2009年黑龙江大兴安岭地区中考数学试题和答案

合集下载

2009年中考原卷.doc

2009年中考原卷.doc

2009年中考原卷一、选择题(本部分共10小题,每小题3分,共30分)1.如果a的倒数是−1,那么a2009等于()A.1B.−1C.2009D.−20092.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3B.4C.5D.6主视图左视图俯视图3.用配方法将代数式a2+4a−5变形,结果正确的是()A.(a+2)2−1B. (a+2)2−5C. (a+2)2+4D. (a+2)2−94.横跨深圳及香港之间的深圳湾大桥(Shenzhen Bay Bridge)是中国唯一倾斜的独塔单索面桥,大桥全长4770米,这个数字用科学计数法表示为(保留两个有效数字)()A.47×102B.4.7×103C.4.8×103D.5.0×1035.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.6.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是()A. B. C. D.7.如图,反比例函数y=−4x的图象与直线y=−13x的交点为13123423B 作x 轴的平行线相交于点C ,则△ABC 的面积为( )A.8B.6C.4D.28.如图,数轴上与1,√2对应的点分别为A ,B ,点B 关于点A 的对称点为C ,设点C 表示的数为x ,则|x −√2|+2x =( )A.√2B.2√2C.3√2D.29.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( ) A.80元B.100元C.120元D.160元10.如图,已知点A 、B 、C 、D 均在已知圆上,AD //BC ,AC 平分∠BCD ,∠ADC =120∘,四边形ABCD 的周长为10cm .图中阴影部分的面积为( ) A.π3−√32B.2π3−√3C..2π3−2√3 D π3−4√3二、填空题(本题有6小题,每题3分,共18分)11.小明在7次百米跑练习中成绩如下:则这7次成绩的中位数是 秒 12.小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示,则小明5次成绩的方差21S 与小兵5次成绩的方差22S 之间的大小关系为21S 22S .(填“>”、“<”、“=”)13.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 .次数第一次 第二次 第三次 第四次 第五次 第六次 第七次成绩/秒 12.812.913.012.713.213.112.8A DCBOC A Bx112 10 8 6 4 2 01 2 3 4 5小明 小兵14.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a = .15.如图a 是长方形纸带,∠DEF =20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是 .16.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:12-+b a ,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m = .三、解答题(本题共7小题,其中第17、18题7分,第19题7分,第20、21题8分,第22、23题9分,共55分)17.(6分)计算:2202(3)( 3.14)8sin45π----+--︒.18.(6分)先阅读理解下面的例题,再按要求解答:AD A CB A E AC A B AF AD AC DB E A FC G B A AE AF CB A图a图b图c例题:解一元二次8不等式290x ->. 解:∵29(3)(3)x x x -=+-,∴(3)(3)0x x +->.由有理数的乘法法则“两数相乘,同号得正”,有 (1)3030x x +>⎧⎨->⎩ (2)3030x x +<⎧⎨-<⎩解不等式组(1),得3x >, 解不等式组(2),得3x <-,故(3)(3)0x x +->的解集为3x >或3x <-, 即一元二次不等式290x ->的解集为3x >或3x <-.问题:求分式不等式51023x x +<-的解集.19.(7分)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B点与A 点有一条彩带AB 相连,AB =14米.B试求旗杆BC的高度.20.(7分)深圳大学青年志愿者协会对报名参加2011年深圳大运会志愿者选拔活动的学生进行了一次与大运知识有关的测试,小亮对自己班有报名参加测试的同学的测试成绩作了适当的处理,将成绩分成三个等级:一般、良好、优秀,并将统计结果绘成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)小亮班共有名学生参加了这次测试,如果青年志愿者协会决定让成绩为“优秀”的学生参加下一轮的测试,那么小亮班有人将参加下轮测试;(3)若这所高校共有1200名学生报名参加了这次志愿者选拔活动的测试,请以小亮班的测试成绩的统计结果来估算全校共有多少名学生可以参加下一轮的测试。

大兴安岭数学答案

大兴安岭数学答案

2009年大兴安岭地区初中毕业学业考试数学试卷参考答案及评分标准一、填空题(多答案题全部答对得3分,否则不得分,带单位的答案,不写单位扣1分)1.712. 0≥x且1≠x 3. 111055.1⨯4.3- 5. 正确即可 6.cm1或cm97.728. 18 9. -110. 3 11.()13-n二、选择题12. B 13. D 14. A15. B 16. A 17. B18. C 19. C 20. D三、解答题21. 原式1.....................).........2()())((22abababaababa++÷--+=分1......................................................)(2baaaba+•+=分..........1ba+=a值正确(0≠a、≠a22. 画出平移后的图形……………2分, 画出旋转后的图形…………….2分, 写出坐标(0, 0)………………….1分, 答出“是轴对称图形”………..1分.23. .........................各1分, 面积是12………………1分………………..各1分, 面积是8和12………………1分24. 抽样调查………………..1分,A=20, B=40…………………….. 各1分,1500002535300000=++⨯……………………..1分,%30360108=……………………1分, 45000%30150000=⨯………………2分25. (1) 4千米…………………..2分,(2)解法一:41608016=--……………..1分8460416=+ ……………..1分84+1=85……………………..1分HMNFACD图2解法二: 求出解析式2141+-=ts……………………..1分,84,0==ts……………………..1分84+1=85……………………..1分(3) 写出解析式5201+-=ts…………………1分20,6-==ts…………………1分20+85=105………………………..1分26. 图2:ENBAMF∠=∠…………………………2分图3:︒=∠+∠180ENBAMF…………………………2分证明:如图2,取AC的中点H,连结HE、HF…………1分∵F是DC的中点,H是AC的中点,∴ADHF//,ADHF21=,∴HFEAMF∠=∠.………………….1分同理,CBHE//,CBHE21=,∴HEFENB∠=∠.…………………………. 1分∵BCAD=,∴HEHF=,∴HFEHEF∠=∠∴AMFENB∠=∠.………………… 1分HMNFACD图3DP2P1yxBAO证明图3的过程与证明图2过程给分相同.27. 解:(1)设今年三月份甲种电脑每台售价x元xx800001000100000=+………………………………1分解得: 4000=x………………………………..1分经检验: 4000=x是原方程的根, ……………………….1分所以甲种电脑今年三月份每台售价4000元.(2)设购进甲种电脑x台,50000)15(3000350048000≤-+≤xx……………………….2分解得106≤≤x………………………………………………………1分因为x的正整数解为6,7,8,9,10, 所以共有5种进货方案……………..1分(3) 设总获利为W元,axaxaxW1512000)300()15)(30003800()35004000(-+-=---+-=…………1分当300=a时, (2)此时, 购买甲种电脑6台,28. (1) )6,0(),0,8(BA (1)(2)∵8=OA,6=OB,∴10=AB当点P在OB上运动时,tOP1,ttOPOAS4821211=⨯⨯=⨯=;..............1分当点P 在BA 上运动时,作OA D P ⊥2于点D , 有ABAP BO D P 22=∵t t AP -=-+=161062,∴53482tD P -=………………………1分 ∴51925125348821212+-=-⨯⨯=⨯⨯=t t D P OA S ……………………1分 (3)当124=t 时,3=t ,)3,0(1P ,………………………………1分此时,过AOP ∆各顶点作对边的平行线,与坐标轴无第二个交点,所以点M 不存在;……………………………………………………………………………1分当125192512=+-t 时,11=t ,)3,4(2P ,........................1分 此时,)3,0(1M 、)6,0(2-M (1)注:本卷中各题,若有其它正确的解法,可酌情给分.。

