大纲版数学高考名师一轮复习教案9.1平面的性质 直线的位置关系Microsoft Word 文档

合集下载

高三数学一轮复习精品教案2:空间点、直线、平面之间的位置关系教学设计

高三数学一轮复习精品教案2:空间点、直线、平面之间的位置关系教学设计

第三节 空间点、直线、平面之间的位置关系考纲传真1.理解空间直线,平面位置关系的定义,并了解可以作为推理依据的公理和定理. 2.能运用公理,定理和已获得的结论证明一些空间图形的位置关系的简单命题.1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内. 公理2:过不共线的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行 关系图形 语言符号 语言 a ∥ba ∥αα∥β相交 关系图形 语言符号 语言 a ∩b =Aa ∩α=Aα∩β=l 独有关系 图形 语言符号 语言a ,b 是异面直线a ⊂α3.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角.(2)范围:(0,π2』.4.平行公理平行于同一条直线的两条直线平行. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.1.(人教A 版教材习题改编)下列命题正确的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .3『解析』 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.『答案』 C2.已知a 、b 是异面直线,直线c ∥直线a ,那么c 与b ( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线 D .不可能是相交直线『解析』 若c ∥b ,∵c ∥a ,∴a ∥b ,与a ,b 异面矛盾. ∴c ,b 不可能是平行直线. 『答案』 C3.平行六面体ABCD —A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6『解析』 与AB 平行,CC 1相交的直线是CD 、C 1D 1;与CC 1平行、AB 相交的直线是BB 1,AA 1;与AB 、CC 1都相交的直线是BC ,故选C.『答案』 C4.(2013·宁波模拟)若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交『解析』 由题意知,直线l 与平面α相交,则直线l 与平面α内的直线只有相交和异面两种位置关系,因而只有选项B 是正确的.『答案』 B图7-3-15.(2012·四川高考)如图7-3-1,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是________.『解析』 如图,取CN 的中点K ,连接MK ,则MK 为△CDN 的中位线,所以MK ∥DN .所以∠A 1MK 为异面直线A 1M 与DN 所成的角.连接A 1C 1,AM .设正方体棱长为4,则A 1K =(42)2+32=41,MK =12DN =1242+22=5,A 1M =42+42+22=6,∴A 1M 2+MK 2=A 1K 2,∴∠A 1MK =90°. 『答案』 90°平面的基本性质图7-3-2如图7-3-2所示,四边形ABEF 和ABCD 都是梯形,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? 『思路点拨』 (1)证明GH 綊BC 即可. (2)法一 证明D 点在EF 、CH 确定的平面内.法二 延长FE 、DC 分别与AB 交于M ,M ′,可证M 与M ′重合,从而FE 与DC 相交证得四点共面.『尝试解答』 (1)由已知FG =GA ,FH =HD , 得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 是平行四边形. (2)法一 由BE 綊12AF ,G 为F A 中点知BE 綊GF , ∴四边形BEFG 为平行四边形, ∴EF ∥BG . 由(1)知BG ∥CH , ∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.法二 如图所示,延长FE ,DC 分别与AB 交于点M ,M ′, ∵BE 綊12AF ,∴B 为MA 中点, ∵BC 綊12AD ,∴B 为M ′A 中点,∴M 与M ′重合,即FE 与DC 交于点M (M ′), ∴C 、D 、F 、E 四点共面.,1.解答本题的关键是平行四边形、中位线性质的应用.2.证明共面问题的依据是公理2及其推论,包括线共面,点共面两种情况,常用方法有:(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合.图7-3-3已知:空间四边形ABCD (如图7-3-3所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的点,且CG =13BC ,CH =13DC .求证:(1)E 、F 、G 、H 四点共面;(2)三直线FH 、EG 、AC 共点.『证明』 (1)连接EF 、GH , ∵E 、F 分别是AB 、AD 的中点, ∴EF ∥BD .又∵CG =13BC ,CH =13DC ,∴GH ∥BD , ∴EF ∥GH ,∴E 、F 、G 、H 四点共面.(2)易知FH 与直线AC 不平行,但共面, ∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC . 又∵平面EFHG ∩平面ABC =EG , ∴M ∈EG ,∴FH 、EG 、AC 共点.空间两条直线的位置关系图7-3-4(1)如图7-3-4,在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行(2)在图中,G 、N 、M 、H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH 、MN 是异面直线的图形有________.(填上所有正确答案的序号)图7-3-5『思路点拨』(1)连接B1C,则点M是B1C的中点,根据三角形的中位线,证明MN ∥B1D1.(2)先判断直线GH、MN是否共面,若不共面再利用异面直线的判定定理判定.『尝试解答』(1)连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,∵CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,∴MN⊥CC1,MN⊥AC,MN∥BD.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(2)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②、④中GH与MN异面.『答案』(1)D(2)②④,1.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.2.对于线线垂直,往往利用线面垂直的定义,由线面垂直得到线线垂直.3.画出图形进行判断,可化抽象为直观.图7-3-6如图7-3-6所示,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线; ④直线MN 与AC 所成的角为60°.其中正确的结论为________(注:把你认为正确的结论序号都填上).『解析』 由图可知AM 与CC 1是异面直线,AM 与BN 是异面直线,BN 与MB 1为异面直线.因为D 1C ∥MN ,所以直线MN 与AC 所成的角就是D 1C 与AC 所成的角,且角为60°.『答案』 ③④异面直线所成的角图7-3-7(2012·上海高考改编题)如图7-3-7,在三棱锥P —ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P —ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.『思路点拨』 (1)直接根据锥体的体积公式求解.(2)取PB 的中点,利用三角形的中位线平移BC 得到异面直线所成的角.(或其补角) 『尝试解答』 (1)S △ABC =12×2×23=23,三棱锥P ­ABC 的体积为 V =13S △ABC ·P A =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.,1.求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. 2.求异面直线所成的角的三步曲为:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成角,转化为解三角形问题,进而求解.3.异面直线所成的角范围是(0,π2』.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°『解析』 分别取AB 、AA 1、A 1C 1的中点D 、E 、F ,则BA 1∥DE ,AC 1∥EF . 所以异面直线BA 1与AC 1所成的角为∠DEF (或其补角), 设AB =AC =AA 1=2,则DE =EF =2,DF =6,由余弦定理得,∠DEF =120°. 『答案』 C两种方法异面直线的判定方法:(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两直线不可能平行、相交或证明两直线不可能共面,从而可得两直线异面.三个作用1.公理1的作用:(1)检验平面;(2)判断直线在平面内;(3)由直线在平面内判断直线上的点在平面内;(4)由直线的直刻画平面的平.2.公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.3.公理3的作用:(1)判定两平面相交;(2)作两平面相交的交线;(3)证明多点共线.空间点、直线、平面的位置关系是立体几何的理论基础,高考常设置选择题或填空题,考查直线、平面位置关系的判断和异面直线所成的角的求法.在判断线、面位置关系时,有时可以借助常见的几何体做出判断.思想方法之十三借助正方体判定线面位置关系(2012·四川高考)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行『解析』如图,正方体ABCD—A1B1C1D1中,A1D与D1A和平面ABCD所成的角都是45°,但A1D与D1A不平行,故A错;在平面ABB1A1内,直线A1B1上有无数个点到平面ABCD的距离相等,但平面ABB1A1与平面ABCD不平行,故B错;平面ADD1A1与平面DCC1D1和平面ABCD都垂直,但两个平面相交,故D错,从而C正确.『答案』C易错提示:(1)盲目和平面内平行线的判定定理类比,从而误选A.(2)不会利用正方体作出判断,考虑问题不全面,从而误选B或D.防范措施:(1)对公理、定理的条件与结论要真正搞清楚,以便做到准确应用,类比得到的结论不一定正确,要想应用,必须证明.(2)点、线、面之间的位置关系可借助长方体为模型,以长方体为主线直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直.1.(2013·济南模拟)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面『解析』如图长方体ABCD—A1B1C1D1中,AB⊥AD,CD⊥AD但有AB∥CD,因此A不正确;又AB∥DC∥A1B1,但三线不共面,因此C不正确;又从A出发的三条棱不共面,所以D不正确;因此B正确,且由线线平行和垂直的定义易知B正确.『答案』B2.(2012·大纲全国卷)已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么异面直线AE与D1F所成角的余弦值为________.『解析』连接DF,则AE∥DF,∴∠D1FD即为异面直线AE与D1F所成的角.设正方体棱长为a , 则D 1D =a ,DF =52a ,D 1F =52a , ∴cos ∠D 1FD =(52a )2+(52a )2-a 22·52a ·52a =35. 『答案』 35。

