物化第九章

合集下载

物理化学第9章

物理化学第9章

三、溶胶的电学性质 1、电动现象 、 在外电场作用下,分散相和分散介质发生相对移 在外电场作用下,分散相和分散介质发生相对移 动现象,称为溶胶的电动现象。 动现象,称为溶胶的电动现象。 1)电泳 带电胶粒在外加电场的作用下在分散介质中作定向 移动的现象称为电泳。 移动的现象称为电泳。 2)电渗 在外加电场作用下, 在外加电场作用下,带电的介质通过多孔膜或 半径为1 nm的毛细管作定向移动 的毛细管作定向移动, 半径为1-10 nm的毛细管作定向移动,这种现象称为 电渗。 电渗。
例如: 例如:云,牛奶,珍珠 牛奶,
一、分散系统、分散相与分散介质 分散系统、 1、按分散相的质点大小分类


粒子的大小
9 <10-9m
实 例 空气、乙醇的水溶液 空气、 Al(OH)3水溶胶 泥浆
分子分散系统 胶体分散系统 粗分散系统
10-9~10-7m >10-7m
二、 胶体系统的分类
2、按分散相及分散介质的聚集态分类 按分散相及分散介质的聚集态分类
二、溶胶的相互聚沉 由于为AgI正溶胶,主要起聚沉作用的是负离子。 由于为AgI正溶胶,主要起聚沉作用的是负离子。根据 AgI正溶胶 舒尔策-哈迪(Schulze-Hardy) 舒尔策-哈迪(Schulze-Hardy)价数规则二价负离子 的聚沉能力强。 的聚沉能力强。MgSO4,Na2SO4,> CaCl2 , NaNO3 根据感胶离子序 感胶离子序, 根据感胶离子序, Cl- >NO3-, CaCl2 > NaNO3 具有相同的负离子,再根据当与胶体带相 MgSO4,Na2SO4具有相同的负离子,再根据当与胶体带相 反电荷的离子相同时, 反电荷的离子相同时,则另一同性离子的价数也会影 响聚沉值,价数愈高,聚沉能力愈低。 响聚沉值,价数愈高,聚沉能力愈低。Na+ >Mg2+ 综上所述, AgI正溶胶聚沉能力强弱的顺序为: 正溶胶聚沉能力强弱的顺序为 综上所述,对AgI正溶胶聚沉能力强弱的顺序为: Na2SO4> MgSO4 > CaCl2 >NaNO3

【通用】《物理化学(第五版)》第九章复习题答案.ppt

【通用】《物理化学(第五版)》第九章复习题答案.ppt
答:各电极电势都升高1,但电池的电动势 值不变。
演示课件
复习题
7.在公式ΔrGmΘ=-zEΘF中,ΔrGmΘ是否表示 该电池各物都处于标准态时,电池反应的 Gibbs自由能变化值?
答:在公式ΔrGmΘ=-zEΘF中,ΔrGmΘ表示该 电池各物都处于标准态时,在T,p保持不变 的条件下,按电池反应进行1mol的反应时 系统的Gibbs自由能变化值。
ln
m m'
高价型:Mz+Az-(m1)|Mz+Az-(m2)
E
j=
t z
- t- z 演示课-件
RT F
ln
m1 m2
基本公式
用可逆电池的测定值计算热力学函数变化

rGm zFE , rGm zFE
E
RT zF
ln
K
a
r Sm
( r Gm T
)p
E zF (T ) p
E
QR
T rSm
答:可逆电极有三种类型: (1)金属气体电极 如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极 如:
Ag(s)|AgCl(s)|Cl-(m) AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极 如: Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极
反应所依附的惰性金属。
演示课件
复习题
2.什么叫电池的电动势?用伏特表侧得的电 池的端电压与电池的电动势是否相同?为何 在测电动势时要用对消法?

