小值。在 VQ2 导通期间,
Buck 变换器中电流减小量 △iN1(-)为:
△iN1(-)=
Uo1 Lf
(1-D)Ts
(16)
同时变压器次级 Flyback 绕组 N2 上的感应电
压 UN2=-N2Uo1/N1,其“·”端极性为“负”,使 VD1 导通,
(2)当电流断续时,图 3 中 D′为 VD1 的导通占
空比,流过 VD1 最大峰值电流为:
IN2max=
2Uo1N2 2R2N1D′
(20)
(3)当电流临界时,VD1 中流过最大峰值电流为:
IN2max=
2Uo1N2 2R2N1(1-D)
(21)
在(2),(3)两种情况下,VD1 均为零电流关断,
输出电流 Io1 就是 iBuck 的平均值,即:
Io1=
I +I Buckmin Buckmax 2
(7)
Bmax=
L IN1 N1max N1Ae
式中:Ae 为磁芯中心柱面积。
(2)开关模态 2 [Ton,Ts]
(14)
在 t=Ton 时,VQ1 关断,VQ2 导通。此时加在 LN1
上的电压为-Uo1,iN1 线性减小。
可获得较高效率。
4 同步 Buck-flyback 拓扑的试验结果
设计了一台同步 Buck-flyback 变换器用于数字
电源的辅助电源供电。在待机工作下,(下转第 54 页)
40
第 44 卷第 1 期 2010 年 1 月
电力电子技术 Power Electronics
Vol.44, No.1 January,2010
图 3 工作原理波形
负载电流 Io2 就是单位周期内通过 VD1 的电流 平均值,其表达式为:
Io2=
1 2
(IN2min+IN2max)(1-D)
(18)
二极管 VD1 中流过最大峰值电流 IN2max 为:
IN2max=
N1RU2o(1N1-2 D)+
Uo1N1 2LN1N2
(1-D)Ts
(19)
采用传统的辅助电源方式难以满足设计要求。提出了一种同步整流 Buck-flyback 拓扑,分析了其工作原理,并推导
了其稳态工作基本关系。通过构建实验样机平台,证明了理论分析的正确性。
关 键 词 :同步整流器;数字控制;模块电源;反馈
中 图 分 类 号 :TM46
文 献 标 识 码 :A
文 章 编 号 :1000-100X(2010)01-0039-02
2 同步 Buck-flyback 拓扑的提出
数字电源不仅提供了电源本身的控制[1-2],还提 供了数字通信与监控功能,其结构如图 1 所示。
图 1 数字电源架构
电源模块工作在 36~75 V 的宽输入电压范围,传 统辅助电源通过让 VQ3 管工作在线性区以获得初、次 级各类控制芯片所需的待机工作电压[3],如图 2a 所 示。数字控制芯片除了提供模块基本工作所需的功 能,还需及时提供工作电压、电流等信息以和上位机 通信。一般 DSP/FPGA 的静态工作电流都在几十毫
储存在变压器磁场中的能量通过 VD1 释放,一方面
给 C2 充电,另一方面向负载供电。此时 Flyback 的输
出电压 Uo2 等于 uN2,次级电流从 IN2max 开始线性下
降,其下降率为:
diN2 = Uo1 ·N1 dt Lf N2
(17)
Flyback 变换器电流工作状态可分为 3 种模式:
线,重载情况下其效率约为 90%。
6结论
设计了大功率并联软开关电源主电路的系统、 介绍了移相全桥变换器的工作原理,研究了数字化
控制的实现方法进,最终研制了一台具有 N+1 冗余
结构的大功率并联软开关电源。采用主从控制方式
和移相全桥 ZVS 控制技术,实现了电源输出功率的
精确调节和功率单元内超前、滞后桥臂开关管的零
[5] 石 磊,朱忠尼,鞠志忠,等.一种新型能量交换式移相全
驱动电压 ugVS 及漏源电压 udsVS 波形,可见,开关管在
桥电路[J].中国电机工程学报,2008,28(12):112-118.