黑龙江省大兴安岭地区中考数学试卷

黑龙江省大兴安岭地区中考数学试卷

黑龙江省大兴安岭地区中考数学试卷姓名:________ 班级:________ 成绩:________一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项 (共14题;共28分)1. (2分)一个数的相反数是最大的负整数,则这个数是()A . -1B . 1C . 0D . ±12. (2分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是()A . 第一次向右拐50°第二次向左拐130°B . 第一次向左拐30°第二次向右拐30°C . 第一次向右拐50°第二次向右拐130°D . 第一次向左拐50°第二次向左拐130°3. (2分)(2017·黄冈模拟) 下列计算结果为x6的是()A . x•x6B . (x2)3C . (2x2)3D . (x3)4÷x24. (2分)(2016·临沂) 不等式组的解集,在数轴上表示正确的是()A .B .C .D .5. (2分)如图所示的几何体中,俯视图形状相同的是()A . ①④B . ②④C . ①②④D . ②③④6. (2分)下列说法正确的是()A . 一枚质地均匀的硬币已连续抛掷了 600次,正面朝上的次数更少,那么掷第601次一定正面朝上B . 可能性小的事件在一次实验中一定不会发生C . 天气预报说明天下雨的概率是50%,意思是说明天将有一半时间在下雨D . 拋掷一枚图钉,钉尖触地和钉尖朝上的概率不相等7. (2分)在四边形ABCD中,∠A+∠C=160°,∠B比∠D大60°,则∠B为()A . 70°B . 80°C . 120°D . 130°8. (2分)(2019·江汉) 把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A . 3种B . 4种C . 5种D . 9种9. (2分)下面的条形统计图描述了某车间工人日加工零件的情况,则下列说法正确的是()A . 这些工人日加工零件数的众数是9,中位数是6B . 这些工人日加工零件数的众数是6,中位数是6C . 这些工人日加工零件数的众数是9,中位数是5.5D . 这些工人日加工零件数的众数是6,中位数是5.510. (2分)(2018·绍兴模拟) 如图,PA,PB分别切⊙O于A,B两点,射线PD与⊙O相交于C,D两点,点E是CD中点,若∠APB=40°,则∠AEP的度数是()A . 40°B . 50°C . 60°D . 70°11. (2分) (2020七下·江夏期中) 一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到,然后按图中箭头所示方向跳动……,每次跳一个单位长度,则第2020次跳到点()A .B .C .D .12. (2分)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B’,则图中阴影部分的面积是()A .B .C .D .13. (2分)(2018九上·绍兴月考) 已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a-b+c>1;③ab>0;④4a-2b+c<0;⑤c-a>1.其中所有正确的个数是()A . 2B . 3C . 4D . 514. (2分) (2020八下·卫辉期末) 在函数的图象上有三点,,,,已知,则下列各式正确的是()A .B .C .D .二、填空题(共5小题,每小题3分,满分15分) (共5题;共5分)15. (1分) (2018七上·利川期末) 分解因式:2a3+8a2b+8ab2=________.16. (1分)(2017·武汉模拟) 计算﹣的结果是________.17. (1分)(2017·临沂模拟) 如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则 =________.18. (1分)如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为________19. (1分) (2018九上·唐河期末) 计算:()0﹣4sin45°tan45°+()﹣1• +(﹣1)2017+=________.三、解答题(共7小题,满分63分) (共7题;共74分)20. (5分) (2017八上·新化期末) 计算:(1+ )(﹣1)﹣|2﹣ |+(﹣2016)0 .21. (16分)(2017·大冶模拟) 为积极响应市委政府“加快建设天蓝•水碧•地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:请根据所给信息解答以下问题:(1)这次参与调查的居民人数为:________;(2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?22. (5分) (2020九下·舞钢月考) 如图,在某次斯诺克比赛中,白球位于点A处,在点A正北方向的点B 处有一颗红球,在点A正东方向C处有一颗黑球,在BC正中间的点D处有一颗篮球,其中点C在点B的南偏东37°方向上,选手将白球沿正北方想推进10cm到达点E处时,测得点D在点E的北偏东45°方向上,求此时白球与红球的距离有多远?(参考数据:sin37°≈ ,cos37°≈ ,tan37°≈ )23. (15分)如图①,在平面直角坐标系中,直线y=kx+b与x轴正半轴交于点A,与y轴负半轴交于点B,圆心P在x轴的正半轴上,已知AB=10,AP=(1)求点P到直线AB的距离;(2)求直线y=kx+b的解析式;(3)在图②中存在点Q,使得∠BQO=90°,连接AQ,请求出AQ的最小值.24. (12分) (2015八上·句容期末) 如图1,甲、乙两车分别从相距480km的A,B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:(1)乙车的速度是________千米/时,乙车行驶的时间t=________小时;(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;(3)直接写出甲车出发多长时间两车相距8O千米.25. (10分) (2019八下·焦作期末) 如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,,.(1)求证:四边形BCED是平行四边形;(2)已知,连接BN,若BN平分,求CN的长.26. (11分) (2019九上·温州期中) 如图,二次函数y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4).点D为抛物线上一点(1)求抛物线的解析式及A点坐标;(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)若△BCD是锐角三角形,请直接写出点D的横坐标m的取值范围________.参考答案一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项 (共14题;共28分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题(共5小题,每小题3分,满分15分) (共5题;共5分)15-1、16-1、17-1、18-1、19-1、三、解答题(共7小题,满分63分) (共7题;共74分)20-1、21-1、21-2、21-3、21-4、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。