物理化学第九章

物理化学第九章

几个总包反应:
H 2 Br2 2HBr
H2 Cl2 2HCl
r
k H2 Br2 1/ 2
1
k
HBr Br2
r k H2 Cl2 1/ 2
H2 I2 2HI
r k H2 I2
问题:上述反应的反应级数 ?
速率常数
速率方程中的比例系数 k 称为反应的速率系数,以前 称为速率常数,现改为速率系数更确切。 它的物理意义是当反应物的浓度均为单位浓度时 k 等 于反应速率,因此它的数值与反应物的浓度无关。在 催化剂等其它条件确定时,k 的数值仅是温度的函数。
第九章 化学动力学基本原理
化学热力学的研究对象和局限性
研究化学变化的方向、能达到的最大限度以及外界条 件对平衡的影响。化学热力学只能预测反应的可能性, 但无法预料反应能否发生?反应的速率如何?反应的 机理如何?例如:
-
例如:
12 N2
32 H2
NH (g) 3
G rm
-16.63kJ mol-1
k 的单位随着反应级数的不同而不同。
准级数反应
在速率方程中,若某一物质的浓度远远大于其他反应
物的浓度,或是出现在速率方程中的催化剂浓度项,
在反应过程中可以认为没有变化,可并入速率系数项,
这时反应总级数可相应下降,下降后的级数称为准级
数反应。例如:
(1) r k[A][B]
[A] [B]
r k'[B] ( k' k[A]) 准一级反应
H 2
12 O2
H O(l) 2
G -237.2kJ mol-1 rm
热力学只能判断这两个反应都能发生,但如何使它发生, 热力学无法回答。
化学动力学的任务和目的

物理化学第九章

物理化学第九章
电池反应:Zn + 2MnO2 + 2NH4Cl Zn(NH3)2Cl2 + 2MnOOH
R T ②铅蓄电池
PbO2作正极,海绵状Pb作负极,H2SO4作电解液。 电池表示如下:Pb|H2SO4(ρ=1.28gcm-3)|PbO2
放电时:
负极(氧化):Pb + H2SO4 PbSO4 + 2H+ + 2e-
R T 一、常用的化学电源
①锌锰干电池 锌锰干电池是一次电池,通称干电池。 干电池的负极是锌,正极是石墨。石墨周围是MnO2, 电解质是NH4Cl、ZnCl2溶液。 电池可用下式表示:Zn|NH4Cl|MnO2|C
F 负极:Zn + 2NH4Cl Zn(NH3)2Cl2 + 2H++ 2e-
正极:2MnO2 + 2H+ + 2e- 2MnOOH
KOH
负极(氧化 H2) 2:OH 2H2O2e-
正极(还原 12O) 2 : H2O2e- 2OH
电池反应 H2 : 12O2 H2O
H2
F
OHOHOH-
多孔炭电极 图12-11 H2-O2燃料电池示意图
二、化学电源的效率
R T 化学电源将化学能转换为电能的(理想的)最大效率
εmax定义为:
F a(Fe2+)106 E(Fe2+|Fe)E(Fe2+|Fe)RzFTln10160.617V
R T 三、电解还原与氧化的应用
电解的应用
阴极产品:电镀、金属提纯、保护、产品的美化 (包括金属、塑料)和制备aH21,aH+10及7 有机物的还原产物等。
阳极产品:铝合金的氧化和着色、制备氧气、双 氧水、氯气以及有机物的氧化产物等。

