数学同步练习题考试题试卷教案2010年广州中考数学模拟试题五

合集下载

2010年广州市中考数学模拟试题(天秀zhu)

2010年广州市中考数学模拟试题(天秀zhu)

D2010年天秀中学中考一模试卷数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟.注意事项:1. 答卷前,考生务必在答卷密封装订线内用黑色字迹的钢笔或签字笔填写自己的班级、姓名、座位号、考号. 2. 选择题每小题选出答案后,用2B 铅笔把答卷上对应题号的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在问卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答卷各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答卷的整洁,考试结束后,将本试卷和答卷一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.-2的倒数是( ) A .-2 B .21-C .2D .212.如图1所示几何体的主视图是( )3.下列运算正确的是( )A .39±=B .336a a a += C .222)(n m n m +=+ D .9132=- 4.如图2,直线a 、b 被直线c 所截,且a b ∥,如果∠166=,那么∠2=( ). A.66° B.114° C.124° D.24° 5.用科学记数法表示660000的结果是( )A .46610⨯B .56.610⨯C .60.6610⨯D .66.610⨯ 6、已知:如图3,OD =OC ,要使△OAD ≌△OBC ,不能添加的条件是( ) A .∠D =∠C B .OA =OB C .BC =AD D .∠OBC =∠OADA B C D图1cb a21abc 图27.不等式组312840x x ->⎧⎨-≥⎩的解集在数轴上表示为( ).8、二次函数3)1(2---=x y 的最大值是( )A .-1B .3C .-3D .19、在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图4 所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( ) A .230cm B .230cm π C .260cm π D .2120cm 10.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( )A .12分钟B .15分钟C .25分钟D .27分钟第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分) 11. 已知反比例函数xky =经过点(2,-1)则k =________ 12.如图6,已知⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC =30º,则BC =______cm . 13.方程0)2(=-x x 的解为________________________。