届大纲版数学高考名师一轮复习教案9.1平面的性质 直线的位置关系microsoft word 文档doc

届大纲版数学高考名师一轮复习教案9.1平面的性质 直线的位置关系microsoft word 文档doc

第九章 直线、平面、简单几何体知识结构网络概念 性质 求积异面直线的角 距离异面概念 性质 画法 表示平行公理,等角定理球多面体 正多面体棱柱 棱锥用向量判断共面平行 垂直 求角概念 运算 坐标表示相交平行简单几何体空间向量空间直线和平面空间两个平面空间两条直线平面9.1 平面的性质与直线的位置关系一、明确复习目标1.掌握平面的基本性质,会运用这些性质解决有关共面、共线、共点、交线等问题. 2.掌握空间两直线的位置关系,理解异面直线的定义,能证明和判断两条直线是异面直线.能用图形表示两条直线的位置关系,会解决与位置关系有关的问题.3.能进行简单的文字、符号、图形三者之间的转化.二.建构知识网络(一)平面的概念和性质1.平面的概念:平面是没有厚薄的,可以无限延伸.2.空间点、线、面的位置关系及表示:要正确运用下列符号: 点A ,B ,C ,…;直线 a ,b ,c ,…;平面α,β,γ…A a ∈,A a ∉,A α∈,αα⊄⊂⊂a a l a ,,,a b A =,a α=∅,a ∥b ,a ⊥b ,a∥α,a ⊥β, α⊥β, α//β, α⊥β, α∩β=a3.平面的基本性质 公理1.线的在平面内.用途:判定直线在平面内,验证是否平面. 公理2两个平面的交线.用途:①确定两相交平面的交线;②判定点在直线上. 公理3及其三个推论: 确定平面的条件. 注意“确定”即“有且只有一个”的含义.4.所有点都在一个平面内的图形称为平面图形,否则称为空间图形. (二)空间两条直线 1.空间两直线的位置关系有: (1)相交; (2)平行; (3)异面.定义——2 公理4 :平行于同一条直线的两条直线互相平行.3 等角定理:一个角的两边和另一个角的两边分别平行且方向相同,则这两个角相等.推论:两条相交直线和另两条相交直线分别平行,则这两条直线所成的角相等. 4 空间两条异面直线:不同在任何全个平面内.判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.5.异面直线所成的角的求法:找(或)作出过一条直线上一点,于另一直线平直线;或过空间一点与两条直线平行的直线,转化为平面内的角,再用平面几何的方法去求;也可用向量法.注意:两条直线所成的角的范围:[0,]2π. 两条异面直线所成的角的范围:]2,0(π.6 两条异面直线的公垂线、距离和两条异面直线都垂直且相交.....的直线,我们称之为异面直线的公垂线. 理解:和异面直线都垂直的直线有无数条,公垂线只有一条.两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.计算方法:①几何法;②向量法三、双基题目练练手1. 三点确定一个平面的条件是___________; 共点的四条直线最多可以确定_______平面; 互不相交的三条直线可以确定_______平面.2. 判断下列命题真假(1)四边相等且有一个内角是直角的四边形是正方形; ( )(2)四点不共面,则其中任意三点不共线; ( ) (3)“平面不经过直线”的等价说法是“直线上至多有一个点在平面内” ( )(4)两个平面有三个共公点,那么这两个平面重合; ( ) (5)三个平面可以把空间分成四、六、七、八个部分; ( )(6)过直线外一点向直线引垂线,有且只有一条; ( ) (7)异面直线a 与c 、b 与c 所成的角相等,则a 与b 平行或异面 ( ) (8)过空间任一点一定可以作一条直线与两条异面直线都相交. ( ) 3.(2006福建)对平面α和共面的直线m 、,n 下列命题中真命题是 ( ) (A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n (C )若,m n αα⊂∥,则m ∥n(D )若m 、n 与α所成的角相等,则m ∥n4. 直线a 、b 相交于点O 且a 、b 成60°角,过点O 与a 、b 都成60°角的直线有( ) A .1条 B .2条 C .3条 D .4条5.下列各图是正方体或正四面体,P、Q、R、S分别是所在棱的中点,则PQ与SR 一定是异面直线的是RRA6.画出上题图B中平面PQR与下底面的交线.◆答案提示:1.不共线;六个; 0个、一个或三个.2.⨯;√;√;⨯;√;⨯;⨯;⨯.3.C;4.C5.C四、经典例题做一做【例1】用图形表示:α∩β=m,a⊂α,b⊂β,a∩m=A,b∩m=B,c∩α=P,P∉a,c⊄β.图略思悟提炼:熟悉图形语言、符号语言之间的互化.提高画图能力.【例2】P是正方体ABCD-A1B1C1D1上一点,(不是端点),求证:过P点有且只有一条直线与直线BC、C1D1相交.证明:依题设,平面BCP与直线C1D1有且只有一个交点,设为Q,过两点Q、P有且只有一条直线,且与BC必相交.思悟提炼:1.线面相交,有且只有一个交点.一个平面内的直线不平行就相交.【例3】(1)三条直线a ,b ,c 互相平行,且都与直线m 相交,求证:这四条直线共面;(2)在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q ,R ,S 是棱的中点, 求证:MNPQRS 是正六边形. 证明:(1)设a ,m 确定平面α再证b , c 在α内. (2)证SR //MQ //NP ,且都与RN 相交.思悟提炼:证明点或线共面的方法:——【例4】如图,已知∆ABC 和∆A 'B 'C '不共面,直线AA '、BB '、CC '两两相交. (1)求证:这三条直线AA '、BB '、CC '交于一点;(2) 若直线AB 和A 'B '、BC 和B 'C '、CA 和C 'A '分别交于P 、Q 、R ,求证:P 、Q 、R 三点共线.O _S RQ PNMD CD 1C 1B 1A 1BAP B 1C 1 _D 1A1DC BARQ思悟提炼:用平面的基本性质证明空间三点共线、三线共点的方法.【例5】 长方体ABCD —A 1B 1C 1D 1中,已知AB =a ,BC =b ,AA 1=c ,且a >b ,求:(1) 下列异面直线之间的距离:AB 与CC 1;AB 与A 1C 1;AB 与B 1C . (2)异面直线D 1B 与AC 所成角的余弦值.解(1):BC 为异面直线AB 与CC 1的公垂线段,故AB 与CC 1的距离为b . AA 1为异面直线AB 与A 1C 1的公垂线段,故AB 与A 1C 1的距离为c . 过B 作BE ⊥B 1C ,垂足为E ,则BE 为异面直线AB 与B 1C 的公垂线,BE =C B BC BB 11⋅=22cb bc+,即为所求.(2)解法一:连结BD 交AC 于点O ,取DD 1的中点F ,连结OF 、AF ,则OF ∥D 1B ,∴∠AOF 就是异面直线D 1B 与AC 所成的角.∵ AO =222b a +,OF =21A B1BD 1=2222c b a ++,AF =2422c b +, ∴ 在△AOF 中,cos ∠AOF =OFAO AF OF AO ⋅-+2222=))((2222222c b a b a b a +++-解法二:补图形如下,在ΔBGD 1中,∠GBD 1为所求角的补角——五.提炼总结以为师同步练习 9.1...平面的性质与直线的位置关系.............【选择题】 1.下列四个命题:(1)分别在两个平面内的两条直线是异面直线 (2)和两条异面直线都垂直的直线有且只有一条 (3)和两条异面直线都相交的两条直线必异面(4)若a 与b 是异面直线,b 与c 是异面直线,则a 与c 也异面 其中真命题个数为 ( ) A .3 B .2 C .1 D .02.在正方体-ABCD ''''D C B A 中,M 、N 分别是棱'AA 和AB 的中点,P 为上底面ABCD 的中心,则直线PB 与MN 所成的角为 ( )A .30B .45C .60D .9003.AB 、CD 在平面α内,AB //CD ,且AB 与CD 相距28厘米,EF 在平面α外,EF //AB ,且EF 与AB 相距17厘米,EF 与平面α相距15厘米,则EF 与CD 的距离为 ( )A .25厘米B .39厘米C .25或39厘米D .15厘米 4.已知直线a ,如果直线b 同时满足条件:①a 、b 异面②a 、b 所成的角为定值③a 、b 间的距离为定值,则这样的直线b 有 A .1条 B .2条 C .4条 D .无数条 ( ) 【填空题】5.互不重合的三个平面的交线可能有__________条.6.已知a ∥c ,b 与c 不平行、 a 与b 不相交,a ,b 的位置关系是 7.在棱长为a 的正四面体中,相对两条棱间的距离为__________.8.两条异面直线a 、b 间的距离是1cm ,它们所成的角为600,a 、b 上各有一点A 、B ,距公垂线的垂足都是10cm ,则A 、B 两点间的距离为_______________.◆答案提示:1-4. DCCD 5.0、1、2、3四种. 6.异面直线. 7.a 22; 8. cm cm 301101或. 【解答题】9.已知正四面体ABCD 中,BC 的中点为E ,AD 的中点为F ,连AE 、CF .(1)判断AE 、CF 的位置关系;(2)求AE 与CF 所成的角的余弦.答案:10.(2006上海春)在长方体1111D C B A ABCD -中,已知3,41===DD DC DA ,求异面直线B A 1与C B 1所成角的大小(结果用反三角函数值表示).ABCDEF解:连接D A 1,则D BA 1∠为异面直线B A 1与C B 1所成的角.在△DB A 1中,D A B A BD D A B A D BA 112212112cos ⋅⋅-+=∠ 259552322525=⋅⋅-+=. ∴ 异面直线所成的角为259arccos .11.如下图,四面体ABCD 中,E 、G 分别为BC 、AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC =2∶3,DH ∶HA =2∶3. 求证:EF 、GH 、BD 交于一点.证明:连结GE 、HF ,∵E 、G 分别为BC 、AB 的中点, ∴GE ∥AC .又∵DF ∶FC =2∶3,DH ∶HA =2∶3,∴HF ∥AC .∴GE ∥HF .故G 、E 、F 、H 四点共面. 又∵EF 与GH 不能平行,∴EF 与GH 相交,设交点为O .则O ∈面ABD ,O ∈面BCD ,而平面ABD ∩平面BCD =BD .∴EF 、GH 、BD 交于一点.【探索题】设△ABC 和△A 1B 1C 1的三对对应顶点的连线AA 1、BB 1、CC 1相交于一点O ,且1OA AO =1OB BO =1OC CO = 32.试求111C B A ABC S S ∆∆的值.【探索题】解:依题意,因为AA 1、BB 1、CC 1相交于一点O ,且1OA AO =1OB BO =1OC CO,所以AB ∥A 1B 1,AC ∥A 1C 1,BC ∥B 1C 1.由平移角定理得∠BAC =∠B 1A 1C 1,∠ABC =∠A 1B 1C 1,△ABC ∽△A 1B 1C 1,所以111C B A ABC S S ∆∆=(32)2=94.。

平面的性质与直线的位置关系(教案)

平面的性质与直线的位置关系(教案)

平面的性质与直线的位置关系(教案)一. 知识梳理1、平面的基本性质:三个公理及公理三的三个推论和它们的用途.2、空间两条直线(1)空间两直线位置关系有平行、相交、异面(2)平行直线①公理4:a ∥b,b ∥c =>a ∥c②等角定理:如果一个角的两边分别平行于另一个角的两边,且方向相同,那么这两个角相等③推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等3、异面直线(1)定义:不同在任何一个平面内的两条直线,叫异面直线.(2) 异面直线,a b 所成的角定义: 已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角). 为了简便,点O 通常取在异面直线的一条上 异面直线所成的角的范围:2,0(π4、异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线,a b 垂直,记作a b ⊥.5、求异面直线所成的角的方法:(1)通过平移,在一条直线上找一点,过该点做另一直线的平行线;(2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求6、两条异面直线公垂线的定义:和两条异面直线都垂直相交的直线叫做两条异面直线公垂线7两异面直线间的距离:两条异面直线的公垂线在这两异面直线间的线段的长度二. 基础训练1.在空间中,①若四点不共面,则这四点中任何三点都不共线.②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是 ____②____(把符合要求的命题序号都填上)2. 如图,四面体ABCD 中,E ,F 分别是AC 、BD 的中点,若CD=2AB=2,EF ⊥AB ,则EF 与CD 所成的角等于_30°___3.设a 、b 是异面直线,则下列四个命题中:①过a 至少有一个平面平行于b ;②过a 至少有一个平面垂直于b ;③至少有一条直线与a 、b 都垂直;④至少有一个平面分别与a 、b 都平行正确的序号是______①③④_______4.对于四面体ABCD ,给出下列四个命题①若AB=AC ,BD=CD ,则BC ⊥AD .②若AB=CD ,AC=BD ,则BC ⊥AD .③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD .④若AB ⊥CD ,BD=AC ,则BC ⊥AD .其中真命题的序号是___①④______.(写出所有真命题的序号)5.空间四点A ,B ,C ,D 每两点的距离都为a ,动点P ,Q 分别在线段AB ,CD 上,则点P 与Q 的最短距离是___22a _____ 三.典型例题例1.如图,在四面体ABCD 中作截面PQR ,若RQ 、CB 的延长线交于M ,RQ 、DB 的延长线交于N ,RP 、DC 的延长线交于K .求证:M 、N 、K 三点共线.【解题回顾】利用两平面交线的惟一性,证明诸点在两平面的交线上是证明空间诸点共线的常用方法.备题说明:学会用平面的基本性质证明空间三点共线问题.例2.已知空间四边形ABCD 中,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边BC 、CD 上的点,且32==CD CG CB CF ;求证:三条直线EF 、GH 、AC 交于一点.【解题回顾】利用两平面交线的惟一性,证明诸点在两平面的交线上是证明空间诸点共线的常用方法.备题说明:学会用平面的基本性质证明空间三线共点问题.例3.已知:α∩β=a ,b ⊂β,a ∩b=A,c ⊂α,c ∥a,求证:b 、c 为异面直线.【解题回顾】反证法是立体几何解题中,用于确定位置关系的一种较好方法,它的一般步骤是:(1)反设——假设结论的反面成立;(2)归谬——由反设及原命题的条件,经过严密的推理,导出矛盾;(3)结论——否定反设,肯定原命题正确.本命题的反面不只一种情形,应通过推证将其反面一一驳倒.备课说明:回忆反证法,能用反证法证明两条直线异面.例4.已知三直线a 、b 、c 互相平行,且分别与直线l 相交于A 、B 、C 三点,证明这三条直线共面.变题:若有n 条直线互相平行,且都与另一直线相交,证明这n+1条直线共面.例5.空间四边形ABCD 中,E 、F 、G 、H 分别为AB ,BC ,CD ,AD 上的点,请回答下列问题:(1)满足什么条件时,四边形EFGH 为平行四边形?(2)满足什么条件时,四边形EFGH 为矩形?(3)满足什么条件时,四边形EFGH 为正方形?【解】(1)当AE ∶AB=AH ∶AD=CF ∶CB=CG ∶CD 时,四边形EFGH 为平行四边形.(2)当E 、H 为所在边的中点,且32==CD CG CB CF 时,四边形EFGH 为梯形. (3) 当AE ∶AB=AH ∶AD=CF ∶CB=CG ∶CD ,且AC ⊥BD 时四边形EFGH 为正方形.本题图形可作适当的变式,如A —BCD 为正四面体,E ,G 分别为AB ,CD 边的中点,那么异面直线EG 与AC 所成的角为多少?(1990年全国高考题)【说明】①第(1)小题的答案不惟一.②第(3)小题的空间图形可作适当的变式,如A —BCD 为正四面体,E ,G 分别为AB ,CD 边的中点,那么异面直线EG 与AC 所成的角为多少?即可变为1990年全国高考题.四、反馈练习1、三点确定一个平面的条件是________;共点的四条直线是多可以确定_______平面; 互不相交的三条直线可以确定________________平面.解:不共线;四个;一个或两个或三个.2、判断下列命题真假(1)四边相等且有一个内角是直角的四边形是正方形;( )(2)四点不共面,则其中任意三点不共线;( )(3)“平面不经过直线”的等价说法是“直线上至多有一个点在平面内”;()(4)两个平面有三个共公点,那么这两个平面重合。