2009年黑龙江省中考第三次模拟考试数学试卷(含答案)

2009年黑龙江省中考第三次模拟考试数学试卷(含答案)

2009年黑龙江省升学大考卷(三模)数 学 试 卷一、填空题(每小题3分,满分30分)1.第24届世界大学生冬季运动会开幕式公交车纪念票2月18日在冰城哈尔滨亮相,纪念票限量发售120万枚,120万枚用科学技术发表示为________枚.2.在函数y =x 的取值范围是_________. 3.如图,已知a ∥b,∠1=40°,则∠2的度数为_________. 4.苹果的进价是每千克3.8元,销售时估计有5%的苹果正常损 耗,为避免亏本,商家应把售价至少定为每千克_________元5.抛物线2y ax bx c =++与x 轴的交点坐标为A (-1,0),B(5,0),则此抛物线顶点的横坐标是_________.6.某生产企业三月份生产机器100台,由于市场的需求量不断增大,五月份生产这种机器121台,则这家企业四、五月份生产机器的平均增长率为______.7.在一个不透明的盒子中,装有2个白球,n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,它是白球的概率为25,则n 的值为______. 8.如图,在正方形ABCD 中,E 为AB 边的中点,G 、F 分别为AD 、BC 边上的点,若AG=1,BF=2,∠GEF=90°, 则FG 的长为________.9.有一梯形,高为12,两腰长分别为15和20,其中一底为10,则另一底的长为__________.10.图中图案均是用长度相同的小木棒按一定规律拼搭而成,拼搭第一个图按需4根小木棒,拼搭第2图案需10根小木棒,…,依此规律,拼搭第8个图案需要小木棒________根.二、选择题(每小题3分,满分30分) 11.下列计算正确的是( )A.22233a a a =·B.2222a )a (=C.6a ÷2a =3a D.632a )a (-=- 12. 4+=kx y 与两个坐标轴围成的三角形的面积为2,则k 的值为( )A. 4B.-4C.±2D.±413.由大小相同的正方体,木块堆成的几何体的三视图,如图所示,则该几何体中的正方体木块的个数是( )A. 6个B.5个C.4个D.3个14.一个三角形的两边长分别为3和6,第三边长是方程(x-2)(x-4)=0的根,则这个三角形的周长是( )A.11B.11或13C.13D.12或1315.小亮每天从家去学校上学行走的路成为900米,某天他从家去上学时以每分30ab 12第3题第8题AB C D E FG 第1个 第2个第3个 第4个第10题米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是( )16.如图,已知⊙O 的半径为10,点O 到弦AB 的最小距离为6,则⊙O 上到弦AB 所在直线的距离为4的点有( ) A. 1个 B.2个 C.3个 D.4个17.将一个面积为4的正方形按下列顺序折叠,然后将最后折叠的纸片沿虚线(中位线)剪去上方的小三角形,将剩下部分展开所得图形的面积是( )A.21B.1C.2D.3 18.关于x 的方程11ax =+的解为负数,则a 的取值范围是( ) A. 1<a B. 1<a ,且0≠a C. 1≤a D. 1≤a 且0≠a19.如图,直角三角板ABC 中,∠A=30°,BC=3cm ,将直角三角板绕顶点C 按顺时针方向旋转90°至△A 1B 1C 的位置,沿CB 向左平移使B 1点落在△ABC 的斜边AB 上,点B 1平移到点B 2,则点B 由B →B 1→B 2→运动的路程是( )A. (333-+π)cmB.(333+-π)cmC.(3323-+π)cm D.(3323+-π)cm20.在如图所示的3³3正方形网格中,矩形(不包括正方形)的个数是( ) A.16 B.18 C.20 D.22 三、解答题(满分60分)21.(本题5分) 先化简,再求值:311aa a a ⎛⎫- ⎪-+⎝⎭²212a a -,其中2a =.B A DC第16题第20题第19题A BCA 1B 1B 222. (本题6分)如图,在12³12的正方形网格中,△TAB的顶点坐标分别为T(1, 1)、A(2, 3)、B(4, 2).(1)以点T(1, 1)为位似中心,按比例尺(TA'∶TA)3∶1在位似中心的同侧将△TAB放大为△TA'B',放大后点A、B的对应点分别为A'、B',画出△TA'B',并写出A'、B'的坐标.(2)在(1)中,若C(a, b)为线段AB上任一点,写出变化后点C的对应点C'的坐标. 23. (本题6分)在一个含30°角的三角形中,一条边的长为1,另一条边的长为2.求这个三角形的面积.24.(本题7分)数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自独立地绘制一幅频数分布直方图.甲绘制的如图①所示,乙绘制的如图②所示,经确认,甲绘制的图是正确的,乙在整理数据与绘图过程中均有个别错误.请回答下列问题:(1)该班学生有多少人?(2)写出乙同学在整理或绘图过程中的错误(写出一个即可);(3)设该班学生的身高数据的中位数为a,试写出a的值. 25.(本题8分)小明和妈妈同事从家里出发,沿着一条公路向相反方向行进,妈妈步行去单位上班,小明骑自行车游玩,出发10分钟后,发现没有把钥匙交给妈妈,于是立即掉头追赶妈妈,与妈妈同时到达单位,妈妈不行的速度为50米/分,小明与妈妈之间的的距离S(米)与出发时间t(分钟)之间的关系如图所示.(1)求小明骑自行车的速度;(2)求小明到妈妈单位的距离;(3)求t≥10时,S与t之间的函数关系式.5①48②S)第25题图26.(本题8分)在△ABC 中,∠C =90°,∠ABC 的平分线与∠ACB 的平分线相交于点O ,OD ⊥BC 与点D ,当BC =AC 时,如图①易证:AC +BC -AB =2DO .(1)当BC ≠AC 时,如图②,线段AC 、BC 、AB 、OD 之间有怎样的等量关系?写出你的猜想并给与证明(2) 当BC ≠AC 时,∠ABC 的外角平分线与∠ACB 的平分线相交于点O ,OD ⊥BC 与点D ,如图③线段AC 、BC 、AB 、OD 之间有怎样的等量关系?写出你的猜想,不需证明.27.(本题10分)某校决定购买一些跳绳和排球,需要的跳绳数量是排球数量的3倍,购买的总费用不低于2200,但不高于2500元(1)商场内跳绳的售价为20元/根,排球的售价为50元/个,设购买跳绳的数量为x ,按照学校所规定的费用,有几种购买方案?每种方案中跳绳和排球的数量各为多少? (2)在(1)的方案中,那一种方案的总费用最少?最少费用是多少?(3)由于购买数量较多,该商场规定20元/根的跳绳可打九折,50元/个的排球可打八折,用(2)中的最少费用最多还可以多买多少跳绳和排球?第26题图AB C D OABCD OABCD O图①图②图③28.(本题10分) 如图,已知直线m :b x y +=21与x 轴交于点A(15,0),交y 轴于E 点.以OA为一边在第一象限内做矩形OABC,BC 与直线m 相交于点D ,连结OD ,OD 垂直与直线m .(1)求OD 的长;(2)点F 在x 轴上,设直线BF 为n ,直线m 与直线n 的交点P 恰好是线段BF 的中点,求直线n 的解析式;(3)在(2)的条件下,直线m 上是否存在一点Q ,直线n 上是否存在一点R,使得以O 、A 、Q 、R 为顶点,OA 为一边的四边形为平行四边形,若存在,直接写出Q 点的坐标;若不存在,请说明理由.第28题。

