利用光学显微镜研究溶剂诱导的梯形苯基聚倍半硅氧烷结晶

合集下载

苯基聚倍半硅氧烷的制备及性能研究

苯基聚倍半硅氧烷的制备及性能研究

苯基聚倍半硅氧烷的制备及性能研究马凤国;刘涛【摘要】以苯基三甲氧基硅烷为原料,在酸性条件下利用水解缩合法,制备得到了苯基聚倍半硅氧烷,并对影响苯基聚倍半硅氧烷硅分子量的有关因素进行了分析.结果表明,改变溶剂配比可实现对苯基聚倍半硅氧烷分子量大小及分布的调控,控制盐酸的浓度为质量分数3.5%,水的量为质量分数80%为最佳物料配比;FTIR分析表明,PTMS水解完全,硅羟基间脱水缩合,生成Si-O-Si主链,有明显的特征吸收峰;TG-IR分析表明,苯基聚倍半硅氧烷热分解主要分两个阶段进行,第一阶段分解产物很少,主要为表面吸收的水分和反应不完全残留的低分子量倍半硅氧烷的挥发,第二阶段主要发生重排式降解,生成低聚倍半硅氧烷,苯环及其衍生物,在895℃高温下,有机基团氧化生成CO2.【期刊名称】《合成材料老化与应用》【年(卷),期】2015(044)002【总页数】5页(P78-82)【关键词】苯基三甲氧基硅烷;苯基聚倍半硅氧烷;热稳定性【作者】马凤国;刘涛【作者单位】青岛科技大学橡塑材料与工程教育部重点实验室,山东青岛266042;青岛科技大学橡塑材料与工程教育部重点实验室,山东青岛266042【正文语种】中文【中图分类】TQ352.6聚硅氧烷是一类以重复的Si-O键为主链,硅原子上直接连接有机基团的有机硅材料[1],主要由硅树脂、硅油和硅橡胶三类组成,以及二次加工品,硅烷偶联剂等相关产品,其兼具有机聚合物及无机材料的特性。

多面低聚倍半硅氧烷(POSS)作为一类具有特殊结构及性能的新型聚硅氧烷,最早于20世纪90年代中期,是由美国空军研究实验室(Air Foroce Research Lab,AFRL)推进技术委员会为满足空军对新一代超轻、高性能聚合物材料的需要而研发的新材料。

POSS的结构有无规结构、梯形结构、笼型结构、部分笼型结构和桥型结构等[2-3]。

聚倍半硅氧烷的空间结构维度比普通的枝型结构聚硅氧烷更高,能为固化后材料的交联网络提供更大的空间结构,提高材料的力学性能和热稳定性能[4-5],正被逐渐开发,应用于多个领域,如LED封装材料的补强[6],航空航天用耐高温涂层[7]等。

聚苯基倍半硅氧烷研究进展

聚苯基倍半硅氧烷研究进展

第 42卷 第 8期2014年 8月 化 工 新 型 材 料NEW CHEMICAL MATERIALS聚苯基倍半硅氧烷研究进展Vif〃42Ni〃8·29·牟秋红1,2刘月涛2 陈国文1 周传健1 王成国1(1〃山东大学材料科学与工程学院,济南,250061;2〃山东省科学院新材料研究所,济南 250014)摘 要 分别介绍了梯型 、笼 形聚苯基倍半硅氧烷及其共聚物的结构 、性 质和合成方法 ,重 点综述了苯基倍半硅氧烷 共聚物研究进展 ,并 对苯基倍半硅氧烷材料的发展趋势进行了展望。

关键词 梯形苯基倍半硅氧烷 ,笼 形苯基倍半硅氧烷 ,倍 半硅氧烷共聚物R_m_[l]bjlial_mmihjifsjb_hsfmcfm_mkocir[h_ MoQcobiha1,2 LcoYo_n[i2 Cb_hGoiq_h1 ZbioCbo[hdc[h1W[haCb_haaoi1(1〃S]biifi`M[n_lc[fmS]c_h]_[h^Ehach__lchai`Sb[h^ihaUhcp_lmcns,Jch[h250061; 2〃N_q M[n_lc[fR_m_[l]bIhmncnon_i`Sb[h^ihaA][^_gsi`S]c_h]_,Jch[h250014)A\mnl[]n Tb_mnlo]nol_[h^jlij_lnc_m[h^ g_nbi^mnimshnb_mct_f[^^_l[h^][a_-fce_jifsjb_hsfmcfm_mkoci[h_ q_l_l_pc_q_^,qcnbnb__gjb[mcmihnb_jlial_mmi`jb_hsfmcfm_mkocir[h_]ijifsg_l〃Tb_^_p_fijg_hnnl_h^mi`jifsjb_- hsfmcfm_mkoci[h_q_l_jl_^c]n_^〃 K_sqil^m f[^^_l-fce_jifsjb_hsfmcfm_mkocir[h_,][a_-fce_jifsjb_hsfmcfm_mkocir[h_,jb_hsfmcfm_mkocir[h_]ijifsg_l聚苯基倍半硅氧烷的分子式可表示为 (PbScO3/2 )h,可 以 通过 PbScCf3 、PbSc(OM_)3 或 PbSc(OEn)3 等水解缩合来合 成 ,其结构可呈无规 、梯 形 、笼 型和半笼型等 ,并且聚苯基倍半 硅氧烷可与各类高分子官能基团反应生成共聚物。