北师大版版高考数学一轮复习第九章平面解析几何两直线的位置关系教学案理

北师大版版高考数学一轮复习第九章平面解析几何两直线的位置关系教学案理

一、知识梳理1.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l1,l2,其斜率都存在且分别为k1,k2,则有l1∥l2⇔k1=k2;特别地,当直线l1,l2的斜率都不存在时,l1与l2平行.(2)两条直线垂直如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=—1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.2.两直线相交直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的公共点的坐标与方程组错误!的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解;平行⇔方程组无解;重合⇔方程组有无数个解.3.两种距离点点距点P1(x1,y1),P2(x2,y2)之间的距离|P1P2|=错误!点线距点P0(x0,y0)到直线l:Ax+By+C=0的距离d=错误!常用结论1.两个充要条件(1)两直线平行或重合的充要条件直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0平行或重合的充要条件是A1B2—A2B=0.1(2)两直线垂直的充要条件直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0.2.六种常见对称(1)点(x,y)关于原点(0,0)的对称点为(—x,—y).(2)点(x,y)关于x轴的对称点为(x,—y),关于y轴的对称点为(—x,y).(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=—x的对称点为(—y,—x).(4)点(x,y)关于直线x=a的对称点为(2a—x,y),关于直线y=b的对称点为(x,2b—y).(5)点(x,y)关于点(a,b)的对称点为(2a—x,2b—y).(6)点(x,y)关于直线x+y=k的对称点为(k—y,k—x),关于直线x—y=k的对称点为(k +y,x—k).3.三种直线系方程(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).(2)与直线Ax+By+C=0垂直的直线系方程是Bx—Ay+n=0(n∈R).(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y +C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.二、教材衍化1.已知点(a,2)(a>0)到直线l:x—y+3=0的距离为1,则a=________.解析:由题意得错误!=1.解得a=—1+错误!或a=—1—错误!.因为a>0,所以a=—1+错误!.答案:错误!—12.已知P(—2,m),Q(m,4),且直线PQ垂直于直线x+y+1=0,则m=________.解析:由题意知错误!=1,所以m—4=—2—m,所以m=1.答案:1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)当直线l1和l2的斜率都存在时,一定有k1=k2⇒l1∥l2.()(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于—1.()(3)若两直线的方程组成的方程组有唯一解,则两直线相交.()(4)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.()(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.()答案:(1)×(2)×(3)√(4)√(5)√二、易错纠偏错误!错误!(1)判断两直线平行时,忽视两直线重合的情况;(2)判断两直线的位置关系时,忽视斜率不存在的情况;(3)求两平行线间的距离,忽视x,y的系数应对应相同.1.直线2x+(m+1)y+4=0与直线mx+3y—2=0平行,则m=________.解析:直线2x+(m+1)y+4=0与直线mx+3y—2=0平行,则有错误!=错误!≠错误!,故m=2或—3.答案:2或—32.若直线(3a+2)x+(1—4a)y+8=0与(5a—2)x+(a+4)y—7=0垂直,则a =________.解析:由两直线垂直的充要条件,得(3a+2)(5a—2)+(1—4a)(a+4)=0,解得a=0或a=1.答案:0或13.直线2x+2y+1=0,x+y+2=0之间的距离是________.解析:先将2x+2y+1=0化为x+y+错误!=0,则两平行线间的距离为d=错误!=错误!.答案:错误!两直线的位置关系(多维探究)角度一判断两直线的位置关系(2020·天津静海区联考)“a=1”是“直线ax+2y—8=0与直线x+(a+1)y+4=0平行”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解析】设直线l1:ax+2y—8=0,直线l2:x+(a+1)y+4=0.若l1与l2平行,则a(a +1)—2=0,即a2+a—2=0,解得a=1或a=—2.当a=—2时,直线l1的方程为—2x+2y—8=0,即x—y+4=0,直线l2的方程为x—y+4=0,此时两直线重合,则a≠—2.当a=1时,直线l1的方程为x+2y—8=0,直线l2的方程为x+2y+4=0,此时两直线平行.故“a=1”是“直线ax +2y—8=0与直线x+(a+1)y+4=0平行”的充要条件.故选A.【答案】A角度二由两直线的位置关系求参数(1)(2020·安徽芜湖四校联考)直线(2m—1)x+my+1=0和直线mx+3y+3=0垂直,则实数m的值为()A.1B.0C.2D.—1或0(2)(2020·陕西宝鸡中学二模)若直线x+(1+m)y—2=0与直线mx+2y+4=0平行,则m的值是()A.1B.—2C.1或—2D.—错误!【解析】(1)由两直线垂直可得m(2m—1)+3m=0,解得m=0或—1.故选D.(2)1当m=—1时,两直线方程分别为x—2=0和x—2y—4=0,此时两直线相交,不符合题意.2当m≠—1时,两直线的斜率都存在,由两直线平行可得错误!解得m=1.综上可得m=1.故选A.【答案】(1)D (2)A角度三由两直线的位置关系求直线方程(一题多解)经过两条直线2x+3y+1=0和x—3y+4=0的交点,并且垂直于直线3x +4y—7=0的直线的方程为________.【解析】法一:由方程组错误!解得错误!即交点为错误!,因为所求直线与直线3x+4y—7=0垂直,所以所求直线的斜率为k=错误!.由点斜式得所求直线方程为y—错误!=错误!错误!,即4x—3y+9=0.法二:由垂直关系可设所求直线方程为4x—3y+m=0,由方程组错误!可解得交点为错误!,代入4x—3y+m=0得m=9,故所求直线方程为4x—3y+9=0.法三:由题意可设所求直线的方程为(2x+3y+1)+λ(x—3y+4)=0,即(2+λ)x+(3—3λ)y+1+4λ=0,1又因为所求直线与直线3x+4y—7=0垂直,所以3(2+λ)+4(3—3λ)=0,所以λ=2,代入1式得所求直线方程为4x—3y+9=0.【答案】4x—3y+9=0错误!两直线平行、垂直的判断方法若已知两直线的斜率存在.(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等.(2)两直线垂直⇔两直线的斜率之积等于—1.[提醒] 判断两条直线的位置关系应注意:(1)注意斜率不存在的特殊情况.(2)注意x,y的系数不能同时为零这一隐含条件.1.求满足下列条件的直线方程.(1)过点P(—1,3)且平行于直线x—2y+3=0;(2)已知A(1,2),B(3,1),线段AB的垂直平分线.解:(1)设直线方程为x—2y+c=0,把P(—1,3)代入直线方程得c=7,所以直线方程为x—2y+7=0.(2)AB的中点为错误!,即错误!,直线AB的斜率k AB=错误!=—错误!,故线段AB的垂直平分线的斜率k=2,所以其方程为y—错误!=2(x—2),即4x—2y—5=0.2.(一题多解)已知直线l1:ax+2y+6=0和直线l2:x+(a—1)y+a2—1=0.(1)试判断l1与l2是否平行;(2)当l1⊥l2时,求a的值.解:(1)法一:当a=1时,l1:x+2y+6=0,l2:x=0,l1不平行于l2;当a=0时,l1:y=—3,l2:x—y—1=0,l1不平行于l2;当a≠1且a≠0时,两直线可化为l1:y=—错误!x—3,l2:y=错误!x—(a+1),l1∥l2⇔错误!解得a=—1,综上可知,当a=—1时,l1∥l2.法二:由A1B2—A2B1=0,得a(a—1)—1×2=0,由A1C2—A2C1≠0,得a(a2—1)—1×6≠0,所以l1∥l2⇔错误!⇔错误!可得a=—1,故当a=—1时,l1∥l2.(2)法一:当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不成立;当a=0时,l1:y=—3,l2:x—y—1=0,l1不垂直于l2,故a=0不成立;当a≠1且a≠0时,l1:y=—错误!x—3,l2:y=错误!x—(a+1),由错误!·错误!=—1,得a=错误!.法二:由A1A2+B1B2=0,得a+2(a—1)=0,可得a=错误!.两条直线的交点和距离问题(典例迁移)(1)经过两直线l1:x—2y+4=0和l2:x+y—2=0的交点P,且与直线l3:3x—4y +5=0垂直的直线l的方程为__________________.(2)(2020·宿州模拟)已知点P(4,a)到直线4x—3y—1=0的距离不大于3,则a的取值范围是________.(3)(2020·厦门模拟)若两平行直线3x—2y—1=0,6x+ay+c=0之间的距离为错误!,则c的值是________.【解析】(1)由方程组错误!得错误!即P(0,2).因为l⊥l3,所以直线l的斜率k=—错误!,所以直线l的方程为y—2=—错误!x,即4x+3y—6=0.(2)由题意得,点P到直线的距离为错误!=错误!.又错误!≤3,即|15—3a|≤15,解得0≤a≤10,所以a的取值范围是[0,10].(3)依题意知,错误!=错误!≠错误!,解得a=—4,c≠—2,即直线6x+ay+c=0可化为3x—2y+错误!=0,又两平行线之间的距离为错误!,所以错误!=错误!,解得c=2或—6.【答案】(1)4x+3y—6=0 (2)[0,10] (3)2或—6【迁移探究】若将本例(1)中的“垂直”改为“平行”,如何求解?解:法一:由方程组错误!得错误!即P(0,2).因为l∥l3,所以直线l的斜率k=错误!,所以直线l的方程为y—2=错误!x,即3x—4y+8=0.法二:因为直线l过直线l1和l2的交点,所以可设直线l的方程为x—2y+4+λ(x+y—2)=0,即(1+λ)x+(λ—2)y+4—2λ=0.因为l与l3平行,所以3(λ—2)—(—4)(1+λ)=0,且(—4)(4—2λ)≠5(λ—2),所以λ=错误!,所以直线l的方程为3x—4y+8=0.错误!(1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:1点P(x0,y0)到直线x=a的距离d=|x0—a|,到直线y=b的距离d=|y0—b|;2应用两平行线间的距离公式要把两直线方程中x,y的系数分别化为相等.1.已知A(2,0),B(0,2),若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C 的个数为()A.4B.3C.2D.1解析:选A.设点C(t,t2),直线AB的方程是x+y—2=0,|AB|=2错误!.由于△ABC的面积为2,则这个三角形中AB边上的高h满足方程错误!×2错误!h=2,即h=错误!.由点到直线的距离公式得错误!=错误!,即|t+t2—2|=2,即t2+t—2=2或者t2+t—2=—2.因为这两个方程各有两个不相等的实数根,故这样的点C有4个.2.已知直线y=kx+2k+1与直线y=—错误!x+2的交点位于第一象限,则实数k的取值范围是________.解析:如图,已知直线y=—错误!x+2与x轴、y轴分别交于点A(4,0),B(0,2).而直线方程y=kx+2k+1可变形为y—1=k(x+2),表示这是一条过定点P(—2,1),斜率为k的动直线.因为两直线的交点在第一象限,所以两直线的交点必在线段AB上(不包括端点),所以动直线的斜率k需满足k PA<k<k PB.因为k PA=—错误!,k PB=错误!.所以—错误!<k<错误!.答案:错误!3.(一题多解)直线l过点P(—1,2)且到点A(2,3)和点B(—4,5)的距离相等,则直线l的方程为________.解析:法一:当直线l的斜率存在时,设直线l的方程为y—2=k(x+1),即kx—y+k+2=0.由题意知错误!=错误!,即|3k—1|=|—3k—3|,所以k=—错误!,所以直线l的方程为y—2=—错误!(x+1),即x+3y—5=0.当直线l的斜率不存在时,直线l的方程为x=—1,也符合题意.故所求直线l的方程为x+3y—5=0或x=—1.法二:当AB∥l时,有k=k AB=—错误!,直线l的方程为y—2=—错误!(x+1),即x+3y—5=0.当l过AB的中点时,AB的中点为(—1,4),所以直线l的方程为x=—1,故所求直线l的方程为x+3y—5=0或x=—1.答案:x+3y—5=0或x=—1对称问题(多维探究)角度一点关于点的对称过点P(0,1)作直线l,使它被直线l1:2x+y—8=0和l2:x—3y+10=0截得的线段被点P平分,则直线l的方程为________________.【解析】设l1与l的交点为A(a,8—2a),则由题意知,点A关于点P的对称点B(—a,2a—6)在l2上,把B点坐标代入l2的方程得—a—3(2a—6)+10=0,解得a=4,即点A(4,0)在直线l上,所以由两点式得直线l的方程为x+4y—4=0.【答案】x+4y—4=0角度二点关于线的对称如图所示,已知两点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.2错误!B.6C.3错误!D.2错误!【解析】易得AB所在的直线方程为x+y=4,由于点P关于直线AB的对称点为A1(4,2),点P关于y轴对称的点为A2(—2,0),则光线所经过的路程即A1(4,2)与A2(—2,0)两点间的距离.