(完整word版)《物理化学》高等教育出版(第五版)第九章

(完整word版)《物理化学》高等教育出版(第五版)第九章

第九章电解质溶液练习题一、判断题:1.溶液是电中性的,正、负离子所带总电量相等,则正、负离子离子的迁移数也相等。

2.离子迁移数与离子速率成正比,某正离子的运动速率一定时,其迁移数也一定。

3.离子的摩尔电导率与其价态有关系。

4.电解质溶液中各离子迁移数之和为1。

5.电解池通过l F电量时,可以使1mol物质电解。

6.因离子在电场作用下可以定向移动,所以测定电解质溶液的电导率时要用直流电桥。

7.无限稀电解质溶液的摩尔电导率可以看成是正、负离子无限稀摩尔电导率之和,这一规律只适用于强电解质。

8.电解质的无限稀摩尔电导率Λ∞m可以由Λm作图外推到c1/2 = 0得到。

下列关系式是否正确:(1) Λ∞,1<Λ∞,2<Λ∞,3<Λ∞,4(2)κ1=κ2=κ3=κ4(3)Λ∞,1=Λ∞,2=Λ∞,3=Λ∞,4(4)Λm,1=Λm,2=Λm,3=Λm,410.德拜—休克尔公式适用于强电解质。

11.对于BaCl2溶液,以下等式成立:(1) a = γb/b0;(2) a = a+·a - ; (3) γ± = γ+·γ - 2;(4) b = b+·b-;(5) b±3 = b+·b-2; (6) b± = 4b3。

12.若a(CaF2) = 0.5,则a(Ca2+) = 0.5 ,a(F-) = 1。

二、单选题:1.下列溶液中哪个溶液的摩尔电导最大:(A) 0.1M KCl水溶液;(B) 0.001M HCl水溶液;(C) 0.001M KOH水溶液;(D) 0.001M KCl水溶液。

2.对于混合电解质溶液,下列表征导电性的量中哪个不具有加和性:(A) 电导;(B) 电导率;(C) 摩尔电导率;(D) 极限摩尔电导。

3.在一定温度和较小的浓度情况下,增大强电解质溶液的浓度,则溶液的电导率κ与摩尔电导Λm变化为:(A) κ增大,Λm增大;(B) κ增大,Λm减少;(C) κ减少,Λm增大;(D) κ减少,Λm减少。

《物理化学(第五版)》第九章复习题答案

《物理化学(第五版)》第九章复习题答案
答:在公式ΔrGmΘ=-zEΘF中,ΔrGmΘ表示该 电池各物都处于标准态时,在T,p保持不变 的条件下,按电池反应进行1mol的反应时 系统的Gibbs自由能变化值。

复习题
8.有哪些求算标准电动势EΘ的方法?在公式E zF ln K 中,EΘ是否是电池反应达平衡时的电动势?KΘ是否是

zE F K exp RT
a
复习题

(8).醋酸的解离平衡常数。 电池:Pt|H2(pΘ)|HAc(mHAc),Ac-(mAc-),Cl-(aCl)|AgCl(s)|Ag(s) 净反应:AgCl(s)+H2(pΘ)→H+(aH+)+Cl-(aCl-) +Ag(s

1.可逆电极有哪些主要类型?每种类型试举一例,并写 出该电极的还原反应。对于气体电极和氧化还原电极 在书写电极表示式时应注意什么问题? 答:可逆电极有三种类型: (1)金属气体电极 如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极 如: Ag(s)|AgCl(s)|Cl-(m) AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极 如: Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极 反应所依附的惰性金属。
RT a H aCl E E ln zF a 1 2 H2 E RT ln m zF m

复习题

(6)Ag2O(s)的标准摩尔生成焓ΔfHmΘ 和分解压。 电池:Ag(s)+Ag2O(s)|OH-(aOH-)|O2(pΘ )|Pt 净反应:Ag2O(s)→1/2O2(pΘ )+2Ag(s) E r H m zE F zFT T p