梯形苯基倍半硅氧烷共聚物的制备.pdf

梯形苯基倍半硅氧烷共聚物的制备.pdf
子聚合物。
收稿日 20 - 2 2 期: 6 0 - 1 0 作者简介: 何益飞( 8一 , 湖南邵阳人, 1 3 )男, 9 硕士研究生, 研究方向: 高分子有机硅薄膜材料及其应用。
化 学 与 砧 合
20年第2卷第5 06 8 期
AND ADH
聚反应温度的升高, 标产物的产率增加。图中曲 目 O H3 C 线显示在7℃时, 标产物聚二甲基硅氧烷 一 0 目 梯形 O- H1 苯基倍半硅氧烷共聚物的理论产率达到最大, 为 CH0 2 3H O H3 C 9%。 9 通过重复试验我们也证明了这一点: 当反应 温度为 7℃时, 0 其他反应条件不变的情况下, 目标 I h P [C32i O- P0一 I H)S n Si- h- ( 0 } 产物的产率高达 9.%, 94 达到最高产率。这也证实 ] - 0- s - i [ H) i7 0 i 0 ( 3S01 -S- C 2 } 0 了图中曲线所示的反应趋势。当温度大于7℃时, 0 I (E) i C aS司n 2 L H) i] ( 38 n C 20 ( 3S0n [ H) i] C 2 目 标产物的产率又开始逐渐下降。这是因为:1虽 () 然 PM 在反应之前已经在乙醇溶液中进行了醇解 TS S - 一以 ) i] 0一, i 0- 035 n 20 反应, 但是只有在温度为 7℃时, 0 也就是当乙醇处 2一。1 S -- i S 0 〕 Ph 0 于微沸状态下 F 才能最完全的醇解, m 此时溶液
1 实验部分
11 原料 .
透过性能 缺点〔。 差的 ‘ 〕
聚二甲基硅氧烷一 梯形苯基倍半硅氧烷共聚物 作为一种新型高分子有机硅膜材料, 具有成膜性好、 强度高和溶涨度低的特点。侧链上芳香基团的加 人, 显著地提高了材料的表面张力, 使其具有良 好的

中科院化学所制备梯形聚硅氧烷研究取得重要进展

中科院化学所制备梯形聚硅氧烷研究取得重要进展

中科院化学所制备梯形聚硅氧烷研究取得重要进展
佚名
【期刊名称】《有机硅氟资讯》
【年(卷),期】2002(000)012
【摘要】中科院化学所张榕本研究员领导的研究小组唐华东博士后在利用'逐步偶联聚合法'制备高规整性有机桥基梯形聚硅氧烷的研究取得突破性进展。

在国际上首次利用芳酰胺氢键自组装模板辅助的'逐步偶联聚合法'制备出高规整性有机桥基梯形聚硅氧烷,并通过包括光散射,29SNMR,XRD和DSC等一系列综合方法进行了充分的表征,确证了其梯形结构。

该工作今年已在J.Amer.Chem.Soc.上发表。

早在1960年美国化学家Brown J.F.首次在J.Amer.Chem.Soc.报道了从苯基三氯硅烷出发合成高分子量可溶性梯形聚苯基倍半硅氧烷(简称Ph-T)。

当时人们很难想象从一个三官能团单体能聚合得到线型可溶性高分子,而不是从不溶性的无规凝胶。

1971年,另一位美国化学家Frye C.L.
【总页数】1页(P22)
【正文语种】中文
【中图分类】TQ324.21
【相关文献】
1.中科院兰化所:柔性二氧化钛基纳米杂化材料制备技术取得重要进展 [J],
2.中科院化学研究所在聚合物场效应晶体管材料研究方面取得重要进展 [J],
3.中科院兰州化物所超疏水表面制备技术取得重要进展 [J],
4.中科院化学所梯形聚硅氧烷研究取得重要进展 [J],
5.中国石油石油化工研究院溶聚丁苯橡胶(SSBR)自主制备技术开发取得重要进展 [J], 董静
因版权原因,仅展示原文概要,查看原文内容请购买。