中考数学模拟试题五

中考数学模拟试题五

中考数学模拟试题五一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.|-5|的相反数是()A.5 B.-5 C.-15D.153.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.114.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156米,则这个数用科学记数法表示为()A.0.156×10-5B.0.156×105C.1.56×10-6D.1.56×1065.若不等式组恰有两个整数解,则m的取值范围是()A.-1≤m<0 B.-1<m≤0 C.-1≤m≤0 D.-1<m<06.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是()A.2 B.4 C.8 D.167.如图,在△ABC中,AB=AC=5,BC=8,⊙O经过B、C两点,且AO=4,则⊙O的半径长是()A.17或65B.4或65C.4或17D.4或17或658.银泰购物中心一月份的营业额为400万元,第一季度营业总额为1600万元,若平均每月增长率为x,则可列方程为()A.400(1+x)2=1600 B.400[1+(1+x)+(1+x)2]=1600C.400+400x+400x2=1600 D.400(1+x+2x)=16009.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .+3(100﹣x )=100B .﹣3(100﹣x )=100C .3x +=100D .3x ﹣=100 10.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan ∠CAD=2.其中正确的结论有( B ) A.4个 B .3个 C .2个 D .1个二、填空题(本大题共6小题,每小题3分,满分18分.)11.分解因式:20-5a 2= .12.如图,在△ABC 中,D 为AC 边上的点,∠DBC=∠A ,BC =6,AC =3,则CD 的长为 _________ .13.已知:平面直角坐标系xOy 中,圆心在x 轴上的⊙M 与y轴交于点D (0,4)、点H ,过H 作⊙O 的切线交x 轴于点A ,若点M (-3,0),则sin ∠HAO 的值为 .14.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是 5 .15.如图,已知正方形ABCD 的边长为2,将正方形ABCD 沿直线EF 折叠,则图中折成的4个阴影三角形的周长之和为 .16.如图,在等边△ABC 中,AB=4,点P 是BC 边上的动点,点P 关于直线AB ,AC 的对称第10题图F E DB CA点分别为M ,N ,则线段MN 长的取值范围是 6≤MN ≤4 .三、解答下列各题(共72分)17、(5分)计算:21()3-20170+|2-23|-tan60°18. (6分)如右图,矩形ABCD ,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE 于F .(1)猜想:AD 与CF 的大小关系;(2)请证明上面的结论.19.(8分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,随州市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D 粽的人数?(4)若有外型完全相同的A 、B 、C 、D粽各一个煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率?20.(7分)已知:如图,一次函数y=x+b的图象与反比例函数y=kx(k<0)的图象交于A、B两点,A点坐标为(1,m),连接OB,过点B作BC⊥x轴,垂足为点C,且△BOC的面积为32.(1)求k的值;(2)求这个一次函数的解析式.21.(7分)如图,中国海监船在钓鱼岛附近海域沿正西方向航行执行巡航任务,在A处望见钓鱼岛在南偏西45°方向,海监船航行到B处时望见钓鱼岛在南偏45°方向,又航行了15分钟到达C处,望见钓鱼岛在南偏60°方向,若海监船的速度为36海里/小时,求中国海监船在此次航行过程中离钓鱼岛的最近距离为多少海里?(3≈1.732,结果精确到0.1海里).22.(8分) 如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使CD=BC,连接AD与CM交于点E,若⊙O的半径为2,ED=1,求AC的长.23.(9分)实验中学九年级学生小凡、小文和小宇到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小凡:如果以9元/千克的价格销售,那么每天可售出350千克.小文:如果每千克的利润为2元,那么每天可售出300千克.小宇:如果以11元/千克的价格销售,那么每天可获取利润750元.物价部门规定:该水果的加价不得超过进价的45﹪.【利润=(销售价-进价)×销售量】(1)请根据他们的对话填写下表:(3分)销售单价x(元/kg)9 10 11销售量y(kg)(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3分)(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3分)24.(10分)如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N是分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.(1)△AMN是什么特殊的三角形?说明理由.(2)求△AMN面积的最小值;(3)求点P到直线CD距离的最大值;25. (12分)如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M,使|MA-MC|的值最大?若存在,请求出点M的坐标;若不存在,请说明理由.答案:21.22.(1)证明:连接OC.∵AB为⊙O的直径,∴∠ACB=90°.∴∠ABC+∠BAC=90°.∵CM是⊙O的切线,∴OC⊥CM.∴∠ACM+∠ACO=90°.∵CO=AO,∴∠BAC=∠ACO.∴∠ACM=∠ABC.(2)解:∵BC=CD,OB=OA,∴OC∥AD.又∵OC⊥CE,∴CE⊥AD,∵∠ACD=∠ACB=90°,∴∠AEC=∠ACD.∴△ADC∽△ACE.∴.∵⊙O的半径为2,∴AD=4.∴.∴AC=2.24.解:(1)如图1中,∵ABCD是菱形,∠ABC=60°,∴△ABC为等边三角形在△AMB和△ANC中,AB=AC∠B=∠ACN=60°BM=NC∴△AMB≌△ANC∴AM=AN,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN为等边三角形,当AM⊥BC时,△AMN的边长最小,面积最小,=•(2)2=3此时AM=MN=AN=2,S△AMN(2)如图2中,当AM⊥BC时,点P到CD距离最大.作PE⊥CD于E.理由:由(1)可知△AMN是等边三角形,当AM⊥BC时,△AMN的边长最小,此时PA长最小,PC的长最大,点P到直线CD距离的最大,∵BM=MC=2,∠CMP=30°,∠MPC=90°,∴PC=MC=1,在Rt △PCE 中,∵∠CPE=30°,PC=1,∴EC=PC=, ∴PE==.∴点P 到直线CD 距离的最大值为; 25.解:(1)∵抛物线y =x 2+bx +c 过点A (3,0),B (1,0),∴, 解得,∴抛物线的解析式为y =x 2-4x +3.(2)令x =0,则y =3,∴点C (0,3),又∵点A (3,0),∴直线AC 的解析式为y = -x +3,设点P (x ,x 2-4x +3),∵PD ∥y 轴,且点D 在AC 上,∴点D (x ,-x +3),∴PD =(-x +3)-(x 2-4x +3)=-x 2+3x =-(x-)2+, ∵a =-1<0,∴当x =时,线段PD 的长度有最大值,最大值为. (3)存在.由抛物线的对称性可知,对称轴垂直平分AB ,可得:MA =MB ,由三角形的三边关系,|MA -MC |<BC ,可得:当M 、B 、C 三点共线时,|MA -MC |最大,即为BC 的长度,设直线BC 的解析式为y =kx +b (k ≠0),由B 、C 两点的坐标分别为(1,0)、(0,3), 则, ⎩⎨⎧=++=++01039c b c b ⎩⎨⎧==3-4c b 23492349⎩⎨⎧==+30b b k解得,∴直线BC 的解析式为y = -3x +3,∵抛物线y =x 2-4x +3的对称轴为直线x =2,∴当x =2时,y=-3×2+3=-3,∴点M (2,-3),即抛物线对称轴上存在点M (2,-3),使|MA -MC |最大.⎩⎨⎧==3-3b k。