物化下册09章_可逆电池

物化下册09章_可逆电池


Zn
Cu
+
ZnSO4 (aq)
素瓷烧杯
CuSO4 (aq)
上一内容
下一内容
回主目录
返回
2016/3/2
常见的电池类型
双液电池
用盐桥分开

Zn
盐桥
Cu
+
ZnSO4 (aq)
上一内容 下一内容 回主目录
CuSO4 (aq)
返回
2016/3/2
可逆电池 组成可逆电池的必要条件
原电池
电解池
返回
2016/3/2
标准电池电动势与温度的关系
T E (T ) / V 1.018 45 4.05 10 293.15 K
5
T 9.5 10 293.15 K 3 8 T 110 293.15 K
7
化学反应可逆
上一内容 下一内容 回主目录
能量变化可逆
返回
2016/3/2
可逆电池
可逆电池必须满足二个条件:
(1)电极反应必须是可逆的。 即电极上的化学反应可以 向正、反两个方向进行。 当电流方向改变时, 电极反应随之逆向进行。
Zn
ZnCl2(aq)
AgCl+Ag
上一内容
下一内容
回主目录
第二类电极及其反应
电极
Cl-(a-)|AgCl(s)|Ag(s)
电极反应(还原)
AgCl(s)+e- →Ag(s)+Cl-(a-)
Cl-(a-)|Hg2Cl2(s)|Hg(l) Hg2Cl2(s)+2e- →2Hg(l)+2Cl-(a-) OH-(a-)|Ag2O|Ag(s) Ag2O(s)+H2O+2e- →2Ag(s)+2OH-(a-)