聚有机硅倍半氧烷制备表征及其应用研究的开题报告

聚有机硅倍半氧烷制备表征及其应用研究的开题报告

聚有机硅倍半氧烷制备表征及其应用研究的开题报告一、研究背景聚有机硅倍半氧烷是一种新型的有机-无机杂化材料,其具有硅氧键和碳-碳键的特殊结构,因此其物理、化学性质与传统有机或无机材料不同,具有广阔的应用前景。

二、研究内容1. 聚有机硅倍半氧烷的制备方法研究,包括反应条件、催化剂选择等参数优化;2. 利用化学分析、核磁共振、红外光谱等分析手段对制备得到的聚有机硅倍半氧烷进行表征,确定其化学组成和分子结构;3. 探究聚有机硅倍半氧烷的物理和化学性质,例如热稳定性、力学性质等,为其应用性能评价提供支持;4. 研究聚有机硅倍半氧烷在材料领域的应用,如在纳米电子器件、薄膜、涂料、防护材料等方面的应用。

三、研究意义聚有机硅倍半氧烷是一种新型的材料,其特殊的结构和性质为其在材料领域的应用提供了广阔的前景。

对其制备方法和性质的研究,可以为其应用提供理论支持,为材料科学和工业技术的发展做出贡献。

四、研究方法1. 实验室合成聚有机硅倍半氧烷并优化条件;2. 利用化学分析、核磁共振、红外光谱等分析手段对制备得到的聚有机硅倍半氧烷进行表征;3. 利用差示扫描量热计、力学测试等手段对其性质进行研究;4. 在制备得到的聚有机硅倍半氧烷基础上,通过结合现有技术,进行材料应用的测试和评价。

五、研究进度安排1. 文献调研和实验条件探索,预计用时1个月;2. 制备聚有机硅倍半氧烷并对其表征,预计用时2个月;3. 对聚有机硅倍半氧烷的性质进行研究,预计用时1个月;4. 在聚有机硅倍半氧烷基础上探究其应用,预计用时2个月;5. 数据整理和报告撰写,预计用时1个月。

总计用时7个月完整项目。

六、预计研究成果1. 获得一种可控制备的聚有机硅倍半氧烷的合成方法;2. 对制备得到的聚有机硅倍半氧烷进行了详细的表征,并揭示其分子结构和性质;3. 探索了聚有机硅倍半氧烷的物理和化学性质,并为其应用提供了支持;4. 研究并发现了聚有机硅倍半氧烷在纳米电子器件、薄膜、涂料、防护材料等方面的潜在应用。

环梯形聚苯基硅倍半氧烷的硝化研究

环梯形聚苯基硅倍半氧烷的硝化研究

环梯形聚苯基硅倍半氧烷的硝化研究梁嘉香;何吉宇;齐祉;范海波;杨荣杰【期刊名称】《材料工程》【年(卷),期】2017(045)005【摘要】为了提高环梯形聚苯基硅倍半氧烷(Cyclic Ladder Polyphenylsilsesquioxane,CL-PPSQ)在聚合物中的相容性,使用多种硝化试剂,包括发烟硝酸、HNO3-H2SO4、KNO3-H2SO4、HNO3-KNO3、CH3COOH-KNO3、(CH3 CO)2O-HNO3,在不同的条件下对其进行硝化,制备得到含硝基基团的NO2-PPSQ.使用FTIR、元素分析、GPC、TGA、1H NMR等对硝化产物进行表征.结果表明:发烟硝酸、HNO3-H2SO4、KNO3-H2 SO4对CL-PPSQ的硝化能力最强,产物中硝基数目最多,但产物分子量降低,硅氧烷链段发生断裂;而HNO3-KNO3和CH3 COOH-KNO3对CL-PPSQ没有硝化能力;(CH3CO)2O-HNO3硝化过程温和,硝化能力适中,制备得到分子链不断裂的硝化产物.对不同硝化试剂的硝化机理进行了分析,在发烟硝酸、HNO3-H2SO4、KNO3-H2SO4体系中,NO2+为硝化活化剂;对于(CH3 CO)2 O-HNO3体系,CH3 COONO2为主要的硝化活化剂.【总页数】7页(P64-70)【作者】梁嘉香;何吉宇;齐祉;范海波;杨荣杰【作者单位】北京理工大学材料学院国家阻燃材料工程技术研究中心,北京100081;北京理工大学材料学院国家阻燃材料工程技术研究中心,北京100081;北京理工大学材料学院国家阻燃材料工程技术研究中心,北京100081;北京理工大学材料学院国家阻燃材料工程技术研究中心,北京100081;北京理工大学材料学院国家阻燃材料工程技术研究中心,北京100081【正文语种】中文【中图分类】O621.25+5.4【相关文献】1.聚甲基丙烯酸甲酯(PMMA)/梯形聚苯基硅倍半氧烷(PPSQ)原位共混体系的正电子湮没行为 [J], 李桂芝;叶美玲;施良和;徐坚;郁伟中2.甲基丙烯酸甲酯—甲基丙烯酸共聚物/梯形聚苯基硅倍半氧烷原位共混物的… [J], 李桂芝;郁伟中3.EP/环氧基苯基多面体低聚硅倍半氧烷复合物的制备及其性能 [J], 刘磊春;张文超;杨荣杰4.甲基丙烯酸甲酯 - 甲基丙烯酸共聚物/梯形聚苯基硅倍半氧烷原位共混体系的性能研究 [J], 李桂芝;施良和;叶美玲5.八氨苯基低聚硅倍半氧烷改性环氧树脂的力学和阻燃性能 [J], 刘磊春;吴义维;张文超;杨荣杰因版权原因,仅展示原文概要,查看原文内容请购买。