于是|A1A2|=错误!=2错误!.【答案】A角度三线关于线的对称直线2x—y+3=0关于直线x—y+2=0对称的直线方程是()A.x—2y+3=0 B.x—2y—3=0C.x+2y+1=0 D.x+2y—1=0【解析】设所求直线上任意一点P(x,y),则P关于直线x—y+2=0的对称点为P′(x0,y0),由错误!得错误!由点P′(x0,y0)在直线2x—y+3=0上,所以2(y—2)—(x+2)+3=0,即x—2y+3=0.【答案】A错误!(1)中心对称问题的2个类型及求解方法1点关于点对称:若点M(x1,y1)及N(x,y)关于点P(a,b)对称,则由中点坐标公式得错误!进而求解;2直线关于点的对称,主要求解方法:(a)在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;(b)求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.(2)轴对称问题的2个类型及求解方法1点关于直线的对称:若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By+C=0对称,由方程组错误!可得到点P1关于l对称的点P2的坐标(x2,y2)(其中B≠0,x1≠x2).2直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.已知直线l:2x—3y+1=0,点A(—1,—2).求:(1)点A关于直线l的对称点A′的坐标;(2)直线m:3x—2y—6=0关于直线l的对称直线m′的方程;(3)直线l关于点A(—1,—2)对称的直线l′的方程.解:(1)设A′(x,y),由已知错误!解得错误!所以A′错误!.(2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点M′必在直线m′上.设M′(a,b),则错误!解得M′错误!.设直线m与直线l的交点为N,则由错误!得N(4,3).又因为m′经过点N(4,3),所以由两点式得直线m′的方程为9x—46y+102=0.(3)设P(x,y)为l′上任意一点,则P(x,y)关于点A(—1,—2)的对称点为P′(—2—x,—4—y),因为P′在直线l上,所以2(—2—x)—3(—4—y)+1=0,即2x—3y—9=0.直线系方程的应用一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系.求与直线3x+4y+1=0平行且过点(1,2)的直线l的方程.【解】依题意,设所求直线方程为3x+4y+C1=0(C1≠1),因为直线过点(1,2),所以3×1+4×2+C1=0,解得C1=—11.因此,所求直线方程为3x+4y—11=0.先设与直线Ax+By+C=0平行的直线系方程为Ax+By+C1=0(C1≠C),再由其他条件求C1. 错误!二、垂直直线系由于直线A1x+B1y+C1=0与A2x+B2y+C2=0垂直的充要条件为A1A2+B1B2=0,因此,当两直线垂直时,它们的一次项系数有必然的联系,可以考虑用直线系方程求解.求经过A(2,1),且与直线2x+y—10=0垂直的直线l的方程.【解】因为所求直线与直线2x+y—10=0垂直,所以设该直线方程为x—2y+C1=0,又直线过点A(2,1),所以有2—2×1+C1=0,解得C1=0,所以所求直线方程为x—2y=0.错误!先设与直线Ax+By+C=0垂直的直线系方程为Bx—Ay+C1=0,再由其他条件求出C1.三、过直线交点的直线系求经过直线l1:3x+2y—1=0和l2:5x+2y+1=0的交点,且垂直于直线l3:3x—5y+6=0的直线l的方程.【解】法一:将直线l1,l2的方程联立,得错误!解得错误!即直线l1,l2的交点为(—1,2).由题意得直线l3的斜率为错误!,又直线l⊥l3,所以直线l的斜率为—错误!,则直线l的方程是y—2=—错误!(x+1),即5x+3y—1=0.法二:由于l⊥l3,所以可设直线l的方程是5x+3y+C=0,将直线l1,l2的方程联立,得错误!解得错误!即直线l1,l2的交点为(—1,2),则点(—1,2)在直线l上,所以5×(—1)+3×2+C=0,解得C=—1,所以直线l的方程为5x+3y—1=0.法三:设直线l的方程为3x+2y—1+λ(5x+2y+1)=0,整理得(3+5λ)x+(2+2λ)y+(—1+λ)=0.由于l⊥l3,所以3(3+5λ)—5(2+2λ)=0,解得λ=错误!,所以直线l的方程为5x+3y—1=0.错误!本题中的法二、法三均是利用直线系设出直线l的方程,而法三是利用相交直线系设出方程,避免了求直线l1与l2的交点坐标,方便简捷,是最优解法.四、直线恒过定点已知λ∈R,求证直线l:(2λ+1)x+(3λ+1)y—7λ—3=0恒过定点,并求出该定点坐标.【解】将(2λ+1)x+(3λ+1)y—7λ—3=0化成(2x+3y—7)λ+(x+y—3)=0.要使直线恒过定点,必须错误!解得错误!即直线l恒过定点(2,1).错误!直线Ax+By+C=0恒过定点问题实际上是直线系方程问题.将问题转化为两直线的交点,即将Ax +By+C=0化为(a1x+b1y+c1)λ+(a2x+b2y+c2)=0.通过方程组错误!,即可求出直线恒过的定点.[基础题组练]1.已知直线l1:mx+y—1=0与直线l2:(m—2)x+my—2=0,则“m=1”是“l1⊥l2”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:选A.由l1⊥l2,得m(m—2)+m=0,解得m=0或m=1,所以“m=1”是“l1⊥l2”的充分不必要条件,故选A.2.已知直线l1:(k—3)x+(4—k)y+1=0与l2:2(k—3)x—2y+3=0平行,则k 的值是()A.1或3B.1或5C.3或5D.1或2解析:选C.法一:由两直线平行得,当k—3=0时,两直线的方程分别为y=—1和y=错误!,显然两直线平行.当k—3≠0时,由错误!=错误!≠错误!,可得k=5.综上,k的值是3或5.法二:当k=3时,两直线平行,故排除B,D;当k=1时,两直线不平行,排除A.3.(2020·安徽江南十校二联)已知直线l1:mx—3y+6=0,l2:4x—3my+12=0,若l∥l2,则l1,l2之间的距离为()1A.错误!B.错误!C.错误!D.错误!解析:选A.由于两条直线平行,所以m·(—3m)—(—3)·4=0,解得m=±2,当m=2时,两直线方程都是2x—3y+6=0,故两直线重合,不符合题意.当m=—2时,l1:2x+3y—6=0,l2:2x+3y+6=0,故l1,l2之间的距离为错误!=错误!.故选A.4.若点P在直线3x+y—5=0上,且P到直线x—y—1=0的距离为错误!,则点P的坐标为()A.(1,2)B.(2,1)C.(1,2)或(2,—1)D.(2,1)或(—1,2)解析:选C.设P(x,5—3x),则d=错误!=错误!,化简得|4x—6|=2,即4x—6=±2,解得x=1或x=2,故P(1,2)或(2,—1).5.直线ax+y+3a—1=0恒过定点M,则直线2x+3y—6=0关于M点对称的直线方程为()A.2x+3y—12=0 B.2x—3y—12=0C.2x—3y+12=0 D.2x+3y+12=0解析:选D.由ax+y+3a—1=0,可得a(x+3)+(y—1)=0,令错误!可得x=—3,y =1,所以M(—3,1),M不在直线2x+3y—6=0上,设直线2x+3y—6=0关于M点对称的直线方程为2x+3y+c=0(c≠—6),则错误!=错误!,解得c=12或c=—6(舍去),所以所求方程为2x+3y+12=0,故选D.6.与直线l1:3x+2y—6=0和直线l2:6x+4y—3=0等距离的直线方程是________.解析:l2:6x+4y—3=0化为3x+2y—错误!=0,所以l1与l2平行,设与l1,l2等距离的直线l的方程为3x+2y+c=0,则:|c+6|=|c+错误!|,解得c=—错误!,所以l的方程为12x+8y—15=0.答案:12x+8y—15=07.l1,l2是分别经过A(1,1),B(0,—1)两点的两条平行直线,当l1,l2间的距离最大时,直线l1的方程是________.解析:当两条平行直线与A,B两点连线垂直时,两条平行直线间的距离最大.又k AB=错误!=2,所以两条平行直线的斜率为k=—错误!,所以直线l1的方程是y—1=—错误!(x—1),即x+2y—3=0.答案:x+2y—3=08.已知点A(—1,2),B(3,4).P是x轴上一点,且|PA|=|PB|,则△PAB的面积为________.解析:设AB的中点坐标为M(1,3),k AB=错误!=错误!,所以AB的中垂线方程为y—3=—2(x—1).即2x+y—5=0.令y=0,则x=错误!,即P点的坐标为(错误!,0),|AB|=错误!=2错误!.点P到AB的距离为|PM|=错误!=错误!.所以S△PAB=错误!|AB|·|PM|=错误!×2错误!×错误!=错误!.答案:错误!9.已知两直线l1:ax—by+4=0和l2:(a—1)x+y+b=0,求满足下列条件的a,b的值.(1)l1⊥l2,且直线l1过点(—3,—1);(2)l1∥l2,且坐标原点到这两条直线的距离相等.解:(1)因为l1⊥l2,所以a(a—1)—b=0.又因为直线l1过点(—3,—1),所以—3a+b+4=0.故a=2,b=2.(2)因为直线l2的斜率存在,l1∥l2,所以直线l1的斜率存在.所以错误!=1—a.1又因为坐标原点到这两条直线的距离相等,所以l1,l2在y轴上的截距互为相反数,即错误!=b.2联立12可得a=2,b=—2或a=错误!,b=2.10.已知直线l经过直线2x+y—5=0与x—2y=0的交点P.(1)点A(5,0)到直线l的距离为3,求直线l的方程;(2)求点A(5,0)到直线l的距离的最大值.解:(1)因为经过两已知直线交点的直线系方程为(2x+y—5)+λ(x—2y)=0,即(2+λ)x+(1—2λ)y—5=0,所以错误!=3,解得λ=错误!或λ=2.所以直线l的方程为x=2或4x—3y—5=0.(2)由错误!解得交点P(2,1),如图,过P作任一直线l,设d为点A到直线l的距离,则d≤|PA|(当l⊥PA时等号成立).所以d max=|PA|=错误!.[综合题组练]1.已知直线y=2x是△ABC中∠C的平分线所在的直线,若点A,B的坐标分别是(—4,2),(3,1),则点C的坐标为()A.(—2,4)B.(—2,—4)C.(2,4)D.(2,—4)解析:选C.设A(—4,2)关于直线y=2x的对称点为(x,y),则错误!解得错误!所以BC所在的直线方程为y—1=错误!(x—3),即3x+y—10=0.同理可得点B(3,1)关于直线y=2x 的对称点为(—1,3),所以AC所在的直线方程为y—2=错误!·(x+4),即x—3y+10=0.联立得错误!解得错误!则C(2,4).故选C.2.两条平行线l1,l2分别过点P(—1,2),Q(2,—3),它们分别绕P,Q旋转,但始终保持平行,则l1,l2之间距离的取值范围是()A.(5,+∞)B.(0,5]C.(错误!,+∞)D.(0,错误!]解析:选D.当直线PQ与平行线l1,l2垂直时,|PQ|为平行线l1,l2间的距离的最大值,为错误!=错误!,所以l1,l2之间距离的取值范围是(0,错误!].故选D.3.在平面直角坐标系xOy(O为坐标原点)中,不过原点的两直线l1:x—my+2m—1=0,l2:mx+y—m—2=0的交点为P,过点O分别向直线l1,l2引垂线,垂足分别为M,N,则四边形OMPN 面积的最大值为()A.3B.错误!C.5D.错误!解析:选D.将直线l1的方程变形得(x—1)+m(2—y)=0,由错误!,得错误!,则直线l1过定点A(1,2),同理可知,直线l2过定点A(1,2),所以,直线l1和直线l2的交点P的坐标为(1,2),易知,直线l1⊥l2,如图所示,易知,四边形OMPN为矩形,且|OP|=错误!=错误!,设|OM|=a,|ON|=b,则a2+b2=5,四边形OMPN的面积为S=|OM|·|ON|=ab≤错误!=错误!,当且仅当错误!,即当a=b=错误!时,等号成立,因此,四边形OMPN面积的最大值为错误!,故选D.4.如图,已知A(—2,0),B(2,0),C(0,2),E(—1,0),F(1,0),一束光线从F 点出发射到BC上的D点,经BC反射后,再经AC反射,落到线段AE上(不含端点),则直线FD的斜率的取值范围为________.解析:从特殊位置考虑.如图,因为点A(—2,0)关于直线BC:x+y=2的对称点为A1(2,4),所以kA1F=4.又点E(—1,0)关于直线AC:y=x+2的对称点为E1(—2,1),点E1(—2,1)关于直线BC:x+y=2的对称点为E2(1,4),此时直线E2F的斜率不存在,所以k FD>kA1F,即k FD∈(4,+∞).答案:(4,+∞)5.正方形的中心为点C(—1,0),一条边所在的直线方程是x+3y—5=0,求其他三边所在直线的方程.解:点C到直线x+3y—5=0的距离d=错误!=错误!.设与x+3y—5=0平行的一边所在直线的方程是x+3y+m=0(m≠—5),则点C到直线x+3y+m=0的距离d=错误!=错误!,解得m=—5(舍去)或m=7,所以与x+3y—5=0平行的边所在直线的方程是x+3y+7=0.设与x+3y—5=0垂直的边所在直线的方程是3x—y+n=0,则点C到直线3x—y+n=0的距离d=错误!=错误!,解得n=—3或n=9,所以与x+3y—5=0垂直的两边所在直线的方程分别是3x—y—3=0和3x—y+9=0.6.在直线l:3x—y—1=0上求一点P,使得:(1)P到A(4,1)和B(0,4)的距离之差最大;(2)P到A(4,1)和C(3,4)的距离之和最小.解:(1)如图,设B关于l的对称点为B′,AB′的延长线交l于P0,在l上另任取一点P,则|PA|—|PB|=|PA|—|PB′|<|AB′|=|P0A|—|P0B′|=|P0A|—|P0B|,则P0即为所求.易求得直线BB′的方程为x+3y—12=0,设B′(a,b),则a+3b—12=0,1又线段BB′的中点错误!在l上,故3a—b—6=0.2由12解得a=3,b=3,所以B′(3,3).所以AB′所在直线的方程为2x+y—9=0.由错误!可得P0(2,5).(2)设C关于l的对称点为C′,与(1)同理可得C′错误!.连接AC′交l于P1,在l上另任取一点P,有|PA|+|PC|=|PA|+|PC′|>|AC′|=|P1C′|+|P1A|=|P1C|+|P1A|,故P1即为所求.又AC′所在直线的方程为19x+17y—93=0,故由错误!可得P1错误!.。