物理化学课后习题答案第九章

物理化学课后习题答案第九章

物理化学习题解答(九)习题p109~1161解:(1) Pt︱H2(p H2)︱HCl(a)︱Cl2(p Cl2)︱Pt正极:Cl2(p Cl2)+ 2e-→2Cl-(a)负极:H2(p H2) –2e-→2H+(a)电池反应:H2(p H2) + Cl2(p Cl2)==2HCl(a) (2) Pt︱H2(p H2)︱H+(a H+)‖Ag+(a Ag+)︱Ag(s) 正极:Ag+(a Ag+)+ e-→Ag(s)负极:H2(p H2) –2e-→2H+(a H+)电池反应:H2(p H2) + Ag+(a Ag+)==2H+(a H+)+ Ag(s)(3) Ag(s)︱AgI(s)︱I-(a I-)‖Cl-(a Cl-)︱AgCl(s)︱Ag(s)正极:AgCl(s) + e-→Ag(s) + Cl-(a Cl-)负极:Ag(s) + I-(a I-)– e-→AgI(s)电池反应:AgCl(s) + I-(a I-)==AgI(s) + Cl-(a Cl-)(4) Pb(s)︱PbSO4(s)︱SO42-(a SO42-)‖Cu2+(a Cu2+)︱Cu(s)正极:Cu2+(a Cu2+) + 2e-→Cu(s)负极:Pb(s) + SO42-(a SO42-)–2e-→PbSO4(s)电池反应:Pb(s) + Cu2+(a Cu2+) + SO42-(a SO42-)==PbSO4(s) + Cu(s)(5) Pt︱H2(p H2)︱NaOH(a)︱HgO(s)︱Hg(l)正极:HgO(s) + H2O (l)+ 2e-→Hg(l) + 2OH-(a OH-)负极:H2(p H2)+ 2OH-(a OH-) –2e-→2H2O(l)电池反应:HgO(s) + H2(p H2)==Hg(l)+H2O(l) (6) Pt︱H2(p H2)︱H+(a H+)︱Sb2O3(s)︱Sb(s) 正极:Sb2O3(s) + 6H+(a H+)+ 6e-→2Sb(s) + 3H2O(l)负极:H2(p H2) –2e-→2H+(a H+)电池反应:Sb2O3(s) + 3H2(p H2) ==2Sb(s) + 3H2O(l)(7) Pt︱Fe3+(a1),Fe2+(a2)‖Ag+(a Ag+)︱Ag(s)正极:Ag+(a Ag+)+ e-→Ag(s)负极:Fe2+(a2) – e-→ Fe3+(a1)电池反应:Ag+(a Ag+) + Fe2+( a2)==Fe3+( a1)+Ag(s)(8) Na(Hg)(a am)︱Na+(a Na+)‖OH-(a OH-)︱HgO(s)︱Hg(l)正极:HgO(s) + H2O (l)+ 2e-→Hg(l) +2OH-(a OH-)负极:2Na(Hg)(a am) –2e-→2Na+(a Na+) + 2Hg(l)电池反应:2Na(Hg)(a am) + HgO (s) + H2O(l)==2 Na+(a Na+) + 2OH-(a OH-) + 3Hg(l)2解:(1)AgCl(s)==Ag+(a Ag+) + Cl-(a Cl-)电池:Ag(s)︱Ag+(a Ag+)‖Cl-(a Cl-)︱AgCl(s)︱Ag(s)正极:AgCl(s) + e-→Ag(s) + Cl-(a Cl-)负极:Ag(s)–e-→Ag+(a Ag+)电池反应:AgCl(s)==Ag+(a Ag+) + Cl-(a Cl-) (2)AgCl(s) + I-(a I-) ==AgI(s) + Cl-(a Cl-)电池:Ag(s)︱AgI(s)︱I-(a I-)‖Cl-(a Cl-)︱AgCl(s)︱Ag(s)正极:AgCl(s) + e-→A g(s) + Cl-(a Cl-)负极:Ag(s) + I-(a I-)– e-→AgI(s)电池反应:AgCl(s) + I-(a I-) ==AgI(s) + Cl-(a Cl-)(3) HgO(s) + H2(p H2)==Hg(l)+H2O(l)电池:Pt(s)︱H2(p H2)︱NaOH(a)︱HgO(s)︱Hg(l)正极:HgO(s) + H2O(l) + 2e-→Hg(l) + 2OH-(a)负极:H2(g) + 2OH-(a) –2e-→2H2O(l)电池反应:HgO(s) + H2(p H2)→Hg(l) + H2O(l) (4) Fe2+(a Fe2+) + Ag+(a Ag+)== Fe3+(a