功能性聚(倍半)硅氧烷及其杂化聚合物的合成与应用基础研究

功能性聚(倍半)硅氧烷及其杂化聚合物的合成与应用基础研究

功能性聚(倍半)硅氧烷及其杂化聚合物的合成与应用基础研究功能性聚(倍半)硅氧烷及其杂化聚合物的合成与应用基础研究引言:聚硅氧烷是一类由硅原子与氧原子交错排列形成的聚合物。

由于硅氧键的特殊性,聚硅氧烷具有优异的化学稳定性、热稳定性、介电性能和机械性能。

然而,传统聚硅氧烷材料缺乏活性基团,限制了其在催化剂、光电子器件和生物医学等领域的应用。

为了赋予聚硅氧烷多样的功能,并进一步扩展其应用领域,近年来,研究人员开展了聚倍半硅氧烷及其杂化聚合物的合成与应用方面的基础研究。

合成方法:1. 通过环状硅氧烷的开环聚合反应合成线性聚硅氧烷。

这种方法利用环状硅氧烷的反应活性与合成过程中引入的酸或碱催化剂,使其发生开环聚合反应,首次合成了具有一定分子量的线性聚硅氧烷。

2. 通过聚合合成方法合成聚倍半硅氧烷。

聚倍半硅氧烷是一种聚硅氧烷的衍生物,具有更多的反应活性。

采用原位聚合合成方法,用适当的共聚反应物和聚倍半硅氧烷基团的反应可以得到聚倍半硅氧烷。

此外,还可以通过交替共聚合成方法,将倍半硅氧烷基团与其他物质的基团交替连接在一起,从而得到具有特定结构和性质的聚合物。

应用研究:1. 催化剂:将功能性硅氧烷基团引入催化剂表面,可提高催化剂的活性和选择性,并增强其稳定性。

通过调控聚硅氧烷链的长度、官能团的种类和数量,可以实现催化剂表面的定点修饰,从而在催化过程中实现对底物的高选择性。

2. 光电子器件:利用聚硅氧烷的低折射率和高温稳定性,可以制备光学器件,如光纤、平板显示器和光学涂层等。

进一步引入功能性硅氧烷基团,可以控制光电子器件的光学性能,例如通过引入荧光染料基团实现发光器件的制备。

3. 生物医学:聚硅氧烷具有优良的生物相容性和生物稳定性,可以用于生物医学领域。

利用聚硅氧烷链的柔性和可塑性,可以制备具有多样性能和功能的生物传感器、人工心脏瓣膜等生物医学器件。

结论:通过对功能性聚(倍半)硅氧烷及其杂化聚合物的合成与应用研究,我们可以将聚硅氧烷的特殊性能与其他材料的优势相结合,进一步拓展聚硅氧烷的应用领域。

苯基聚三甲基硅氧烷结晶

苯基聚三甲基硅氧烷结晶

苯基聚三甲基硅氧烷结晶以苯基聚三甲基硅氧烷结晶为题,我将为大家介绍这种材料的结晶性质、应用领域以及制备方法。

苯基聚三甲基硅氧烷是一种有机硅高分子化合物,其分子主链由硅氧键连接,侧链上附着苯环。

这种化合物具有许多独特的性质,如高热稳定性、耐化学腐蚀性、优异的电绝缘性等。

其中,其结晶性质备受关注。

苯基聚三甲基硅氧烷的结晶性质主要表现在以下几个方面。

首先,它具有较高的结晶度,能够形成有序的晶体结构。

其次,它的晶体呈现出良好的透明性,具有较低的折射率和较高的光学透过率。

此外,苯基聚三甲基硅氧烷的晶体还具有较高的机械强度和硬度,能够在一定程度上抵抗外部冲击和压力。

苯基聚三甲基硅氧烷的结晶性质使得它在多个领域具有广泛的应用。

首先,它可用于光学领域,制备高透明度的透镜和光学器件。

其次,由于其优异的电绝缘性能,它可用于电子器件的绝缘层材料,如电容器、绝缘膜等。

此外,苯基聚三甲基硅氧烷的高热稳定性使得它在高温工艺中具有良好的应用前景,如高温胶粘剂、高温密封材料等。

苯基聚三甲基硅氧烷的制备方法主要有两种。

一种是通过聚合反应制备,即通过将苯基硅烷单体与三甲基氯硅烷反应,生成苯基聚三甲基硅氧烷。

另一种是通过溶液结晶法制备,即将苯基聚三甲基硅氧烷溶解在有机溶剂中,然后通过控制溶液的温度和浓度来实现结晶。

苯基聚三甲基硅氧烷是一种具有独特结晶性质的有机硅高分子化合物。

其结晶性质使得它在光学、电子和高温工艺等领域具有广泛的应用前景。

通过聚合反应或溶液结晶法可制备纯净的苯基聚三甲基硅氧烷晶体。

这种材料的结晶性质和应用前景将为材料科学领域的研究和应用带来新的机遇和挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用光学显微镜研究溶剂诱导的梯形苯基聚倍半硅氧烷结晶李培芳1闫寿科2任忠杰2,*(1内蒙古民族大学物理与电子信息学院,内蒙古通辽028043;2北京化工大学材料科学与工程学院,化工资源有效利用国家重点实验室,北京100029)摘要:通过溶剂诱导结晶的方法研究了梯形苯基聚倍半硅氧烷(PPSQ)的球晶结构.采用光学显微镜研究了溶液的浓度、溶剂的挥发时间以及温度等影响因素对梯形苯基聚倍半硅氧烷的球晶结构形貌的影响.实验结果表明:稀释溶液浓度与提高结晶温度在改变球晶的形态方面具有相同的效果.球晶的尺寸会随着溶液浓度的降低或者结晶温度的升高而增加.这都归因于梯形苯基聚倍半硅氧烷在二甲苯中的溶解度的增加.在不改变其它结晶条件的情况下,延长溶剂的挥发时间也会形成更大的球晶.当在光学显微镜下旋转样品时球晶的结构不会发生改变,这表明球晶具有均一的晶体学取向结构.负性球晶的特征也表明梯形苯基聚倍半硅氧烷的分子链是沿着球晶的切线方向排列.考虑到梯形苯基聚倍半硅氧烷具有刚性的分子链,还提出了梯形苯基聚倍半硅氧烷可能的球晶结构模型.关键词:梯形苯基聚倍半硅氧烷;结晶;溶剂诱导;球晶;刚性分子链中图分类号:O641An Optical Microscopy Study on the Solvent-Induced CrystallineMorphology of Ladder PolyphenylsilsesquioxaneLI Pei-Fang 1YAN Shou-Ke 2REN Zhong-Jie 2,*(1College of Physics and Electronic Information,Inner Mongolia University for the Nationalities,Tongliao 028043,Inner Mongolia,P .R.China ;2State Key Laboratory of Chemical Resource Engineering,School of Material Science andEngineering,Beijing University of Chemical Technology,Beijing 100029,P .R.China )Abstract:Spherulites of rigid chain ladder polyphenylsilsesquioxane (PPSQ)were produced through solvent-induced crystallization.The influences of solution concentration,solvent evaporation time,and temperature on the spherulitic morphology of PPSQ were studied by optical microscopy.Diluting the solution was found to have the same effect as elevating the crystallization temperature.The size of the spherulites increases with either decreasing concentration or increasing temperature.This is caused by the enhanced solubility of PPSQ in xylene under such conditions.Extending the solvent evaporation time while leaving the other conditions unchanged also leads to the formation of larger spherulites.The invariance of spherulitic structure upon sample rotation suggests that the spherulites possess a uniform crystallographic orientation.The negative optical characteristics of spherulites indicates that the PPSQ molecular chains are oriented in the tangential direction of the spherulite.Considering the high rigidity of the molecules,an organization model of PPSQ spherulite is proposed.Key Words:Polyphenylsilsesquioxane;Crystallization;Solvent induction;Spherulite;Rigid chain[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.