二九年大兴安岭地区初中毕业学业考试

二九年大兴安岭地区初中毕业学业考试

第8题图A B CDD 1数 学 试 卷考生注意:1.考试时间120分钟1.71-的绝对值是 . 2.函数1-=x xy 中,自变量x 的取值范围是 . 3.联合国环境规划署发布报告称:2008年尽管全球投资市场普遍疲软,但在中国等发展中国家的带动下,全球可持续投资再创历史新高,达1550亿美元.这个数用科学记数法可表示为 美元.4.计算:=-2712 . 5.反比例函数)0(≠=m xmy 的图象如图所示,请正确的结论: .6.已知相切两圆的半径分别为cm 5和cm 47.在英语句子“W i s h y o u s u c c e s s 率是 .8.如图,正方形ABCD 的边长为3,以直线AB 为轴,将正方形旋转一周,所得几何体的左视图的周长是 .9.当=x 时,二次函数222-+=x x y 有最小值. 10.梯形ABCD 中,BC AD //, 1=AD ,4=BC ,︒=∠70C ,︒=∠40B 则AB 的长为 . 11.如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边作第二个菱形11D ACC ,使 ︒=∠601AC D ;连结1AC ,再以1AC 为一、填空题(每题3分,满分33分)O第14题图 第16题图边作第三个菱形221,使 12;……,按此规律所作的第个菱形的边长为 .12.下列运算正确的是( )A .623a a a =⋅B .1)14.3(0=-πC .221(1-=- D .39±=13.一组数据4,5,6,7,7,8的中位数和众数分别是 ( )A . 7, 7B .7, 6.5C . 5.5, 7D .6.5, 714.如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( ) A .5米 C . 15米 D .20米15.二次函数)0(2≠++=a c bx ax y 的图象如图,下列判断错误的是 ( )A .0<aB .0<bC .0<cD .042<-ac b16.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为23,2=AC , 则B sin 的值是( )A .32B .23C .43D .3417.用两个全等的直角三角形拼成凸四边形,拼法共有 ( )A .3种B .4种C .5种D .6种18.一个水池接有甲、乙、丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量)(3m v 与时间)(h t 之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是 ( ) A .乙>甲 B . 丙>甲 C .甲>乙 D .丙>乙19.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有 ( ) A . 4种 B .3种 C .2种 D .1种二、单项选择题(每题3分,满分27分)EC 交于点H ,下列结论中:①FH AF =;②BF BO =;③CH CA =;④ED BE 3=,正确的A .②③B .③④C .①②④D .②③④三、解答题(本题满分60分) 先化简:⎪⎪⎭⎫⎝⎛++÷--a b ab a ab a b a 22222,当1-=b 时,请你为a 任选一个适当的数代入求值.图,在平面直角坐标系中,ABC ∆)2,3(-B 、)1,1(-C .(1)若将ABC ∆向右平移3个单位长度,请画出平移后的1A ∆(2)画出111C B A ∆绕原222C B A ∆;(3)'''C B A ∆与ABC ∆的坐标: ;(4)顺次连结C 、1C 、'C 、对称图形吗?21.(本小题满分5分)22题图在边长为4和6的矩形中作等腰三角形,使等腰三角形的一条边是矩形的长或宽,第三个顶点在矩形的边上,求所作三角形的面积. (注:形状相同的三角形按一种计算.)为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、(1)上面所用的调查方法是 (填“全面调查”或“抽样调查”); (2)写出折线统计图中A 、B 所代表的值; A : ;B : ;(3)求该地区喜爱娱乐类节目的成年人的人数.23.(本小题满分6分)24.(本小题满分7分)分邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案. (2)小王从县城出发到返回县城所用的时间. (3)李明从A 村到县城共用多长时间?已知:在ABC ∆中,AC BC >,动点D 绕ABC ∆的顶点A 逆时针旋转,且BC AD =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N .(1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,根据三角形中位线定理和平行线的性质,可得结论BNE AMF ∠=∠(不需证明). (2)当点D 旋转到图2或图3中的位置时,AMF ∠与BNE ∠有何数量关系?请分别写出猜想,25.(本小题满分8分) 26.(本小题满分8分) 图2图3图1AD并任选一种情况证明.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?直线)0(≠+=k b kx y 与坐标轴分别交于A 、B 两点,OA 、OB 的长分别是方程048142=+-x x 的两根(OB OA >),动点P 从O 点出发,沿路线O →B →A 以每秒1个单位长度的速度运动,到达A 点时运动停止.(1)直接写出A 、B 两点的坐标;(2)设点P 的运动时间为t (秒),OPA ∆的面积为S ,求S 与t 之间的函数关系式(不必写出自变量的取值范围);在坐标轴上是否存在点M ,使以O 、A 、P 、M 的坐标;若不存在,请说明理由. 27.(本小题满分10分)28.(本小题满分10分)2009年大兴安岭地区初中毕业学业考试数学试卷参考答案及评分标准一、填空题(多答案题全部答对得3分,否则不得分,带单位的答案,不写单位扣1分) 1.71 2. 0≥x 且1≠x 3. 111055.1⨯ 4.3- 5. 正确即可 6.cm 1或cm 9 7.72 8. 189. -110. 311.()13-n二、选择题 12. B 13. D 14. A 15. B 16. A 17. B18. C19. C20. D三、解答题21. 原式1.....................).........2()())((22ab ab a b a a b a b a ++÷--+=分1......................................................)(2b a a a b a +∙+=分 1 (1)ba +=分 a 值正确(0≠a 、1±≠a )给1分, 计算结果正确 给1分.22. 画出平移后的图形……………2分, 画出旋转后的图形…………….2分, 写出坐标(0, 0)………………….1分, 答出“是轴对称图形”………..1分.23..........................各12………………1分………………..各1分, 面积是8和12………………1分24. 抽样调查………………..1分,A=20, B=40…………………….. 各1分,1500002535300000=++⨯……………………..1分,%30360108=……………………1分, 45000%30150000=⨯………………2分25. (1) 4千米…………………..2分,(2)解法一:41608016=--……………..1分8460416=+ ……………..1分84+1=85……………………..1分 解法二: 求出解析式2141+-=t s ……………………..1分, 84,0==t s ……………………..1分 84+1=85……………………..1分 (3) 写出解析式5201+-=t s …………………1分 20,6-==t s …………………1分 20+85=105………………………..1分26. 图2:ENB AMF ∠=∠…………………………2分图3:︒=∠+∠180ENB AMF …………………………2分 证明:如图2,取AC 的中点H ,连结HE 、HF …………1分∵F 是DC 的中点,H 是AC 的中点,∴AD HF //,AD HF 21=, ∴HFE AMF ∠=∠.………………….1分 同理,CB HE //,CB HE 21=,∴HEF ENB ∠=∠.…………………………. 1分∵BC AD =, ∴HE HF =,∴HFE HEF ∠=∠∴AMF ENB ∠=∠.………………… 1分证明图3的过程与证明图2过程给分相同.27. 解:(1)设今年三月份甲种电脑每台售价x 元xx 800001000100000=+………………………………1分解得: 4000=x ………………………………..1分经检验: 4000=x 是原方程的根, ……………………….1分所以甲种电脑今年三月份每台售价4000元. (2)设购进甲种电脑x 台,50000)15(3000350048000≤-+≤x x ……………………….2分 解得 106≤≤x ………………………………………………………1分因为x 的正整数解为6,7,8,9,10, 所以共有5种进货方案……………..1分 (3) 设总获利为W 元,ax a x a x W 1512000)300()15)(30003800()35004000(-+-=---+-=…………1分当300=a 时, (2) 此时, 购买甲种电脑6台,28. (1) )6,0(),0,8(B A (2)∵8=OA ,6=OB ,∴=AB 当点P 在OB 上运动时,OP 1t t OP OA S 4821211=⨯⨯=⨯=当点P 在BA 上运动时,作P 2有ABAP BO D P 22=图3中小学教育资源站(),百万资源免费下载,无须注册!中小学教育资源站 ∵t t AP -=-+=161062,∴53482t D P -=………………………1分 ∴51925125348821212+-=-⨯⨯=⨯⨯=t t D P OA S ……………………1分 (3)当124=t 时,3=t ,)3,0(1P ,………………………………1分此时,过AOP ∆各顶点作对边的平行线,与坐标轴无第二个交点,所以点M 不存在;……………………………………………………………………………1分当125192512=+-t 时,11=t ,)3,4(2P ,........................1分 此时,)3,0(1M 、)6,0(2-M (1)注: 本卷中各题, 若有其它正确的解法,可酌情给分.。