Fe3+) + Ag(s)电池:Pt(s)︱Fe3+(a Fe3+),Fe2+( a Fe2+)‖Ag+(a Ag+)︱Ag(s)正极:Ag+(a Ag+)+ e-→Ag(s)负极:Fe2+( a Fe2+) – e-→ Fe3+( a Fe3+)电池反应:Fe2+(a Fe2+)+Ag+(a Ag+)== Fe3+( a Fe3+) + Ag(s)(5) 2 H2(p H2) + O2(p O2)==2H2O(l)电池:Pt︱H2(p H2)︱H+(a H+)︱O2(p O2)︱Pt(s) 正极:O2(p O2) + 4H+(a H+) + 4 e-→2H2O(l)负极:2H2(p H2) – 4e-→4H+(a H+)电池反应:2 H2(p H2) + O2(p O2)==2H2O(l) (6) Cl2(p Cl2) + 2I-(a I-)==I2(s)+2Cl-(a Cl-)电池:Pt︱I2(s))︱I-(a I-)‖Cl-(a Cl-)︱Cl2(p Cl2)︱Pt正极:Cl2(p Cl2) + 2e-→2Cl-(a Cl-)负极:2I-(a I-)–2e-→ I2(s)电池反应:Cl2(p Cl2) + 2I-(a I-)==I2(s)+2Cl-(a Cl-) (7) H2O(l)== H+(a H+) + OH-(a OH-)电池:Pt(s)︱H2(p H2)︱H+(a H+)‖OH-(a OH-)︱H2(p H2)︱Pt(s)正极:2H2O(l) + e-→2H2(p H2) + 2OH-(a OH-) 负极:H2(p H2)–2e-→ 2H+(a H+)电池反应:H2O(l)== H+(a H+) + OH-(a OH-) (8) Mg(s) + 1/2O2(g) + H2O(l)== Mg(OH)2(s) 电池:Mg(s)︱Mg(OH)2(s)︱OH-(a OH-)︱O2(p O2)︱Pt(s)正极:1/2O2(g) + H2O(l) + 2e-→ 2OH-(a OH-) 负极:Mg(s) + 2OH-(a OH-)– 2e-→Mg(OH)2(s) 电池反应:Mg(s) + 1/2O2(g) + H2O(l)== Mg(OH)2(s)(9) Pb(s) + HgO(s)==Hg(l) + PbO(s)电池:Pb(s)︱PbO(s)︱OH-(a OH-)HgO(s)︱Hg(l)正极:HgO(s) + H2O(l) + 2e-→ Hg(l) + 2OH-(a OH-)负极:Pb(s) + 2OH-(a OH-) –2e-→PbO(s) + H2O(l)电池反应:Pb(s) + HgO(s)==Hg(l) + PbO(s) (10) Sn2+(a Sn2+) + Tl3+(a Tl3+) == Sn4+(a Sn4+) + Tl+(a Tl+)电池:Pt(s)︱Sn2+(a Sn2+),Sn4+(a Sn4+)‖Tl3+(a Tl3+),Tl+(a Tl+)︱Pt(s)正极:Tl3+(a Tl3+) + 2e-→ Tl+(a Tl+)负极:Sn2+(a Sn2+) –2e-→Sn4+(a Sn4+)电池反应:Sn2+(a Sn2+) + Tl3+(a Tl3+) == Sn4+(a Sn4+) + Tl+(a Tl+)15解:Fe(s) + Cd2+(aq)==Cd(s)+Fe2+(aq)E=Eө– RT/2F×ln{[ Fe2+]/[Cd2+]}(1) E=φөcd2+/Cd–φөFe2+/Fe- RT/2F×ln{[ Fe2+]/[Cd2+]}=-0.40 +0.44–0.0592/2lg{0.1/0.1}=0.04>0反应能自发向右进行,故金属Fe首先被氧化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上 下 回 返
纯水的表面张力为γ1, 某溶质的表面张力为γ2, 且 γ2>γ1, 形成溶液后,溶质的表面浓度为CS, 本体浓 度C0,则( )
(a)CS>C0 √(b)CS<C0 (c)CS=C0 (d)CS=0
溶液表面层对溶质发生吸附, 当CB(表面浓度)>CB,0(本 体浓度), 则( )。
√(a)称为正吸附, 溶液表面张力降低
(b)称为正吸附, 溶液表面张力不变 (c)称为负吸附, 溶液表面张力增加 (d)称为负吸附, 溶液表面张力降低
上 下 回 返
9.3 气-固界面