⁃Chim.Sin .2012,28(2),494-498FebruaryReceived:October 11,2011;Revised:November 9,2011;Published on Web:November 23,2011.∗Corresponding author.Email:renzj@;Tel:+86-10-64426375.The project was supported by the National Natural Science Foundation of China (21104002,11164020).国家自然科学基金(21104002,11164020)资助项目ⒸEditorial office of Acta Physico ⁃Chimica Sinicadoi:10.3866/PKU.WHXB201111233494LI Pei-Fang et al .:An Optical Microscopy Study on the Solvent-Induced Crystalline Morphology of Ladder PPSQNo.21IntroductionPolyphenylsilsesquioxane (PPSQ),a rigid double chain lad-der polymer,exhibits many outstanding performances,such as excellent thermal and oxidative stability,good electric insulat-ing property,and selective gas permeability.Even though the high rigidity of the molecular chains,it is soluble in many or-ganic solvents,e.g.,toluene,benzene,xylene and tetrahydrofu-ran.The intriguing properties and easy solubility made it to be an attractive research object both in scientific and practical view points.1Since the first report of synthesis of ladder-like PPSQ in 1960by Brown et al .,2some papers and patents focus-ing on the solution properties,3-5solid state structure 6,7and its possible application 8,9have been published.The crystallization behavior of PPSQ has been,however,less concerned.Only re-cently,Li et al .10,11have reported their observation on the single crystal structure of PPSQ obtained in different solvents at vari-able temperatures by the optical microscope.Spherulitic struc-ture of PPSQ has,however,not been reported yet.This is caused by the difficulty in crystallization of PPSQ under nor-mally used crystallization conditions.PPSQ is very difficult to crystallize under thermal condition from the melt and normal solution casting or spin coating pro-cess owing to its high chain rigidity.Solvent-induced crystalli-zation is an effective method to promote the crystallization of rigid polymers that cannot crystallize or crystallize very slowly under thermal conditions.It was reported that the interaction between the solvent and polymer chains can lower the effec-tive glass transition temperature (T g )of the polymer and en-courage the occurrence of crystallization at temperatures well below the T g .12-14Therefore,solvent induced crystallization of PPSQ by xylene is studied.The influences of the original solu-tion concentration,the solvent evaporation time,and the crys-tallization temperature were followed.According to the optical feature of the observed spherulites,a model reflecting the chain arrangement of PPSQ in spherulite is proposed in this study.2Experimentalm -phenyldiamine,toluene,1,4-dioxane,xylene,thionyl chlo-ride (AR,Sinopharm Chemical Reagent Beijing Co.,Ltd);phenyltrichlorosilane (AR,Acros);m -phthalic acid (AR,Sino-pharm Chemical Reagent Beijing Co.,Ltd).PPSQ used in this study was synthesized in our group.15Firstly,a perfect ladder m -phenylenediimino-bridged polyphe-nylsiloxane was prepared by stoichiometric hydrolysis/dehy-drochlorination-condensation reaction.Then the bridge of m -phenyldiamine was wiped off by isophthalyl chloride step-wise following condensation to get perfect ladder PPSQ ac-cording to the literature.16,29Silicon nuclear magnetic resonance (29Si-NMR)spectrum and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS)suggest the presence of good ladder regularity.The molec-ular structure of PPSQ is shown in Scheme 1.The samples for