2009年黑龙江省哈尔滨市中考数学试卷及答案(word)

2009年黑龙江省哈尔滨市中考数学试卷及答案(word)

哈尔滨市2009 年初中升学考试数学试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,满分30分.第Ⅱ卷为填空题和解答题,满分90分.本试卷共28道试题,满分120分,考试时间为120分钟.八区各学校的考生,请按照《哈尔滨市2009年初中升学考试选择题答题卡》上的要求做选择题(1~10小题,每小题只有一个正确答案).每小题选出正确答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,否则无效.填空题第16小题和第*16小题为考生根据所学内容任选其一作答题.县(市)学校的考生,请把选择题(1~10 小题,每小题只有一个正确答案)中各题表示正确答案的字母填在题后相应的括号内.填空题第16小题和第*16小题为考生根据所学内容任选其一作答题.第Ⅰ卷 选择题(共30分)(涂卡) 一、选择题(每小题 3分,共计 30分) 1.-2的相反数是( ). (A )2 (B )一2 (C )21 (D )一212.下列运算正确的是( ).(A )3a 2-a 2=3 (B )(a 2)3=a 5 (C )a 3.A 6=a 9 (D )(2a )2=2a 2 3.下列图形中,既是轴对称图形,又是中心对称图形的是().4.36的算术平方根是( ).(A )6 (B )±6 (C )6 (D )±6 5.点P (1,3)在反比例函数y =xk(k ≠0)的图象上,则k 的值是( ). (A )31 (B )3 (C )一31(D )一3 6.右图是某一几何体的三视图,则这个几何体是( ).(A )长方体 (B )圆锥(C )圆枉 (D )正三棱柱7.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数大于4的概率为( ). (A )61 (B )31 (C )21 (D )328.圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为( ).(A )36л (B )48л (C )72л (D )144л 9.如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A ´处,若∠A ´BC =20°,则∠A ´B D 的度数为( ). (A )15° (B )20° (C ) 25° (D )30°10.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的 路程s(单位:千米)与时间t(单位:分)之间的函数关系如图所示。