2010年中考数学模拟试题综合题训练

2010年中考数学模拟试题综合题训练

2010年中考数学模拟试题1、(山西省)如图,已知直线l 1:y =32x +38与直线l 2:y =-2x +16相交于点C ,l 1、l 2分别交x 轴于A 、B 两点.矩形DEFG 的顶点D 、E 分别在直线l 1、l 2上,顶点F 、G 都在x 轴上,且点G 与点B 重合.(1)求△ABC 的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原地出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为t (0≤t ≤12)秒,矩形DEFG 与△ABC 重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围; (4)S 是否存在最大值?若存在,请直接写出最大值及相应的t 值,若不存在,请说明理由.2、(新疆乌鲁木齐市)如图,在矩形OABC 中,已知A 、C 两点的坐标分别为A (4,0)、C (0,2),D 为OA 的中点.设点P 是∠AOC 平分线上的一个动点(不与点O 重合). (1)试证明:无论点P 运动到何处,PC 总与PD 相等;(2)当点P 运动到与点B 的距离最小时,试确定过O 、P 、D 三点的抛物线的解析式; (3)设点E 是(2)中所确定抛物线的顶点,当点P 运动到何处时,△PDE 的周长最小?求出此时点P 的坐标和△PDE 的周长;(4)设点N 是矩形OABC 的对称中心,是否存在点P ,使∠CPN =90°?若存在,请直接写出点P 的坐标.3、(云南省)已知在平面直角坐标系中,四边形OABC 是矩形,点A ,C 的坐标分别为A(3,0),C (0,4),点D 的坐标为D (-5,0),点P 是直线AC 上的一动点,直线DP 与y 轴交于点M .问:(1)当点P 运动到何位置时,直线DP 平分矩形OABC 的面积,请简要说明理由,并求出此时直线DP 的函数解析式;(2)当点P 沿直线AC 移动时,是否存在使△DOM 与△ABC 相似的点M ,若存在,请求出点M 的坐标;若不存在,请说明理由;(3)当点P 沿直线AC 移动时,以点P 为圆心、半径长为R (R >0)画圆,所得到的圆称为动圆P .若设动圆P 的直径长为AC ,过点D 作动圆P 的两条切线,切点分别为点E ,F .请探求是否存在四边形DEPF 的最小面积S ,若存在,请求出S 的值;若不存在,请说明理由.注:第(3)问请用备用图解答.4、(甘肃省张掖市)如图,在平面直角坐标系中,点A 的坐标为(2,2),点P 是线段OA上的一个动点(不与O,A重合),过点P作PQ⊥x轴于Q,以PQ为边向右作正方形PQMN.连接AN并延长交x轴于点B,连接ON.设OQ=t.(1)求证:OQ=QM;(2)求线段BM的长(用含t的代数式表示);(3)△BMN与△MON能否相似?若能,求出此时△BMN的面积;若不能,请说明理由.5、(黑龙江省哈尔滨市)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO 是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB 边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP 与直线AC6、(辽宁省营口市)如图,正方形ABCO的边长为5,以O为原点建立平面直角坐标系,图1 图2点A 在x 轴的负半轴上,点C 在y 轴的正半轴上,把正方形ABCO 绕点O 顺时针旋转后得到正方形A 1B 1C 1O (α<45º),B 1C 1交y 轴于点D ,且D 为B 1C 1的中点,抛物线y =ax2+bx +c 过点A 1、B 1、C 1.(1)求tan α的值;(2)求点A 1的坐标,并直接写出....点B 1、点C 1的坐标; (3)求抛物线的函数表达式及其对称轴;(4)在抛物线的对称轴...上.是否存在点P ,使△PB 1C 1为直角三角形?若存在,直接写出....所有满足条件的P7、(湖南省湘潭市)如图,在平面直角坐标系中,四边形OABC 为矩形,OA =3,OC=4,P 为直线AB 上一动点,将直线OP 绕点P 逆时针方向旋转90°交直线BC 于点Q ; (1)当点P 在线段AB 上运动(不与A 、B 重合)时,求证:OA ·BQ =AP ·BP ;(2)在(1)成立的条件下,设点P 的横坐标为m ,线段CQ 的长度为l ,求出l 关于m 的函数解析式,并判断l 是否存在最小值,若存在,请求出最小值;若不存在,请说明理由;(3)直线AB 上是否存在点P ,使△POQ 为等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.。