optical microscopy observation were pre-pared by dropping the PPSQ xylene solution with concentra-tions ranging from 0.3%to 2%(w )onto clean glass slides in-side a cylinder container at desired temperature.The container is covered with a lid and contains different volumes of extra solvent.The solvent can only escape through a small gap on the lid.In this way,the solvent evaporation rate was well con-trolled.The experimental temperatures range from 65to 85°C,while the solvent evaporation times are set for 3,8d.For optical microscopy (OM)observation,an Olympus BH-2optical microscope (Japan)was used in this study.The pictures were taken under crossed polarizers at room tempera-ture.To clarify the optical character of the spherulites,a prima-ry red filter (λ-plate)was used.3Results and discussionThe PPSQ molecules have a rigid backbone.Experimental results demonstrate that the PPSQ sample prepared by com-mon solution casting or spin coating methods is amorphous.This is nothing surprising since this kind polymer generally can hardly crystallize.Solvent induced crystallization of rigid chain polymers is,however,frequently reported.Therefore,crystallization of PPSQ induced by xylene was checked.Fig.1a shows an optical micrograph of PPSQ,which is solvent in-duced by xylene from 2%(w )solution at 65°C by controlling the complete solvent evaporation for 3d.It can be seen thattheFig.1Optical micrographs of solvent-induced crystallized PPSQ with different concentrations (w )at 65°C for different time(a)2%,3d;(b)0.3%,3d;(c)2%,8d;(d)0.3%,8dScheme 1Molecular structure of PPSQ495Acta Phys.⁃Chim.Sin .2012V ol.28PPSQ forms small spherulites.The randomly dispersed spheru-lites of different sizes exhibit a regular round shape and display clearly the characteristic “Maltese Cross ”.This indicates theoccurrence of PPSQ crystallization.17The glass transition tem-perature of PPSQ was estimated by differential scanning calo-rimetry to be ca 185°C.This is much higher than the crystalli-zation temperature used,i.e.,65°C.Normally,crystallization of a polymer at temperatures lower than its T g cannot happen owing to the low chain mobility.Therefore,the occurrence of PPSQ crystallization at 65°C indicates that the mobility of the amorphous PPSQ molecular chains is enhanced when they in-teract with the solvent molecules.18In other words,the solvent is speculated to reduce the relaxation time and therefore to de-press the glass transition temperature of PPSQ due to the addi-tional free volume introduced by the solvent.As a conse-quence,solvent induced crystallization of the PPSQ takes place.It should be pointed out that solvent-induced crys-tallization is a very complex phenomenon,in which the concen-tration of the solution,the solvent evaporation time and the temperature play very important roles.19Therefore,the influenc-se of the above mentioned factors on the crystallization behav-ior of the PPSQ were studied.We have first checked the influence of solution concentra-tion on the crystallization behavior of PPSQ.It was found that the size and number of the PPSQ spherulites change slightly with the decrease of the solution concentration.Fig.1b shows a representative optical micrograph of PPSQ,which was solvent induced by xylene from 0.3%(w )solution at 65°C for 3d.One can notice that with decreasing the solution concentration,the size of the spherulites increases somewhat,while the num-ber of the spherulites decreases evidently.This is caused by the decreased nucleation ability with decreased solution concentra-tion,leading to less spherulite formed and limited impinge-ment of the spherulites.It may also imply an increased crystal growth rate of