高考第一轮复习数学:9.1 平面、空间两条直线 高考数学第一轮复习教案集 新课标 人教版 高考数学

高考第一轮复习数学:9.1  平面、空间两条直线 高考数学第一轮复习教案集 新课标 人教版 高考数学

第九章直线、平面、简单几何体●网络体系总览直线平面与简单几何体空间两条直线平面空间两个平面空间向量简单几何体空间向量及有关概念棱柱空间向量的运算及运算律棱锥空间向量的坐标运算多面体和正多面体空间直线与平面平行直线线在面内线面平行线面相交平行公理定义等角定理判定所成的角、距离判定定理性质定理判定(性质)定理判定(性质)定理直交斜交直交两平面间距离二面角及平面角斜交平行相交异面直线相交直线平面的概念、性质、表示、画法线面间距离三垂线定理,线面成角判定(性质)定理,点到面的距离球、●考点目标定位1.直线与直线、直线与平面、平面与平面的位置关系.2.线线、线面、面面的平行与垂直的判定和性质,三垂线定理.3.两条异面直线所成的角,直线与平面所成的角,二面角的平面角.4.点到平面的距离,线面距离,平行平面的距离,异面直线的距离,两点间的球面距离.5.空间向量及其加法、减法,空间向量的坐标表示,空间向量的数量积.6.直棱柱、平行六面体及正棱锥的性质,球的体积及表面积的计算.●复习方略指南1.立体几何不外乎两大问题,一类是空间位置关系的论证,这类问题应熟练掌握公理、定理、定义或用空间向量来论证,位置关系的论证要注意其间的转化.如线面平行可转化为线线平行等;另一类问题是空间量(空间角、距离、体积、侧面积)的计算,如线面角、二面角的求解.2.立体几何在高考中,选择题、填空题一般出中等难度的题,解答题中可能会有难题.3.归纳总结,理线串点,从知识上可分为:(1)平面的基本性质;(2)两个特殊的位置关系,即线线、线面、面面的平行与垂直;(3)三个角、三个距离.根据每部分内容选择典型的例题,总结出解题方法,对于空间位置关系的论证及空间角与距离的求解,还要注意把空间向量贯彻、渗透其中,通过一题多解,使学生把所学知识真正学活、会用.4.抓主线攻重点,可以针对一些重点内容进行训练,平行和垂直是位置关系的核心,而线面垂直又是核心中的核心,线面角、二面角、距离均与线面垂直密切相关.因此对于这部分内容复习中要强化,并要注意用空间向量去解空间位置关系及空间量的求解.5.复习中要加强数学思想方法的总结与提炼,立体几何中蕴涵着丰富的思想方法,如割补思想、降维转化思想即化空间问题到平面图形中去解决,又如证线面间的位置关系常需经过多次转换才能获得解决,又如可把空间位置关系及空间量的求解转化为空间向量的运算,这些无不体现着化归转化的思想.因此自觉地学习和运用数学思想方法去解题,常能收到事半功倍的效果.9.1 平面、空间两条直线●知识梳理1.平面的基本性质,即三个公理及推论.2.公理4及等角定理.3.空间两条直线的位置关系有且只有三种,即平行、相交及异面.4.两条异面直线所成的角及距离,求作异面直线所成的角时,往往取题中的特殊点. ●点击双基a ,b 是异面直线,则只需具备的条件是 A.a ⊂平面α,b ⊄平面α,a 与b 不平行B.a ⊂平面α,b ⊂平面β,α∩β=l ,a 与b 无公共点C.a ∥直线c ,b ∩c =A ,b 与a 不相交D.a ⊥平面α,b 是α的一条斜线 答案:C2.如下图,直线a 、b 相交于点O 且a 、b 成60°角,过点O 与a 、b 都成60°角的直线有O60°abA.1条B.2条C.3条解析:在a 、b 所确定的平面内有一条,平面外有两条. 答案:C3.(2004年某某区模拟题)如下图,正四面体S —ABC 中,D 为SC 的中点,则BD 与SA 所成角的余弦值是A.33B.32C.63D.62解析:取AC 的中点E ,连结DE 、BE ,则DE ∥SA ,∴∠BDE 就是BD 与SASA =a ,则BD =BE =23 a ,DE =21a ,cos ∠BDE =DE BD BE DE BD ⋅-+2222=63.答案:C4.如下图,正方体ABCD —A 1B 1C 1D 1的棱长为a , 那么AC 1(1)哪些棱所在直线与直线BA 1成异面直线?______________________. (2)直线BA 1与CC 1所成角的大小为________. (3)直线BA 1与B 1C 所成角的大小为________. (4)异面直线BC 与AA 1的距离为________. (5)异面直线BA 1与CC 1的距离是________. 答案:(1)D 1C 1、D 1D 、C 1C 、C 1B 1、DC 、AD (2)45° (3)60° (4)a (5)a5.(2002年全国)正六棱柱ABCDEF —A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 与BC 1所成的角是_____________.解析:连结FE 1、FD ,则由正六棱柱相关性质可得FE 1∥BC 1, 在△EFD 中,EF =ED =1,∠FED =120°, ∴FD =120cos 222⋅⋅-+ED EF ED EF =3.在△EFE 1和△EE 1D 中,易得E 1F =E 1D =1)2(2+=3,∴△E 1FD 是等边三角形, ∠FE 1D =60°.而∠FE 1D 即为E 1D 与BC 1所成的角.答案:60°说明:本题主要考查正六棱柱的性质及异面直线所成角的求法. ●典例剖析【例1】 如下图,四面体ABCD 中,E 、G 分别为BC 、AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC =2∶3,DH ∶HA =2∶3.求证:EF 、GH 、BD 交于一点.O 证明:连结GE、HF,∵E、G分别为BC、AB的中点,∴GE∥AC.又∵DF∶FC=2∶3,DH∶HA=2∶3,∴HF∥AC.∴GE∥HF.故G、E、F、H四点共面.又∵EF与GH不能平行,∴EF与GH相交,设交点为O.则O∈面ABD,O∈面BCD,而平面ABD∩平面BCD=BD.∴EF、GH、BD交于一点.评述:证明线共点,常采用证两直线的交点在第三条直线上的方法,而第三条直线又往往是两平面的交线.【例2】A是△BCD平面外的一点,E、F分别是BC、AD的中点,(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A、B、C、D在同一平面内,这与A是△BCDEF与BD是异面直线.(2)解:取CD的中点G,连结EG、FG,则EG∥BD,所以相交直线EF与EG所成的锐角或直角即为异面直线EF与BD△EGF中,求得∠FEG=45°,即异面直线EF与BD 所成的角为45°.特别提示①证明两条直线是异面直线常用反证法;②求两条异面直线所成的角,首先要判断两条异面直线是否垂直,若垂直,则它们所成的角为90°;若不垂直,则利用平移法求角,一般的步骤是“作(找)—证—算”.注意,异面直线所成角的X 围是(0,2π]. 【例3】 长方体ABCD —A 1B 1C 1D 1中,已知AB =a ,BC =b ,AA 1=c ,且a >b ,求: (1)下列异面直线之间的距离:AB 与CC 1;AB 与A 1C 1;AB 与B 1C . (2)异面直线D 1B 与AC 所成角的余弦值.(1)解:BC 为异面直线AB 与CC 1的公垂线段,故AB 与CC 1的距离为b .AA 1为异面直线AB 与A 1C 1的公垂线段,故AB 与A 1C 1的距离为c .过B 作BE ⊥B 1C ,垂足为E ,则BE 为异面直线AB 与B 1C 的公垂线,BE =C B BC BB 11⋅=22cb bc+,即AB 与B 1C的距离为22cb bc +.A ABB CD 11E FO(2)解法一:连结BD 交AC 于点O ,取DD 1的中点F ,连结OF 、AF ,则OF ∥D 1B ,∴∠AOF 就是异面直线D 1B 与AC 所成的角.∵AO =222b a +,OF =21BD 1=2222c b a ++,AF =2422c b +,∴在△AOF 中,cos ∠AOF =OF AO AF OF AO ⋅-+2222=))((2222222c b a b a b a +++-.解法二:如下图,在原长方体的右侧补上一个同样的长方体,连结BG 、D 1G ,则AC ∥BG ,∴∠D 1BG (或其补角)为D 1B 与AC 所成的角.A ABB CCD GD 1111BD 1=222c b a ++,BG =22b a +,D 1G =224c a +,在△D 1BG 中,cos ∠D 1BG =BG B D G D BG B D ⋅-+1212212=-))((2222222c b a b a b a +++-,故所求的余弦值为))((2222222c b a b a b a +++-.深化拓展利用中位线平移和利用补形平移是处理长方体中异面直线所成角的重要方法. ●闯关训练 夯实基础l 、m 都在平面α内且都不在平面β内.命题甲:l 和m 中至少有一条与β相交,命题乙:平面α与β相交,则甲是乙的A.充分不必要条件解析:若l 和m 中至少有一条与β相交,不妨设l ∩β=A ,则由于l ⊂α,∴A ∈α.而A ∈β,∴α与β相交.反之,若α∩β=a ,如果l 和m 都不与β相交,由于它们都不在平面β内,∴l ∥β且m ∥β.∴l ∥a 且m ∥a ,进而得到l ∥m ,与已知l 、ml 和m 中至少有一条与β相交.答案:C2.(2004年某某,6)如下图,在棱长为2的正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1、AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于A DBC BD 111OEFA.510B.515C.54D.32 解法一:取面CC 1D 1D 的中心为H ,连结FH 、D 1H .在△FHD 1中, FD 1=25,FH =23,D 1H =22. 由余弦定理,得∠D 1FH 的余弦值为515. 解法二:取BC 的中点G .连结GC 1∥FD 1,再取GC 的中点H ,连结HE 、OH ,则∠OEH 为异面直线所成的角.在△OEH 中,OE =23,HE =45,OH =45. 由余弦定理,可得cos ∠OEH =515.答案:B3.如下图,四面体ABCD 中,E 、F 分别是AC 、BD 的中点,若CD =2AB =2,EF ⊥AB ,则EF 与CD 所成的角等于_____________.D解析:取AD 的中点G ,连结EG 、FG ,易知EG =1,FG =21. 由EF ⊥AB 及GF ∥AB 知EF ⊥FG .在Rt △EFG 中,求得∠GEF =30°,即为EF 与CD 所成的角. 答案:30°4.(2003年某某)在正四棱锥P —ABCD 中,若侧面与底面所成二面角的大小为60°,则异面直线P A 与BC 所成角的大小等于_____________.(结果用反三角函数值表示)答案:arctan25.如下图,设不全等的△ABC 与△A 1B 1C 1不在同一平面内,且AB ∥A 1B 1,BC ∥B 1C 1,CA ∥C 1A 1.A AB BC C111求证:AA 1、BB 1、CC 1三线共点.证明:不妨设AB ≠A 1B 1,AA 1∩BB 1=S ,∵BC ∥B 1C 1,∴BB 1面BCC 1B 1,S ∈面BBC 1B 1.同理,S ∈面ACC 1A 1.∴S ∈CC 1,即AA 1、BB 1、CC 1三线共点于S .A —BCD 中,AD =BC =2a ,E 、F 分别是AB 、CD 的中点,EF =3a ,求AD 与BC 所成的角.BE FM解:取AC 的中点M ,连结ME 、MF ,则ME ∥BC ,MF ∥AD ,所以∠EMF (或其补角)是直线AD 与BC △EMF 中,ME =21BC =a ,MF =21AD =a ,EF =3a ,cos ∠EMF = 222223aa a a -+=-21,∠EMF =120°,因此异面直线AD 与BC 所成的角为60°. 培养能力7.如下图,在三棱锥P —ABC 中,AB =AC ,PB =PC ,E 、F 分别是PC 和AB 上的点且PE ∶EC =AF ∶FB =3∶2.EPFA(1)求证:P A ⊥BC ;(2)设EF 与P A 、BC 所成的角分别为α、β,求证:α+β=90°. 证明:(1)取BC 的中点D ,连结AD 、PD .A则BC ⊥平面ADP ,AP ⊂平面ADP ∴AP ⊥BC .(2)在AC 上取点G ,使AG ∶GC =3∶2,连结EG 、FG ,则EG ∥P A ,FG ∥BC ,从而∠EGF 为P A 与BC 所成的角,由(1)知∠EGF =90°,而∠GEF 、∠GFE 分别是EF 与P A 、EF 与BC 所成的角α、β,∴α+β=90°.8.如下图,设△ABC 和△A 1B 1C 1的三对对应顶点的连线AA 1、BB 1、CC 1相交于一点O ,且1OA AO=1OB BO =1OC CO =32.试求111C B A ABC S S ∆∆的值.11解:依题意,因为AA 1、BB 1、CC 1相交于一点O ,且1OA =1OB BO =1OC CO,所以AB ∥A 1B 1,AC ∥A 1C 1,BC ∥B 1C 1.由平移角定理得∠BAC =∠B 1A 1C 1,∠ABC =∠A 1B 1C 1,△ABC ∽ △A 1B 1C 1,所以111C B A ABC S S ∆∆=(32)2=94.说明:利用平移定理,可证明空间两个角相等或两个三角形相似、全等;利用平行公理,可证明空间两条直线平行,从而解决相关问题.探究创新9.如下图,已知空间四边形ABCD 的对角线AC =10,BD =6,M 、N 分别是AB 、CD 的中点,MN =7,求异面直线AC 与BD 所成的角.B解:取BC 的中点E ,连结EN 、EM ,∴∠MEN 是异面直线AC 与BD 所成的角或其补角.在△EMN 中,EN =2BD =3,EM =2AC =5,MN =7,cos ∠MEN =-21,∴∠MEN =120°. ∴异面直线AC 与BD 所成的角是60°.●思悟小结1.本节重点问题是证明三点共线、三线共点以及求异面直线所成的角.2.证明三点均在两个平面的交线上,可以推证三点共线;求异面直线所成的角,一般先取一个特殊点作它们的平行线,作出所求的角或其补角,再解三角形.●教师下载中心教学点睛首先要使学生掌握本节的重点内容:平面的基本性质、异面直线的定义及判断、异面直线所成的角,其次结合例题讲清求异面直线所成的角的方法步骤.拓展题例【例1】 设异面直线a 与b 所成的角为50°,O 为空间一定点,试讨论,过点O 与a 、b 所成的角都是θ(0°≤θ≤90°)的直线l 有且仅有几条?解:过点O 作a 1∥a ,b 1∥b ,则相交直线a 1、b 1确定一平面α.a 1与b 1夹角为50°或130°,设直线OA 与a 1、b 1均为θ角,作AB ⊥面α于点B ,BC ⊥a 1于点C ,BD ⊥b 1于点D ,记∠AOB =θ1,∠BOC =θ2(θ2=25°或65°),则有cos θ=cos θ1·cos θ2.因为0°≤θ1≤90°,所以 0≤cos θ≤cos θ2.当θ2=25°时,由0≤cos θ≤cos25°,得25°≤θ≤90°;当θ2=65°时,由0≤cos θ≤cos65°,得65°≤θ≤90°.故当θ<25°时,直线l 不存在;当θ=25°时,直线l 有且仅有1条;当25°<θ<65°时,直线l 有且仅有2条;当θ=65°时,直线l 有且仅有3条;当65°<θ<90°时,直线l 有且仅有4条;当θ=90°时,直线l 有且仅有1条.说明:异面直线所成的角就是选点、平移后的平面角.上述解答首先将问题转化为:求过点O 与a 1、b 1均成θ角的直线的条数,进而通过讨论θ的X 围去确定直线l 的条数.【例2】 已知空间四边形ABCD ,E 、H 分别是AB 、AD 的中点,F 、G 分别是边BC 、DC 的三等分点(如下图),求证:AB C DHGF E(1)对角线AC 、BD 是异面直线;(2)直线EF 和HG 必交于一点,且交点在AC 上.证明:(1)假设对角线AC 、BD 在同一平面α内,则A 、B 、C 、D 都在平面α内,这与ABCD 是空间四边形矛盾,∴AC 、BD 是异面直线.(2)∵E 、H 分别是AB 、AD 的中点, ∴EH21BD . 又F 、G 分别是BC 、DC 的三等分点,∴FG 32BD .∴EH ∥FG ,且EH <FG . ∴FE 与GH 相交.设交点为O ,又O 在GH 上,GH 在平面ADC 内,∴O 在平面ADC 内.同理,O 在平面ABC 内.从而O 在平面ADC 与平面ABC 的交线AC 上.。

第三高考数学一轮复习 直线与平面的位置关系教案

第三高考数学一轮复习 直线与平面的位置关系教案

诚西郊市崇武区沿街学校第三中学2021届高考数学一轮复习直线与平面的位置关系〔1〕教案教学目的:直线与平面的位置关系及其符号表示;直线与平面平行的断定定理、性质定理及其应用.重点难点:空间直线与平面、平面与平面之间的位置关系;用图形表达直线与平面的位置关系;直线与平面平行的断定定理及应用.引入新课通过观察身边的实物发现直线与平面的位置关系 建构教学: 1.直线和平面位置关系位置关系 直线a 在平面α内 直线a 与平面α相交 直线a 与平面α平行 公一一共点 符号表示图形表示3.直线和平面平行的断定定理 语言表示: 符号表示:4.直线和平面平行的性质定理 语言表示: 符号表示: 例题剖析例1如图,E 、F 分别是三棱锥A -BCD 的侧棱AB 、AD 中点,求证:EF//平面BCD .[变式]:假设M 、N 分别是△ABC、△AC D 的重心,那么MN//平面BCD 吗图形表示:图形表示:AEFBCD例2一个长方体木块如下列图,要经过平面A1C1内一点P 和棱BC 将木块锯开,应怎样画线[考虑]:在平面A1B1C1D1内所画的线与平面ABCD 有何位置关系例3求证:假设三个平面两两相交于直线,并且其中两条直线平行,那么第三条直线也和它们平行. [考虑]:假设三个平面两两相交于三条直线,并且其中的两条直线相交,那么第三条直线和这两条直线有怎样的位置关系 稳固练习1.指出以下命题是否正确,并说明理由:〔1〕假设一条直线不在某个平面内,那么这条直线就与这个平面平行; 〔2〕过直线外一点有无数个平面与这条直线平行; 〔3〕过平面外一点有无数条直线与这个平面平行. 2.直线a ,b 与平面α,以下命题正确的选项是〔〕 A 、假设a //α,b ⊂α,那么a //b B 、假设a //α,b //α,那么a //b C 、假设a //b ,b ⊂α,那么a //αD 、假设a //b ,b⊂α,那么a //α或者者a⊂α3.如图,在长方体1AC 的侧面和底面所在的平面中:〔1〕与直线AB 平行的平面是〔2〕与直线1AA 平行的平面是〔3〕与直线AD 平行的平面是4.如图:一块矩形木板ABCD 的一边AB 在平面α内,把这块矩形木板绕AB 转动,在转动过程中,AB 的对边CD 是否都和平面α平行?为什么?课堂小结直线与平面的位置关系,直线与平面平行的断定定理和性质定理.PA B CDA 1 D 1C 1B 1 · ABCDA 1D 1C 1B 1BCDA数学〔理〕即时反响作业 编号:044班级______________姓名_______________学号______________ 1.梯形ABCD 中,AB//CD ,AB ⊂α,CD ⊄α,那么CD 与平面α内的直线的位置关系只能是()A .平行B .平行或者者异面C .平行或者者相交D .异面或者者相交2.直线l 在平面α外,那么以下说法:〔1〕l //α;〔2〕l 与α至少有一个公一一共点;(3)l 与α至多有一个公一一共点;(4)l 与α有且仅有一个公一一共点.其中正确的选项是〔填序号〕 3.证明直线a 与平面α平行的步骤:①首先说明aα;②然后在内找到直线b ,并证明直线a 与它平行,再由直线和平面的得a //平面α. 7、如图,αγβγαβα//,,,AB AB EF CD =⋂=⋂=⋂,求证:EF CD //.8、如图,E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,求证:〔1〕四点E 、F 、G 、H 一一共面; 〔2〕BD//平面EFGH ,AC//平面EFGH .9.如图,在三棱柱111C B A ABC -中,C C EF C B F BC E 111//,,∈∈,点∈M 侧面B B AA 11,点F E M ,,确定平面γ,试作出平面γ与三棱柱111C B A ABC -外表的交线.10、如图,在四棱锥P -ABCD 中,M 、N 分别是AB 、PC 的中点,假设ABCD 是平行四边形,求证:MN//平面PAD .PNCBAM DABCEFDβαγAC FB EH DG。