9.3.1 界 面 分 析 9.3.2 基 本 概 念 9.3.3 吸附的种类与计算 9.3.4 吸附热力学
上 下 回 返
9.3.1 界面分析——与液表比较
上 下 回 返
3.铺展
(1)定义:液固界面取代固体表面,同时液体表面
增大的过程;
始态:
末态:
(2)铺展吉布斯函数变ΔGs ①定义:单位面积铺展过程的吉布斯函数变化;
②计算:ΔGS=γls +γl -γs=-γl(cosθ-1) ③说明:自发铺展ΔGS<0→→θ=0°或θ不存在。 (3)铺展系数S ①定义:S=-ΔGS=γl(cosθ-1);
上 下 回 返
9.3.3 吸附分类及计算
一、吸附分类(按吸附质与吸附剂的作用本质分类)
1.物理吸附与化学吸附的区别
分类
物理吸附
化学吸附
吸附力
范德华力
化学键力
吸附层数
单层或多层
单层
吸附热 较小,近于液化热 较大,近于反应热
选择性
很差甚至没有
较强
可逆性
具有可逆性
不可逆
吸附平衡 容易达到平衡
不易达到平衡
9.4.2 基本概念
1.接触角θ:
当液滴在固体表面不完全展开时,在气、液、固 三相会合点,液固界面水平线与气液界面切线之 间通过液体内部的夹角。
θ
θ
玻璃板上的水滴
玻璃板上的汞滴
0°<θ<180°
上 下 回 返
2.杨氏方程: (1)受力分析
γl
γs
θγl-s
γs:固表张力力图将液体分子拉向左方,
以减小固表面积;
γl:液表张力力图将液体分子拉向液面的 切线方向,以减小液表面积;
γls:液固界面张力力图将液体分子拉向右 方,以减小液固界面。
(2)杨氏方程 γs=γls+γlcosθ
上 下 回 返
往固体表面加一滴液体, 形成气、固、液三相间
的接触, 表面张力分别为γg-l,γg-s,γs-l, 若液体
与固体表面不润湿, 则( )
气相
3.举例说明:小液滴呈 液相 球形——同样体积下球 形的表面积最小。
上 下 回 返
9.1.2 界面张力
一、界面张力
1.定义:沿着界面,作用在单位长度上的紧缩力; 2. 单位:N·m-1 3. 方向:沿着界面指向其紧缩方向;
平液面γ平行于液面; 弯液面γ相切于液面。
上 下 回 返
二、 γ的影响因素
(1)附加压力与弯液面的底面半径无关,液面上任何 一点的Δp相同。
(2)Δp与弯液面的曲率半径呈反比: r↑,Δp↓;r→∞(平液面),Δp=0。
(3)Δp与弯液面γ呈正比;γ与温度及液体性质有关。
(4)空气中的小气泡:两个界面→Δp=4γ/r。
★水平放置的毛细管中装有非润湿性液体,在左端 加热,管内液体会如何变化?
9.2.1 弯曲纯液面 9.2.2 溶液表面
上 下 回 返
9.2.1 弯曲纯液面
一、附加压力
1.产生原因:液面张力的存在;
pg
pg
p合 pl= pg+ p合
→平液面:pl=pg;
→弯液面:pl=pg±p合
p合 p合
上 下 回 返
2.定义:弯曲液面内外的压力差;
3.说明
def
p p(l) p(g)
1.相同点:表面分子受力不均→γ、GS同样存在;
2.不同点:降低GS的方法不同; (1)液体表面:减小As→减小GS;
气相
(2)固体表面:无法减小As →通过对具有较低γ的物质
的吸附降低受力不对称;
→减小液表的γ→减小GS。
固相
上 下 回 返
9.3.2 基本概念
1.吸附: 一定条件下,相界面上某种物质的浓度不同于 体相浓度的现象为吸附; 被吸附的物质为吸附质; 具有吸附能力的为吸附剂(高as的物质); 吸附为表面效应,要与吸收区分开。 ★常用的吸附剂:硅胶、分子筛、活性炭等。
1.物质本性:分子间作用力的区别造成;
(1)液体表面:极性越大,物质表面张力越大;
熔融盐或金属的表面张力较大。
(金属键)> (离子键)> (极性共价键)> (非极性共价键)
(2)一般的: 固体的表面张力大于液体的表面张力。
2.温度的影响:源于温度对分子间作用力的影响;
(1)一般的:温度升高→分子间作用力减小
凹液面:pr<p;r↓,pr↓。 (2)此公式亦适用于固体表面(固体升华)的粗略计算。
上 下 回 返
RTlnpr/p=2γM/ρr RTlnp/pr=2γM/ρr
——凸液面 ——凹液面
温度一定,弯曲液面与水平液面饱和蒸气压的关系为:
√(a)p凸>p平>p凹 (b)p凸<p平<p凹 (c)p凸=p平=p凹
的关系(重点)。
上 下 回 返
(三)吸附等温线的种类:
V
V
V
V
V
0 p/p* 1 0 p/p* 1 0 p/p* 1 0 p/p* 1 0 p/p* 1