2010年中考数学模拟试题概率练习卷

2010年中考数学模拟试题概率练习卷

2010年中考数学模拟试题九年级概率练习卷1、某种彩票的中奖机会是1%,下列说法正确的是( ) A .买1张这种彩票一定不会中奖 B .买100张这种彩票一定会中奖 C .买1张这种彩票可能会中奖D .买100张这种彩票一定有99张彩票不会中奖2、(2009,佛山)假设你班有男生24名,女生26名,班主任要从班里任选..一名红十字会的志愿者,则你被选中的概率是( ) A .1225 B .1325 C .12 D .1503、在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有( ) A .4个 B .6个 C .34个 D .36个4、某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是( ) A.0B.141C.241D.15、(2009,哈尔滨)小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数大于4的概率为( ). (A )61 (B )31 (C )21 (D )326、(2009,荆门)从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是p 1,摸到红球的概率是p 2,则( )(A)p 1=1,p 2=1. (B)p 1=0,p 2=1. (C)p 1=0,p 2=14. (D)p 1=p 2=7、(2009,株洲)从分别写有数字4-、3-、2-、1-、0、1、2、3、4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是( ) A .19B .13C .12D .238、(2009,青海)将三个均匀的六面分别标有1、2、3、4、5、6的正方体同时掷出,出现的数字分别为a b c 、、,则a b c 、、正好是直角三角形三边长的概率是( )A .1216 B .172 C . 112 D .1369、在3 □ 2 □(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是 .10、(2009,泉州)在一个不透明的摇奖箱内装有20个形状、大小、质地等完全相同的小球,其中只有5个球标有中奖标志,则随机抽取一个小球中奖的概率是___________. 11、(2009,中山)在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同. 若从中随机摸出一个球,摸到黄球的概率是54,则n =_________ 12、(2009,河北)下列事件中,属于不可能事件的是( )A .某个数的绝对值小于0B .某个数的相反数等于它本身C .某两个数的和小于0D .某两个负数的积大于0 13、(2009,鄂州)四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰三角形。