全国高考数学一轮复习立体几何空间点直线平面之间的位置关系学习教案

全国高考数学一轮复习立体几何空间点直线平面之间的位置关系学习教案
∴四边形 FEGH 为梯形,∴GE 与 HF 交于一点,设 EG∩FH=P,P∈EG,EG⊂平面 ABC,
∴P∈平面 ABC.同理 P∈平面 ADC. ∴P 为平面 ABC 与平面 ADC 的公共点, 又平面 ABC∩平面 ADC=AC, ∴P∈AC,∴P,A,C 三点共线.
第25页/共48页
第二十六页,共49页。
考向 空间两条直线的位置关系 命题角度 1 两直线位置关系的判定 例 2 [2015·广东高考]若直线 l1 和 l2 是异面直线,l1 在平面 α 内,l2 在平面 β 内,l 是平面 α 与平面 β 的交线, 则下列命题正确的是( ) A.l 与 l1,l2 都不相交 B.l 与 l1,l2 都相交 C.l 至多与 l1,l2 中的一条相交 D.l 至少与 l1,l2 中的一条相交
第37页/共48页
第三十八页,共49页。
核心规律 1.三个公理的作用是证明点共线、点共面、线共面、线 共点等几何问题. 2.求异面直线所成的角就是要通过平移转化的方法,将 异面直线所成的角转化成同一平面内的直线所成的角,放到 同一个可解的三角形中去求解.
第38页/共48页
第三十九页,共49页。
满分策略 1.正确理解异面直线“不同在任何一个平面内”的含 义,不要理解成“不在同一个平面内”. 2.不共线的三点确定一个平面,一定不能丢掉“不共 线”条件. 3.两条异面直线所成角的范围是(0°,90°].
板块破译高考第40题型技法系列11构造法判定空间线面位置关系2018西安模拟已知mn是两条不同的直线解题视点判断空间线面的位置关系常利用正长方体及其他几何体模型来判断把平面直线看作正长方体内及其它几何体平面侧棱对角线等进行推导验证使抽象的推理形象具体化
全国高考(ɡāo kǎo)数学一轮复习立体几何 空间点直线平面之间的位置关系