PPSQ in the dilute solution.These changes re-sult from the fact that a better solubility of PPSQ in the dilute solution can be achieved with respect to the concentrated solu-tion.20Even though xylene is a good solvent for PPSQ,the sol-ubility of PPSQ in xylene is,however,expected to be reduced with increasing PPSQ amount.This will lead to the aggrega-tion of the PPSQ molecules on the one hand,which can en-hance the nucleation of the PPSQ,and reduce the diffusion rate as well as diffusion length of the PPSQ molecules in the solu-tion on the other hand.The drop in diffusion rate will reduce the crystal growth rate,while a reduction in diffusion length will cause larger material depletion zones around the spheru-lites,which can restrain the further propagation of the crystals.All these result in the formation of relatively smaller spheru-lites.The solvent evaporation rate,which is controlled by the time need for evaporating the solvent completely,shows also great influence on the crystalline morphology of the PPSQ.As shown in Fig.1(c,d),with the decrease of the solvent evapora-tion rate under otherwise unchanged condition,the spherulite size increases evidently.Now the spherulites can reach 100mi-crometers in diameter for the low concentration sample.This is easily understood since extending solvent evaporation time means an extension of crystallization time,which results gener-ally in bigger spherulites.The influence of temperature on the spherulitic morphology of PPSQ is well illustrated in Fig.2.The optical micrographs were taken from samples with different concentrations crystal-lized at 85°C for 3d.From Fig.2,we see well-developed spherulites for all samples with any concentrations.At high concentration,e.g.,2%(w ),spherulites of tens of micrometers in diameter have been created.At low concentration,e.g.,0.3%(w ),the diameter of the spherulites exceeds 300micrometers.Considering that high solubility can also be reached by elevat-ing the dissolved temperature,these results clearly indicate that improved solubility reduces the nucleation ability but enhances the diffusion rate and length of the polymer chains,which lead to formation of larger spherulites.This is in goodagreementFig.2Optical micrographs of solvent-induced crystallized PPSQ with different concentrations at 85°C for 3dw /%:(a)2,(b)1,(c)0.5,(d)0.3Fig.3Optical micrograph of PPSQ spherulite obtained from 0.5%(w )solution at 85°C for 3d under a primaryred filter (λ-plate)496LI Pei-Fang et al .:An Optical Microscopy Study on the Solvent-Induced Crystalline Morphology of Ladder PPSQNo.2with the results observed for the samples with different concen-trations at lower temperature.The above results demonstrate that the PPSQ can form spherulites under the existence of solvent.The arrangement of molecular chains in the spherulite is,however,not clear at pres-ent stage.To disclose the chain organization of PPSQ in the spherulites,detailed optical microscopy observations were per-formed.We first chose the same sample as shown in Fig.2.The observed spherulites exhibit black Maltese cross,a peculiar characteristic of polymeric spherulites under crossed polariz-ers.By rotating the sample about the incident beam axis,the characteristic Maltese cross remained unchanged.This implies that in all radial directions of the spherulite the crystallograph-ic orientation is equivalent within the resolution employed and the major refractive index (generally in molecular chain direc-tion)of the spherulites is either parallel or perpendicular to the radial direction.21,22Moreover,a primary red filter was used to clarify the PPSQ chain orientation in the spherulites.Fig.3shows an