变电源[J].电力电子技术,2006,40(3):65-66.
[3] 杨旭丽,杨 英.一种新型开关电源并联均流技术的研究[J].
电气应用,2006,25(5):26-28.
图 6 实验波形
图 6c,d 示出功率单元内超前桥臂开关管上的
[4] 张勇锋,黄自龙,杨 旭,等.12 kW 移相全桥 PWM 变换 器的设计[J].电力电子技术,2006,40(4):50-52.
39
第 44 卷第 1 期 2010 年 1 月
电力电子技术 Power Electronics
Vol.44, No.1 January,2010
组 N1 上的电压为 Uin-Uo1,此时变压器次级 Flyback
绕组 N2 上的感应电压 UN2=N2(Uin-Uo1)/N1,其“·”端极
性为“正”,使二极管 VD1 截止,负载电流由滤波电
不一致和输出滤波电感、电容较小引起的,但不影响 导通和关断时均实现了 ZVS。图 6e 示出该并联开关
总的输出电流波形。
电源与单台开关电源及相控整流电源的效率对比曲
图 6b 示出电源的总输出电流 Io 和各功率单元 输出电流 In(n=1,2,3)波形,由图可见,各功率单元 模块的输出电流非常接近,均流效果良好,且 Io 波 形平滑、稳定。
容提供。VD1 上所承受的反向电压为:
UVD1=Uo2+
N2 N1
(Uin-Uo1)
(3)
由式(3)可知 VD1 所承受的最大反向电压也比
传统 Flyback 低。由于变压器的次级绕组开路,只有
初级绕组工作,相当于一个电感,其电感量为变压器
初级激磁电感量 LN1,因此初级电流 iN1 从 IN1min 开始 线性增加,其增长率和增长量分别为:
第 44 卷第 1 期 2010 年 1 月
电力电子技术 Power Electronics
一种同步整流 Buck-flyback 拓扑的研究
周 岩, 王柏林, 王梦婷 (河海大学,江苏 南京 210013)
Vol.44, No.1 January,2010
摘要:随着数字控制芯片 DSP/FPGA 在模块电源中的广泛应用,其待机静态工作电流大、功耗高的问题也日益突出。
! " Uo1
R1
1+ R1 2LN1
(1-D)Ts
+ Uo1N2 DN1R2
(12)
IN1min=IBuckmin+IFlyback=
! " Uo1
R1
1- R1 2LN1
(1-D)Ts
+ Uo1N2 DN1R2
(13)
故开关管 VQ1,VQ2 和变压器 T 线圈中流过最
大电流为 IN1max。变压器磁芯承受的磁场强度 Bmax 为:
图 2 传统辅助电源供电和同步 Buck-flyback 拓扑
图 2b 示出同步 Buck-flyback 拓扑。隔离变压器
T 不仅能提供电气隔离功能,同时还能作为 Buck 和
Flyback 的储能电感来传递能量。由变压器 T 的伏秒
平衡可得(Uin-Uo1)DTs=Uo1(1-D)Ts 。 则化简得:
Uo1/Uo2=N1/N2
(2)
3 同步 Buck-flyback 拓扑的工作原理
分析前先假设:①所有电力电子器件均为理想
器件;②变压器初、次级完全耦合;③输出滤波电容
电压 u 有很小的纹波,但可近似认为基本保持不变。
(1)开关模态 1[0,Ton] 在 t=0 时,开关管 VQ1 导通,VQ2 关断。由于输出 滤波电容电压不变,因此加在 Buck 上初级变压器绕
(9)
根据 Flyback 变换器的工作原理可知,在稳态
工作状态下,单位周期内充到次级的电荷量应等于
消耗的电荷量[4],即 Qpush=Qpull。 假定变换器的损耗为零,则对于 Flyback 变换