2009年中考数学试题分类汇编6_动态问题答案资料

2009年中考数学试题分类汇编6_动态问题答案资料

1.(2009襄樊市)如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的 中点,MBC △是等边三角形. (1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变. 设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中:①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D 中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数; ②当y 取最小值时,判断PQC △的形状,并说明理由. 【关键词】梯形,动态问题【答案】(1)证明:∵MBC △是等边三角形∴60MB MC MBC MCB ===︒,∠∠ ∵M 是AD 中点 ∴AM MD = ∵AD BC ∥∴60AMB MBC ==︒∠∠,60DMC MCB ==︒∠∠∴AMB DMC △≌△ ∴AB DC =∴梯形ABCD 是等腰梯形.(2)解:在等边MBC △中,4MB MC BC ===,60MBC MCB ==︒∠∠,60MPQ =︒∠∴120BMP BPM BPM QPC +=+=︒∠∠∠∠ ∴BMP QPC =∠∠ ∴BMP CQP △∽△ ∴PC CQBM BP= ∵PC x MQ y ==, ∴44BP x QC y =-=-, ∴444x y x -=- ∴2144y x x =-+ ADCBP MQ60°(3)解:①当1BP =时,则有BP AM BP MD∥∥, 则四边形ABPM 和四边形MBPD 均为平行四边形 ∴211333444MQ y ==⨯-+= 当3BP =时,则有PC AM PC MD∥∥, 则四边形MPCD 和四边形APCM 均为平行四边形∴11311444MQ y ==⨯-+= ∴当1314BP MQ ==,或1334BP MQ ==,时,以P 、M 和A 、B 、C 、 D 中的两个点为顶点的四边形是平行四边形. 此时平行四边形有4个. ②PQC △为直角三角形 ∵()21234y x =-+ ∴当y 取最小值时,2x PC ==∴P 是BC 的中点,MP BC ⊥,而60MPQ =︒∠, ∴30CPQ =︒∠,∴90PQC =︒∠2.(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.【关键词】动态问题【答案】(1)A (8,0)B (0,6) (2)86OA OB ==,10AB ∴=点Q 由O 到A 的时间是881=(秒) ∴点P 的速度是61028+=(单位/秒) · 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,, 2S t = 当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, 21324255S OQ PD t t ∴=⨯=-+(自变量取值范围写对给1分,否则不给分.) (3)82455P ⎛⎫ ⎪⎝⎭,12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,3.(2009年娄底)如图,在△ABC 中,∠C =90°,BC =8,AC =6,另有一直角梯形DEFH (HF ∥DE ,∠HDE =90°)的底边DE 落在CB 上,腰DH 落在CA 上,且DE =4,∠DEF = ∠CBA ,AH ∶AC =2∶3(1)延长HF 交AB 于G ,求△AHG 的面积.(2)操作:固定△ABC ,将直角梯形DEFH 以每秒1个单位的速度沿CB 方向向右移动,直到点D 与点B 重合时停止,设运动的时间为t 秒,运动后的直角梯形为DEFH ′(如右图).探究1:在运动中,四边形CDH ′H 能否为正方形?若能, 请求出此时t 的值;若不能,请说明理由.探究2:在运动过程中,△ABC 与直角梯形DEFH ′重叠部分的面积为y ,求y 与t 的函数关系式.【关键词】相似、动态问题、分段函数【答案】(1)∵AH ∶AC =2∶3,AC =6∴AH =23AC =23×6=4又∵HF ∥DE ,∴HG ∥CB ,∴△AHG ∽△ACB∴AH AC=HG BC,即46=8HG ,∴HG =163∴S △AHG =12AH ·HG =12×4×163=323(2)①能为正方形∵HH ′∥CD ,HC ∥H ′D ,∴四边形CDH ′H 为平行四边形 又∠C =90°,∴四边形CDH ′H 为矩形又CH =AC-AH =6-4=2∴当CD =CH =2时,四边形CDH ′H 为正方形此时可得t =2秒时,四边形CDH ′H 为正方形②(Ⅰ)∵∠DEF =∠ABC ,∴EF ∥AB∴当t =4秒时,直角梯形的腰EF 与BA 重合.当0≤t ≤4时,重叠部分的面积为直角梯形DEFH ′的面积.过F 作FM ⊥DE 于M ,FM ME=tan ∠DEF =tan ∠ABC =AC BC=68=34∴ME =43FM =43×2=83,HF=DM=DE-ME =4-83=43∴直角梯形DEFH ′的面积为12(4+43)×2=163∴y =163(Ⅱ)∵当4<t ≤513时,重叠部分的面积为四边形CBGH 的面积-矩形CDH ′H 的面积而S 边形CBGH =S △ABC -S △AHG =12×8×6-323=403S 矩形CDH ′H =2t∴y =403-2t(Ⅲ)当513<t ≤8时,如图,设H ′D 交AB 于P .BD =8-t又PD DB=tan ∠ABC =34∴PD =34DB =34(8-t )∴重叠部分的面积y =S△PDB =12PD ·DB=12·34(8-t )(8-t )=38(8-t )2=38t 2-6t +24∴重叠部分面积y 与t 的函数关系式:y=316(0≤t ≤4) 403-2t (4<t ≤513) 38t 2-6t +24(513<t ≤8)4.(2009丽水市)已知直角坐标系中菱形ABCD 的位置如图,C ,D 两点的坐标分别为(4,0),(0,3).现有两动点P ,Q 分别从A ,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒.(1)填空:菱形ABCD 的边长是 、面积是 、 高BE 的长是 ; (2)探究下列问题:①若点P 的速度为每秒1个单位,点Q 的速度为每秒2个单位.当点Q 在线段BA 上时,求△APQ 的面积S 关于t 的函数关系式,以及S 的最大值;②若点P 的速度为每秒1个单位,点Q 的速度变为每秒k 个单位,在运动过程中,任何时刻都有相应的k 值,使得△APQ 沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t =4秒时的情形,并求出k 的值.【关键词】相似、动态问题、翻折 【答案】解:(1)5 , 24,524(2)①由题意,得AP =t ,AQ =10-2t.如图1,过点Q 作QG ⊥AD ,垂足为G ,由QG ∥BE 得 △AQG ∽△ABE ,∴BAQABE QG =, ∴QG =2548548t -, ∴t t QG AP S 5242524212+-=⋅=(25≤t ≤5). ∵6)25(25242+--=t S (25≤t ≤5). ∴当t =25时,S 最大值为6. Oxy ABC DE② 要使△APQ 沿它的一边翻折,翻折前后的两个三角形组成的四边形为菱形,根据轴对称的性质,只需△APQ 为等腰三角形即可. 当t =4秒时,∵点P 的速度为每秒1个单位,∴AP =4. 以下分两种情况讨论:第一种情况:当点Q 在CB 上时, ∵PQ ≥BE >P A ,∴只存在点Q 1,使Q 1A =Q 1P . 如图2,过点Q 1作Q 1M ⊥AP ,垂足为点M ,Q 1M 交AC 于点 F ,则AM =122AP =.