高三数学一轮复习精品教案1:空间点、直线、平面之间的位置关系教学设计

高三数学一轮复习精品教案1:空间点、直线、平面之间的位置关系教学设计

9.3空间点、直线、平面之间的位置关系1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 作用:可用来证明点、直线在平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.作用:①可用来确定两个平面的交线;②判断或证明多点共线;③判断或证明多线共点. 公理3:经过不在同一条直线上的三点,有且只有一个平面. 作用:①用来确定一个平面;②证明点线共面.推论1:经过一条直线和这条直线外的一点,有且只有一个平面; 推论2:经过两条相交直线,有且只有一个平面; 推论3:经过两条平行直线,有且只有一个平面. 公理3及它的三个推论是确定点、线共面的依据. 公理4:平行于同一条直线的两条直线互相平行. 作用:判断空间两条直线平行的依据. 2.空间直线的位置关系 (1)位置关系的分类:⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角:①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. (3)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间直线与平面,平面与平面之间的位置关系图形语言符号语言公共点直线与平面相交a∩α=A1个平行a∥α0个在平面内a⊂α无数个平面与平面平行α∥β0个相交α∩β=l无数个1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.『试一试』1.设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行;(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.上述命题中,真命题的序号是________(写出所有真命题的序号).『解析』由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对(3)来说,l只垂直于α和β的交线l,得不到l是α的垂线,故也得不出α⊥β.对(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不垂直于α.『答案』(1)(2)2.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是________.『解析』b与α相交或b⊂α或b∥α都可以.『答案』b与α相交或b⊂α或b∥α1.求异面直线所成角的方法(1)平移法:即选点平移其中一条或两条直线使其转化为平面角问题,这是求异面直线所成角的常用方法.(2)补形法:即采用补形法作出平面角. 2.证明共面问题的两种途径(1)首先由条件中的部分线(或点)确定一个平面,再证其他线(或点)在此平面内; (2)将所有条件分为两部分,然后分别确定平面,再证明这两个平面重合. 3.证明共线问题的两种途径(1)先由两点确定一条直线,再证其他点都在这条直线上; (2)直接证明这些点都在同一条特定直线上. 4.证明共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点. 『练一练』(2014·镇江期末)如图,在多面体ABC ­DEFG 中,AB ,AC ,AD 两两垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1.(1)证明:四边形ABED 是正方形;(2)判断B ,C ,F ,G 是否四点共面,并说明理由; (3)连结CF ,BG ,BD ,求证:CF ⊥平面BDG . 『解』(1)证明:⎭⎪⎬⎪⎫平面ABC ∥平面DEFG平面ABED ∩平面ABC =AB 平面ABED ∩平面DEFG =DE ⇒AB ∥DE . 同理AD ∥BE ,则四边形ABED 是平行四边形. 又AD ⊥AB ,AD =AB ,所以四边形ABED 是正方形. (2)取DG 的中点P ,连结P A ,PF . 在梯形EFGD 中,PF ∥DE 且PF =DE .又AB ∥DE 且AB =DE ,所以AB ∥PF 且AB =PF ,所以四边形ABFP 为平行四边形,则AP ∥BF .在梯形ACGD 中,AP ∥CG ,所以BF ∥CG , 所以B ,C ,F ,G 四点共面.(3)证明:同(1)中证明方法知四边形BFGC 为平行四边形. 又有AC ∥DG ,EF ∥DG ,从而AC ∥EF .⎭⎬⎫⎭⎪⎬⎪⎫AC ∥EF AC ⊥AD ⇒EF ⊥AD BE ∥AD⇒BE ⊥EF .又BE =AD =2,EF =1,故BF = 5.而BC =5,故四边形BFGC 为菱形,所以CF ⊥BG .连结AE ,又由AC ∥EF 且AC =EF 知CF ∥AE . 在正方形ABED 中,AE ⊥BD ,故CF ⊥BD .⎭⎪⎬⎪⎫CF ⊥BGCF ⊥BD BG ∩BD =B ⇒CF ⊥平面BDG .考点一平面的基本性质及应用1.(2013·南京、盐城三模)已知m ,n 是两条不同的直线,α,β是两个不同的平面.给出下列命题:(1)若m ⊂α,m ⊥β,则α⊥β;(2)若m ⊂α,α∩β=n ,α⊥β,则m ⊥n ; (3)若m ∥α,m ⊂β,α∩β=n ,则m ∥n . 其中真命题是________(填序号).『解析』(2)中,m ∥n ,m 与n 相交都有可能. 『答案』(1)(3) 2.下列命题:①经过三点确定一个平面; ②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. 其中正确命题有________个.『解析』对于①,未强调三点不共线,故①错误;②正确;对于③,三条直线两两相交,如空间直角坐标系,能确定三个平面,故③正确;对于④,未强调三点共线,则两平面也可能相交,故④错误.『答案』23.如图,已知:E ,F ,G ,H 分别是正方体ABCD ­A 1B 1C 1D 1的棱AB ,BC ,CC 1,C 1D 1的中点,证明:EF ,HG ,DC 三线共点.证明:连结C 1B ,HE ,GF ,如图所示.由题意知HC 1綊EB ,∴四边形HC 1BE 是平行四边形, ∴HE ∥C 1B .又C 1G =GC ,CF =BF , 故GF 綊12C 1B ,∴GF ∥HE ,且GF ≠HE ,∴HG 与EF 相交,设交点为K ,则K ∈HG . 又HG ⊂平面D 1C 1CD , ∴K ∈平面D 1C 1CD .∵K ∈EF ,EF ⊂平面ABCD , ∴K ∈平面ABCD .∵平面D 1C 1CD ∩平面ABCD =DC , ∴K ∈DC ,∴EF ,HG ,DC 三线共点.『备课札记』 『类题通法』1.证明共点问题的关键是先确定点后,再证明此点在第三条直线上,这个第三条直线应为前两条直线所在平面的交线,可以利用公理3证明.2.证明过程中要注意符号语言表达准确,公理成立的条件要完善.考点二空间两直线的位置关系『典例』 (1)已知直线a 和平面α,β,α∩β=l ,a ⊄α,a ⊄β,且a 在α,β内的射影分别为直线b 和c ,则直线b 和c 的位置关系是________.『解析』 依据题意,b ,c 分别为a 在α,β内的射影,可判断b ,c 相交、平行或异面均可.『答案』相交、平行或异面(2)已知空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边BC,CD的中点.①求证:BC与AD是异面直线;②求证:EG与FH相交.『证明』①假设BC与AD共面,不妨设它们所共平面为α,则B,C,A,D∈α.所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD是异面直线.②如图,连结AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是▱EFGH的对角线,所以EG与HF相交.『备课札记』『类题通法』1.异面直线的判定常用的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面.此法在异面直线的判定中经常用到.2.客观题中,也可用下述结论:过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.『针对训练』若直线l不平行于平面α,且l⊄α,则下列结论正确的是________.(填写序号)①α内的所有直线与l异面②α内不存在与l平行的直线③α内存在唯一的直线与l平行④α内的直线与l都相交『解析』如图,设l∩α=A,α内直线若经过A点,则与直线l相交;若不经过点A,则与直线l异面.『答案』②『课堂练通考点』1.(2014·泰州期末)在空间中,用a,b,c表示三条不同的直线,γ表示平面,给出下列四个命题:(1)若a∥b,b∥c,则a∥c;(2)若a⊥b,b⊥c,则a⊥c;(3)若a∥γ,b∥γ,则a∥b;(4)若a⊥γ,b⊥γ,则a∥b.其中真命题的序号为________.『解析』根据公理4“平行于同一条直线的两条直线互相平行”知(1)是正确的;根据线面垂直性质定理“同垂直一个平面的两条直线平行”知(4)是正确的;(2)(3)均不恒成立.故填(1)(4).『答案』(1)(4)2.已知m,n,l是三条直线,α,β是两个平面,下列命题中,正确命题的序号是________.(1)若l垂直于α内两条直线,则l⊥α;(2)若l平行于α,则α内有无数条直线与l平行;(3)若m∥β,m⊂α,n⊂β,则m∥n;(4)若m⊥α,m⊥β,则α∥β.『解析』(1)中只有当两条直线相交时,l⊥α才成立,所以(1)不正确;若l∥α,则过l 任作平面β与α相交,则交线必与l平行,由于β的任意性,故(2)正确;(3)m与n可以平行可以异面,故(3)不正确;(4)正确.『答案』(2)(4)3.(2013·南通三模)已知直线l,m,n,平面α,m⊂α,n⊂α,则“l⊥α”是“l⊥m,且l⊥n”的________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”之一).『解析』当l⊥α时,有l⊥m且l⊥n;当l⊥m且l⊥n时,由于m,n不一定相交,故l不一定垂直于α.『答案』充分不必要4.设a,b,c是空间的三条直线,下面给出四个命题:①若a⊥b,b⊥c,则a∥c;②若a,b是异面直线,b,c是异面直线,则a,c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是________.『解析』∵a⊥b,b⊥c,∴a与c可以相交、平行、异面,故①错.∵a,b异面,b,c异面,则a,c可能异面、相交、平行,故②错.由a,b相交,b,c相交,则a,c可以异面、相交、平行,故③错.同理④错,故真命题的个数为0.『答案』05.(2014·苏州调研)设α,β为两个不重合的平面,m,n为两条不重合的直线,给出下列四个命题:(1)若m⊥n,m⊥α,n⊄α,则n∥α;(2)若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β;(3)若m⊥n,m∥α,n∥β,则α⊥β;(4)若n⊂α,m⊂β,α与β相交且不垂直,则n与m不垂直.其中所有真命题的序号是________.『解析』(1)(2)正确;(3)错误,α,β相交或平行;(4)错误,n与m可以垂直,不妨令n =α∩β,则在β内存在m⊥n.