注:Ⅰ:单层吸附:单分子层物理吸附或化学吸附。
Ⅱ、Ⅲ:平面上的多分子层吸附;
Ⅳ、Ⅴ:有毛细凝结时的多层吸附。
上 下 回 返
(四)等温吸附的计算 ——Langmuir单分子层吸附 1. Langmuir单分子层吸附理论: ①单分子层吸附:化学吸附和范德华力作用范围等于
2.说明:Tc越高越易液化,故亦越易被物理吸附。
上 下 回 返
二、吸附量的计算 (一)吸附量的影响因素:温度和压力; (二)吸附量的研究方法:利用关系曲线进行研究; 吸附等压线:压力一定,研究吸附量与温度的关系; 吸附等量线:吸附量一定,研究吸附温度与压力
之间的关系; 吸附等温线:温度一定,研究吸附量与压力之间
Surface Chemistry
上 下 回 返
9.0 引言
基本概念 性质特征 主要内容
上 下 回 返
一、基本概念
1.界面:是指两相接触的约几个分子厚度的过渡区,
若其中一相为气体,这种界面通常称为表面。
2.表面:是指液体或固体与其饱和蒸气之间的界面;
但习惯上把液体或固体与空气的界面称为液 体或固体的表面。
上 下 回 返
2.吸附量: 单位质量吸附剂所吸附气体的物质的量 或其在标准状况下的体积; Γ=n/m——mol·kg-1; Γ =V/m——m3·kg-1 吸附剂表面完全被吸附质覆盖时的吸附量 为饱和吸附量 Γ∞ 。 3.覆盖率(θ): 任一瞬间吸附剂固体表面被吸附质覆盖的分数; 空白率:1-θ; 关系式:θ= Γ/Γ∞
上 下 回 返
4.公式在界面现象中的应用: (1)条件:恒温恒压及系统中相的组成不改变; (2)计算:dG=dGS=γdAs→→GS=γAs
→→GS=∑γiAsi(绝对吉布斯函数值)
(3)说明:界面现象产生的最终原因是GS自发减小
←或降界面面积减至最小; ←或通过一定手段降低γ。
上 下 回 返
9.2 气-液界面
上 下 回 返
三、主要内容
产生原 因 几种典型界面
上 下 回 返
9.1 界面张力
9.1.1 界 面 分 析 9.1.2 界 面 张 力 9.1.3 热力学公式
上 下 回 返
9.1.1 界面分析
1.表面分子受力:合力指向液体内部,即受力不均衡;
2.受力结果:表面分子 向液体内部运动,即力 求减小液体表面的面积 至最小;
分子直径大小的物理吸附; ②固体表面均匀:晶格吸附能力相同,一个晶格只
吸附一个分子,吸附热为常数; ③被吸附分子间无相互作用力:对吸附无影响; ④吸附平衡为动态平衡:解吸速率=吸附速率。
2. Langmuir等温吸附式
bp
1 bp
上 下 回 返
9.3.4 吸附热力学
※吸附自发(ΔG<0) ※气体被吸附(ΔS<0) →ΔH=ΔG+TΔS<0 →恒温恒压下为放热过程。
上 下 回 返
9.4 液-固界面
9.4.1 界 面 分 析 9.4.2 基 本 概 念 9.4.3 润湿及其分类 9.4.4 固体自溶液中的吸附
上 下 回 返
9.4.1 界面分析——与液表比较
表面分子受力不均→γ、GS同样存在;
→自发降低GS方法:
气相
→降低界面面积或通过吸附降低γ。
固相
上 下 回 返
3. 相关概念:
表面惰性物质:可使溶液表面张力升高的物质; 表面活性物质:可使溶液表面张力降低的物质。
上 下 回吸附量 (1)定义:单位表面积中所含溶质的物质的量
与同量溶剂在本体中所含溶质的物 质的量之差; (2) 单位:mol/m2; (3) 说明:正吸附Γ>0;负吸附Γ<0。
封闭在钟罩内的大小液滴的变化趋势是: (a)小的变大, 大的变小
(√b)小的变小, 大的变大
(c)大小液滴变为半径相等为止
(d)不发生变化
上 下 回 返
9.2.2 溶液表面
一、溶液表面的吸附现象
1.溶液表面降低Gs的途径:通过对溶质的吸附降低γ。 2.吸附分类:
相关文档
最新文档