由△AMF ∽△AOD ∽△CQ 1F ,得 4311===AO OD CQ F Q AM FM , ∴23=FM ,∴103311=-=FM MQ F Q . ∴CQ 1=QF 34=225.则11CQ AP t k t =⋅⨯, ∴11110CQ k AP == . 第二种情况:当点Q 在BA 上时,存在两点Q 2,Q 3, 分别使A P = A Q 2,P A =PQ 3.①若AP =A Q 2,如图3,CB +BQ 2=10-4=6. 则21BQ CB APt k t +=⋅⨯,∴232CB BQ k AP +==. ②若P A =PQ 3,如图4,过点P 作PN ⊥AB ,垂足为N , 由△ANP ∽△AEB ,得ABAP AE AN =. ∵AE =5722=-BE AB , ∴AN =2825. ∴AQ 3=2AN=5625, ∴BC+BQ 3=10-251942556=则31BQ CB APt k t +=⋅⨯.∴50973=+=AP BQ CB k . 综上所述,当t = 4秒,以所得的等腰三角形APQ 沿底边翻折,翻折后得到菱形的k 值为1011或23或5097.5.(2009年河南)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.【关键词】二次函数与三角形综合【答案】 (1)点A的坐标为(4,8)将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8b解得a=-12,b=4∴抛物线的解析式为:y=-12x2+4x(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=12AP=12t.PB=8-t.∴点E的坐标为(4+12t,8-t).∴点G的纵坐标为:-12(4+12t)2+4(4+12t)=-18t2+8.∴EG=-18t2+8-(8-t)=-18t2+t.∵-18<0,∴当t=4时,线段EG最长为2.②共有三个时刻. t1=163, t2=4013,t3.6.(2009年兰州)如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4), 点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动, 同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动, 设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标;(4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.【关键词】动态问题、二次函数、相似三角形【答案】解:(1)Q (1,0); 点P 运动速度每秒钟1个单位长度.(2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB中,10AB ,过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=. ∴所求C 点的坐标为(14,12).(3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MPAB AF BF==. 1068t AM MP∴==. ∴3455AM t PM t ==,.∴3410,55PN OM t ON PM t ==-==.设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10).∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大.此时P 的坐标为(9415,5310) . (4) 当 53t =或29513t =时, OP 与PQ 相等.7.如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.(2009年济南)【关键词】动态问题、二次函数、相似三角形【答案】(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H , 则四边形ADHK 是矩形∴3KH AD ==.在Rt ABK △中,sin 4542AK AB =︒==.,2cos 454242BK AB =︒==,在Rt CDH △中,由勾股定理得,3HC == ∴43310BC BK KH HC =++=++=,(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形, ∵MN AB ∥,∴MN DG ∥,∴3BG AD ==,∴1037GC =-=, 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,.∵DG MN ∥,∴NMC DGC =∠∠,又C C =∠∠,∴MNC GDC △∽△ ∴CN CM CD CG =,即10257t t -=,解得,5017t =,(图①)ADCBK H图②ADCBGMNC(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-,∴103t =,②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=-,在Rt CEN △中,5cos EC t c NC t -==,又在Rt DHC △中,3cos 5CH c CD ==,∴535t t -=,解得258t =,解法二:∵90C C DHC NEC =∠=∠=︒∠∠,,∴NEC DHC △∽△, ∴NC EC DC HC =,即553t t -=,∴258t =, ③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t == 解法一:(方法同②中解法一)132cos 1025t FC C MC t ===-,解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△∴FC MC HC DC =,即1102235t t -=,∴6017t = 综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形ADCB MN图③)图④)AD CBM NH E图⑤ A DCBH N MF8.(2009年河北)如图,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值. 若不能,请说明理由;(4)当DE 经过点C 时,请直接..写出t 的值.【关键词】动点问题 解:(1)1,85;(2)作QF ⊥AC 于点F ,如图1, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC ==, 得45QF t =.∴45QF t =.∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图2.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°.图2P图1F由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图3,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°.由△AQP ∽△ABC ,得 AQ AP AB AC =, 即353t t -=. 解得158t =.(4)52t =或4514t =. 【注:①点P 由C向A 运动,DE 经过点C .方法一、连接QC ,作QG ⊥BC 于点G ,如图4. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得 B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =.②点P 由A 向C 运动,DE 经过点C ,如图5. 22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】图3。