『答案』(1)(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上传您的资源,我们一起分享!第九章 直线、平面、简单几何体知识结构网络概念 性质 求积异面直线的角 距离异面概念 性质 画法 表示平行公理,等角定理球多面体 正多面体棱柱 棱锥用向量判断共面平行 垂直 求角概念 运算 坐标表示相交平行简单几何体空间向量空间直线和平面空间两个平面空间两条直线平面9.1 平面的性质与直线的位置关系一、明确复习目标1.掌握平面的基本性质,会运用这些性质解决有关共面、共线、共点、交线等问题. 2.掌握空间两直线的位置关系,理解异面直线的定义,能证明和判断两条直线是异面直线.能用图形表示两条直线的位置关系,会解决与位置关系有关的问题.3.能进行简单的文字、符号、图形三者之间的转化.二.建构知识网络(一)平面的概念和性质1.平面的概念:平面是没有厚薄的,可以无限延伸.上传您的资源,我们一起分享!2.空间点、线、面的位置关系及表示:要正确运用下列符号: 点A ,B ,C ,…;直线 a ,b ,c ,…;平面α,β,γ…A a ∈,A a ∉,A α∈,αα⊄⊂⊂a a l a ,,,a b A = ,a α=∅ ,a ∥b ,a ⊥b ,a∥α,a ⊥β, α⊥β, α//β, α⊥β, α∩β=a3.平面的基本性质 公理1.线的在平面内.用途:判定直线在平面内,验证是否平面. 公理2两个平面的交线.用途:①确定两相交平面的交线;②判定点在直线上. 公理3及其三个推论: 确定平面的条件. 注意“确定”即“有且只有一个”的含义.4.所有点都在一个平面内的图形称为平面图形,否则称为空间图形. (二)空间两条直线 1.空间两直线的位置关系有: (1)相交; (2)平行; (3)异面.定义——2 公理4 :平行于同一条直线的两条直线互相平行.3 等角定理:一个角的两边和另一个角的两边分别平行且方向相同,则这两个角相等.推论:两条相交直线和另两条相交直线分别平行,则这两条直线所成的角相等. 4 空间两条异面直线:不同在任何全个平面内.判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.上传您的资源,我们一起分享!5.异面直线所成的角的求法:找(或)作出过一条直线上一点,于另一直线平直线;或过空间一点与两条直线平行的直线,转化为平面内的角,再用平面几何的方法去求;也可用向量法.注意:两条直线所成的角的范围:[0,]2π. 两条异面直线所成的角的范围:]2,0(π.6 两条异面直线的公垂线、距离和两条异面直线都垂直且相交.....的直线,我们称之为异面直线的公垂线. 理解:和异面直线都垂直的直线有无数条,公垂线只有一条.两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.计算方法:①几何法;②向量法三、双基题目练练手1. 三点确定一个平面的条件是___________; 共点的四条直线最多可以确定_______平面; 互不相交的三条直线可以确定_______平面.2. 判断下列命题真假(1)四边相等且有一个内角是直角的四边形是正方形; ( )(2)四点不共面,则其中任意三点不共线; ( ) (3)“平面不经过直线”的等价说法是“直线上至多有一个点在平面内” ( )(4)两个平面有三个共公点,那么这两个平面重合; ( ) (5)三个平面可以把空间分成四、六、七、八个部分; ( )(6)过直线外一点向直线引垂线,有且只有一条; ( ) (7)异面直线a 与c 、b 与c 所成的角相等,则a 与b 平行或异面 ( )上传您的资源,我们一起分享!(8)过空间任一点一定可以作一条直线与两条异面直线都相交. ( ) 3.(2006福建)对平面α和共面的直线m 、,n 下列命题中真命题是 ( ) (A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n (C )若,m n αα⊂∥,则m ∥n(D )若m 、n 与α所成的角相等,则m ∥n4. 直线a 、b 相交于点O 且a 、b 成60°角,过点O 与a 、b 都成60°角的直线有( ) A .1条 B .2条 C .3条 D .4条5.下列各图是正方体或正四面体,P 、Q 、R 、S 分别是所在棱的中点,则PQ 与SR 一定是异面直线的是RRA6.画出上题图B 中平面PQR 与下底面的交线.◆答案提示:1.不共线;六个; 0个、一个或三个. 2. ⨯;√;√;⨯;√;⨯;⨯;⨯. 3.C ; 4.C 5.C四、经典例题做一做【例1】用图形表示:α∩β=m ,a ⊂α,b ⊂β,a ∩m =A ,b ∩m =B ,c ∩α=P ,P ∉a ,c ⊄β.上传您的资源,我们一起分享!图略思悟提炼:熟悉图形语言、符号语言之间的互化.提高画图能力.【例2】P 是正方体ABCD -A 1B 1C 1D 1上一点,(不是端点),求证:过P 点有且只有一条直线与直线BC 、C 1D 1相交.证明:依题设,平面BCP 与直线C 1D 1有且只有一个交点,设为Q ,过两点Q 、P 有且只有一条直线,且与BC 必相交.思悟提炼:1.线面相交,有且只有一个交点.一个平面内的直线不平行就相交.【例3】(1)三条直线a ,b ,c 互相平行,且都与直线m 相交,求证:这四条直线共面;(2)在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q ,R ,S 是棱的中点, 求证:MNPQRS 是正六边形. 证明:(1)设a ,m 确定平面α再证b , c 在α内. (2)证SR //MQ //NP ,且都与RN 相交.P B 1C 1 _D 1A1DC BARQ上传您的资源,我们一起分享!思悟提炼:证明点或线共面的方法:——【例4】如图,已知∆ABC 和∆A 'B 'C '不共面,直线AA '、BB '、CC '两两相交. (1)求证:这三条直线AA '、BB '、CC '交于一点;(2) 若直线AB 和A 'B '、BC 和B 'C '、CA 和C 'A '分别交于P 、Q 、R ,求证:P 、Q 、R 三点共线.思悟提炼:用平面的基本性质证明空间三点共线、三线共点的方法.【例5】 长方体ABCD —A 1B 1C 1D 1中,已知AB =a ,BC =b ,AA 1=c ,且a >b ,求:(1) 下列异面直线之间的距离:AB 与CC 1;AB 与A 1C 1;AB 与B 1C . (2)异面直线D 1B 与AC 所成角的余弦值.O_S RQ PN MD CD 1C 1B 1A 1BA上传您的资源,我们一起分享!解(1):BC 为异面直线AB 与CC 1的公垂线段,故AB 与CC 1的距离为b . AA 1为异面直线AB 与A 1C 1的公垂线段,故AB 与A 1C 1的距离为c . 过B 作BE ⊥B 1C ,垂足为E ,则BE 为异面直线AB 与B 1C 的公垂线,BE =C B BC BB 11⋅=22cb bc+,即为所求.(2)解法一:连结BD 交AC 于点O ,取DD 1的中点F ,连结OF 、AF ,则OF ∥D 1B ,∴∠AOF 就是异面直线D 1B 与AC 所成的角.∵ AO =222b a +,OF =21 BD 1=2222c b a ++,AF =2422c b +, ∴ 在△AOF 中,cos ∠AOF =OFAO AF OF AO ⋅-+2222=))((2222222c b a b a b a +++-解法二:补图形如下,在ΔBGD 1中,∠GBD 1为所求角的补角——1 上传您的资源,我们一起分享!五.提炼总结以为师同步练习 9.1................平面的性质与直线的位置关系【选择题】1.下列四个命题:(1)分别在两个平面内的两条直线是异面直线(2)和两条异面直线都垂直的直线有且只有一条(3)和两条异面直线都相交的两条直线必异面(4)若a与b是异面直线,b与c是异面直线,则a与c也异面其中真命题个数为()A.3B.2C.1D.02.在正方体ABCD''D''AA和AB的中点,P为上A中,M、N分别是棱'BC底面ABCD的中心,则直线PB与MN所成的角为()A.300B.450C.600D.9003.AB、CD在平面α内,AB//CD,且AB与CD相距28厘米,EF在平面α外,EF//AB,且EF与AB相距17厘米,EF与平面α相距15厘米,则EF与CD的距离为()A.25厘米B.39厘米C.25或39厘米D.15厘米4.已知直线a,如果直线b 同时满足条件:上传您的资源,我们一起分享!①a 、b 异面②a 、b 所成的角为定值③a 、b 间的距离为定值,则这样的直线b 有 A .1条 B .2条 C .4条 D .无数条 ( ) 【填空题】5.互不重合的三个平面的交线可能有__________条.6.已知a ∥c ,b 与c 不平行、 a 与b 不相交,a ,b 的位置关系是 7.在棱长为a 的正四面体中,相对两条棱间的距离为__________.8.两条异面直线a 、b 间的距离是1cm ,它们所成的角为600,a 、b 上各有一点A 、B ,距公垂线的垂足都是10cm ,则A 、B 两点间的距离为_______________.◆答案提示:1-4. DCCD 5.0、1、2、3四种. 6.异面直线. 7.a 22; 8. cm cm 301101或. 【解答题】9.已知正四面体ABCD 中,BC 的中点为E ,AD 的中点为F ,连AE 、CF .(1)判断AE 、CF 的位置关系;(2)求AE 与CF 所成的角的余弦.答案:10.(2006上海春)在长方体1111D C B A ABCD -中,已知3,41===DD DC DA ,求异面直线B A 1与C B 1所成角的大小(结果用反三角函数值表示).ABDEF上传您的资源,我们一起分享!解:连接D A 1,则D BA 1∠为异面直线B A 1与C B 1所成的角.在△DB A 1中,D A B A BD D A B A D BA 112212112cos ⋅⋅-+=∠ 259552322525=⋅⋅-+=. ∴ 异面直线所成的角为259arccos. 11.如下图,四面体ABCD 中,E 、G 分别为BC 、AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC =2∶3,DH ∶HA =2∶3. 求证:EF 、GH 、BD 交于一点.证明:连结GE 、HF ,∵E 、G 分别为BC 、AB 的中点, ∴GE ∥AC .又∵DF ∶FC =2∶3,DH ∶HA =2∶3,∴HF ∥AC .∴GE ∥HF .故G 、E 、F 、H 四点共面. 又∵EF 与GH 不能平行,∴EF 与GH 相交,设交点为O .则O ∈面ABD ,O ∈面BCD ,而平面ABD ∩平面BCD =BD .∴EF 、GH 、BD 交于一 上传您的资源,我们一起分享! 您的需求就是我们的追求,我们将竭诚为您服务! 点.【探索题】设△ABC 和△A 1B 1C 1的三对对应顶点的连线AA 1、BB 1、CC 1相交于一点O ,且1OA AO =1OB BO =1OC CO = 32.试求111C B A ABC S S ∆∆的值.【探索题】解:依题意,因为AA 1、BB 1、CC 1相交于一点O ,且1OA AO =1OB BO =1OC CO ,所以AB ∥A 1B 1,AC ∥A 1C 1,BC ∥B 1C 1.由平移角定理得 ∠BAC =∠B 1A 1C 1,∠ABC =∠A 1B 1C 1,△ABC ∽△A 1B 1C 1,所以111C B A ABC S S ∆∆=(32)2=94.。

相关文档
最新文档