optical micrograph of a PPSQ sample obtained from 0.5%(w )solution at 85°C for 3d under a primary red filter.The appearance of the yellow first and third while the blue sec-ond and forth quadrants indicate that the PPSQ spherulites are optically negative.Considering that the radial arranged molecu-lar chains always exhibit a positive character,23the negative op-tical characters of the PPSQ spherulites indicate that the PPSQ molecular chains in spherulite are oriented perpendicular to ra-dial direction.This kind organization has been most frequently observed for flexible chain polymers with folded chain lamel-lae grown in radial direction.In the present case,chain folding of the PPSQ is highly impossible.Therefore,the whole rigid PPSQ molecules in the spherulite should arrange in tangential direction.Therefore,we can only conjecture on the underlying physics of the crystallization process and crystalline structure of the PPSQ.Considering that the spherulites generally grow from the center parts,i.e.,the nuclei,outward in the radial di-rection,the spherulitic structure of the PPSQ may be as that sketched in Fig.4.The PPSQ spherulites are composed of crys-talline lamellae,while the crystalline lamellae are produced through parallel alignment of the PPSQ molecules.4ConclusionsThe spherulites of PPSQ were obtained by the method of sol-vent-induced crystallization.OM results indicated that the radi-us of solvent-induced spherulites increased with decreasing the concentration of PPSQ under the same temperature.The size of spherulites became bigger following the longer induced paring with 65°C,the more perfect spherulites were obtained under 85°C.The lamella may arrange along the radi-al direction of the spherulite and the molecular chain vertically arrange into the lamella confirmed by OM.Considering the high rigidity of the molecules,an organization model of the PPSQ spherulite is proposed.References(1)Banny,R.H.;Itoch,M.;Sakakibara,A.;Suzuki,T.Chem.Rev.1995,95,1409.(2)Brown,J.F.,Jr.;V ogt,L.H.,Jr.;Katchman,A.;Eustance,J.W.;Kiser,K.M.;Krantz,K.W.J.Am.Chem.Soc.1960,82,6194.(3)Zhang,X.;Shi,L.;Li,S.;Lin,Y .Polym.Degrad.Stab .1988,20,157.(4)Tsvetkov,V .N.;Andrianov,K.A.;Okhrimenko,G.I.;Vitovskaya,M.G.Eur.Polym.J.1971,7,215.(5)Yoshimoto,A.;Takahiro,G.Prog.Polym.Sci.2004,29,149.(6)Yamakawa,H.;Fujii,M.Macromolecules 1974,7,128.(7)Zhang,Z.;Hao,J.;Xie,P.;Zhang,X.;Han,C.C.;Zhang,R.B.Chem.Mater.2008,20,1322.(8)Frey,C.L.;Klosowski,J.M.J.Am.Chem.Soc.1971,93,4599.(9)Unno,M.;Suto,A.;Matsumoto,H.J.Am.Chem.Soc.2002,124,1574.(10)Li,G.Z.;Yamamoto,T.;Nozaki,K.;Hikosaka,M.Polymer 2000,41,2827.(11)Li,G.Z.;Yamamoto,T.;Nozaki,K.;Hikosaka,M.Macromol .Chem .Phys .2000,201,1283.Fig.4Sketch of the possible spherulitic structure forPPSQ497Acta Phys.⁃Chim.Sin.2012V ol.28(12)Tashiro,K.;Yoshioka,A.Macromolecules2002,35,410.(13)Fan,Z.;Shu,C.;Yu,Y.;Zaporojtchenko,V.;Faupel,F.Polym.Eng.Sci.2006,46,729.(14)Cornelis,H.;Kander,R.G.;Martin,J.P.Polymer1996,37,4573.(15)Zhang,T.;Zhang,P.;Xie,P.;Zhang,R.Chem.Eur.J.2006,12,3630.(16)Lozano,A.E.;de Abajo,J.;de la Campa,J.G.Macromolecules1997,30,2507.(17)Zhou,Z.H.;Ruan,J.M.;Zhou,Z.C.;Zou,J.P.ActaPhys.-Chim.Sin.2007,23,647.[周智华,阮建明,周忠诚,邹俭鹏.物理化学学报,2007,23,647.](18)Tashiro,K.;Sasaki,S.;Ueno,Y.;Yoshioka,A.;Kobayashi,M.Korea.Polym.J.2000,8,103.(19)Vittoria,V.Polymer1991,32,5.(20)Tashiro,K.;Ueno,Y.;Yoshioka,A.;Kobayashi,M.Macromolecules2001,34,310.(21)Bassett,D.C.Principles of Polymer Morphology;CambridgeUniversity Press:Cambridge,1981;pp16-36.(22)Mandelkern,L.The Crystalline State in Physical Properties ofPolymers;Mark,J.E.Ed.;American Chemical Society:Washington DC,1984.(23)Lotz,B.J.Macromol.Sci.B2002,41,685.498。

相关文档
最新文档