2009年中考数学试题参考答案

2009年中考数学试题参考答案

2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8题图A B CDD 1二○○九年大兴安岭地区初中毕业学业考试数 学 试 卷考生注意:1.考试时间120分钟1.71-的绝对值是 . 2.函数1-=x xy 中,自变量x 的取值范围是 . 3.联合国环境规划署发布报告称:2008年尽管全球投资市场普遍疲软,但在中国等发展中国家的带动下,全球可持续投资再创历史新高,达1550亿美元.这个数用科学记数法可表示为 美元.4.计算:=-2712 . 5.反比例函数)0(≠=m xmy 的结论: .6.已知相切两圆的半径分别为cm 5和cm 47.在英语句子“W i s h y o u s u c c e s s s ”的概率是 .8.如图,正方形ABCD 的边长为3,以直线AB 为轴,将正方形旋转一周, 所得几何体的左视图的周长是 . 9.当=x时,二次函数222-+=x x y 有最小值. 10.梯形ABCD 中,BC AD //, 1=AD ,4=BC ,︒=∠70C ,=∠40B 则AB 的长为 .11.如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边边作第三个作第二个菱形11D ACC ,使 ︒=∠601AC D ;连结1AC ,再以1AC 为的边长菱形221D C AC ,使 ︒=∠6012AC D ;……,按此规律所作的第n 一、填空题(每题3分,满分33分)O第14题图 第16题图为 .12.下列运算正确的是( )A .623a a a =⋅B .1)14.3(0=-πC .2)21(1-=- D .39±=13.一组数据4,5,6,7,7,8的中位数和众数分别是 ( )A . 7, 7B .7, 6.5C . 5.5, 7D .6.5, 7 14.如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( ) A .5米 C . 15米 D .20米15.二次函数)0(2≠++=a c bx ax y 的图象如图,下列判断错误的是 ( )A .0<aB .0<bC .0<cD .042<-ac b16.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为23,2=AC , 则B sin 的值是( )A .32B .23C .43D .3417.用两个全等的直角三角形拼成凸四边形,拼法共有 ( )A .3种B .4种C .5种D .6种18.一个水池接有甲、乙、丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量)(3m v 与时间)(h t 之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是 ( ) A .乙>甲 B . 丙>甲 C .甲>乙D .丙>乙19.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有 ( ) A . 4种 B .3种 C .2种 D .1种 20.在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BD CE ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①FH AF =;②BF BO =;③CH CA =;④ED BE 3=,正确的(二、单项选择题(每题3分,满分27分)A .②③B .③④C .①②④D .②③④三、解答题(本题满分60分)先化简:⎪⎪⎭⎫⎝⎛++÷--a b ab a ab a b a 22222,当1-=b 时,请你为a 任选一个适当的数代入求值.平面直角坐标系中,)2,3(-B 、)1,1(-C .(1)若将ABC ∆(2)画出111C B A ∆(3)'''C B A ∆与∆坐标: ;(4)顺次连结C 、称图形吗? 在边长为4和6的矩形中作等腰三角形,使等腰三角形的一条边是矩形的长或宽,第三个顶点在矩形的边上,求所作三角形的面积.(注:形状相同的三角形按一种计算.)21.(本小题满分5分)2223为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少(1)上面所用的调查方法是 (填“全面调查”或“抽样调查”); (2)写出折线统计图中A 、B 所代表的值; A : ;B : ;(3)求该地区喜爱娱乐类节目的成年人的人数.邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案. (2)小王从县城出发到返回县城所用的时间. (3)李明从A 村到县城共用多长时间?24.(本小题满分7分) 25.(本小题满分8分)已知:在ABC ∆中,AC BC >,动点D 绕ABC ∆的顶点A 逆时针旋转,且BC AD =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N .(1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F重合,取AC 的中点H ,连结HE 、HF ,根据三角形中位线定理和平行线的性质,可得结论BNE AMF ∠=∠(不需证明).(2)当点D 旋转到图2或图3中的位置时,AMF ∠与BNE ∠有何数量关系?请分别写出猜想,并任选一种情况证明.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.26.(本小题满分8分) 图2图3图1AD(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?直线)0(≠+=kbkxy与坐标轴分别交于A、B两点,OA、OB的长分别是方程048142=+-xx的两根(OBOA>),动点P从O点出发,沿路线O→B→A以每秒1个单位长度的速度运动,到达A 点时运动停止.(1)直接写出A、B两点的坐标;(2)设点P的运动时间为t(秒),OPA∆的面积为S,求S与t之间的函数关系式(不必写出自变量的取值范围);M,使以O、A、P、M的坐标;若不存在,请说明理由.3分,否则不得分,带单位的答案,不写单位扣1分)2. 0≥x且1≠x 3.116.cm1或cm97.78. 18 9. -110. 3 11.()13-n二、选择题12. B 13. D 14. A15. B 16. A 17. B18. C 19. C 20. D三、解答题28.(本小题满分10分)21. 原式1.....................).........2()())((22ab ab a b a a b a b a ++÷--+=分1......................................................)(2b a a a b a +∙+=分 (1)ba +=a 值正确(0≠a 、≠a22. 画出平移后的图形 画出旋转后的图形 写出坐标(0, 0) 答出“是轴对称图形”23.12………………1分………………..各1分, 面积是8和12………………1分24. 抽样调查………………..1分,A=20, B=40…………………….. 各1分,1500002535300000=++⨯……………………..1分,%30360108=……………………1分, 45000%30150000=⨯………………2分25. (1) 4千米…………………..2分,(2)解法一:41608016=--……………..1分8460416=+ ……………..1分84+1=85……………………..1分 解法二: 求出解析式2141+-=t s ……………………..1分, 84,0==t s ……………………..1分 84+1=85……………………..1分(3) 写出解析式5201+-=t s …………………1分 20,6-==t s …………………1分 20+85=105………………………..1分26. 图2:ENB AMF ∠=∠…………………………2分图3:︒=∠+∠180ENB AMF …………………………2分 证明:如图2,取AC 的中点H ,连结HE 、HF …………1分 ∵F 是DC 的中点,H 是AC 的中点,∴AD HF //,AD HF 21=, ∴HFE AMF ∠=∠.………………….1分 同理,CB HE //,CB HE 21=, ∴HEF ENB ∠=∠.…………………………. 1分 ∵BC AD =,∴HE HF =,∴HFE HEF ∠=∠∴AMF ENB ∠=∠.………………… 1分证明图3的过程与证明图2过程给分相同.27. 解:(1)设今年三月份甲种电脑每台售价x 元xx 800001000100000=+………………………………1分解得: 4000=x ………………………………..1分经检验: 4000=x 是原方程的根, ……………………….1分所以甲种电脑今年三月份每台售价4000元. (2)设购进甲种电脑x 台,50000)15(3000350048000≤-+≤x x ……………………….2分 解得 106≤≤x ………………………………………………………1分因为x 的正整数解为6,7,8,9,10, 所以共有5种进货方案……………..1分 (3) 设总获利为W 元,图3ax a x a x W 1512000)300()15)(30003800()35004000(-+-=---+-=…………1分当300=a 时, (2) 此时, 购买甲种电脑6台,28. (1) )6,0(),0,8(B A (2)∵8=OA ,6=OB ,∴=AB 当点P 在OB 上运动时,OP 1t t OP OA S 4821211=⨯⨯=⨯=当点P 在BA 上运动时,作P 2有ABAP BO D P 22= ∵t t AP -=-+=161062,∴53482tD P -=………………………1分 ∴51925125348821212+-=-⨯⨯=⨯⨯=t t D P OA S ……………………1分(3)当124=t 时,3=t ,)3,0(1P ,………………………………1分此时,过A OP ∆各顶点作对边的平行线,与坐标轴无第二个交点,所以点M 不存在;……………………………………………………………………………1分当125192512=+-t 时,11=t ,)3,4(2P ,........................1分 此时,)3,0(1M 、)6,0(2-M (1)注: 本卷中各题, 若有其它正确的解法,可酌情给分.。

相关文档
最新文档