2010年中考数学模拟试题

2010年中考数学模拟试题

一、选择题(每小题3分,共30分)1.2009年中央预算用于教育、医疗卫生、社会保障、就业等方面的民生支出达到9365亿元,可用科学记数法表示为()A.元 B.元 C.元 D.元2.下列运算正确的是()A. B.C. D.3.下列图形中,既是轴对称图形,又是中心对称图形的是()4.下列说法正确的是()A.6的平方根是 B.对角线相等的四边形是矩形C.同一底上的两个底角相等的梯形是等腰梯形 D.近似数6.270有3个有效数字5.下面计算正确的是()A. B. C. D.6.不等式组的解集在数轴上表示正确的是()7.若关于的一元二次方程无实数根,则一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.一个正方形的面积为32,则它的边长应在()A.3到4之间 B.4到5之间 C5到6之间 D6到7之间9.如图,在平行四边形中,为的中点,的面积为1,则的面积为()A.1 B.2 C.3 D.4(第9题)(第10题)10.如图,是的直径,交的中点于,于,连接,则下列结论正确的个数是;④是的切线.A.1个 B.2个 C.3个 D.4();;二、填空题(每小题3分,共24分)11.分解因式:.12.顺次连接等腰梯形各边中点所构成的四边形是.13.某校三个绿化小组一天内植树的棵数如下:10,,8,已知这组数据只有一个众数且众数等于中位数,那么这组数据的平均数是.14.为迎接十六届亚运会的召开,广东省某艺术团排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB、AC夹角为120?,AB的长为90cm,贴布部分BD的长为60cm,则贴布部分的面积约为____________cm2(保留).(第14题)(第15题)15.如图,将一个半径为,圆心角为的扇形薄铁皮卷成圆锥的侧面(接缝无重叠,无缝隙),为圆锥的底面圆心,则= cm.16.反比例函数与一次函数的图象交于点A(2,3)和点B(m,2).对于同一个,若y1>y2,则的取值范围是.17.在正方形网格中,的位置如图所示,则的值为.(第17题)(第18题)18.如图,与相切于点,与交于点,,则度.三、(共16分)19.计算(每小题满分4分,计8分):(1)(2)20.化简后求值(4分):,其中,.21.解方程(4分):四、(共26分)22.(本小题满分6分)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?23.(满分6分)如图,为一个平行四边形的三个顶点,且三点的坐标分别为(3,4)、(6,2)、(5,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求此平行四边形的周长.24.(本小题满分7分)在课外活动中,同学们积极参加体育锻炼,小华就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“其他”部分所对应的圆心角度数为;(4)若全校有1225名学生,请计算出“乒乓球”部分的学生人数.25.(本小题满分7分)如图,大楼AB的高为20米,远处有一塔CD,小李在楼下A处测得塔顶D处的仰角为,在楼顶B处测得塔顶D处的仰角为.其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔高CD.五、(共14分)26.(本小题满分8分)如图,将矩形纸片沿其对角线折叠,使点落到点的位置,与交于点.(1)试找出一个与全等的三角形,并加以证明;(2)若,,为线段上任意一点,于,于.试求的值,并说明理由.27.(本小题满分6分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)求证:;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由.六、(共10分)28.如图,抛物线经过A(,)、B(,)两点,此抛物线的对称轴为直线,顶点为,且与直线交于点.(1)求此抛物线的解析式;(2)直接写出此抛物线的对称轴和顶点坐标;(3)连接,求证:;答案及评分标准:一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. 12.菱形 13.或 14. 15.216.或提示:根据两函数图象的交点A(2,3),B(m,2),分别将纵横坐标值代入与,即可求得,,同时也可求得,则两函数的解析式分别为:,,如下图:(正确答案为或)17. 18.58三、19.(1)(2)解:原式20.解:原式,当,时,原式.21.解:方程两边同乘以,得:,解得:;检验:当时,.所以是原方程的解。

中考数学模拟试题5试题_1 (2)

中考数学模拟试题5试题_1 (2)

西湖区2021年中考数学模拟试题5本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。

考生需要知:1.本套试卷分试题卷和答题卷两局部,满分是120分,考试时间是是120分钟。

2.答题时,应该在答题卷规定的正确位置内写明校名,姓名和准考证号。

3.所有答案都必须做在答题卷标定的位置上,请必须注意试题序号和答题序号相对应。

4.在在考试完毕之后以后,上交试题卷和答题卷试题卷一、仔细选一选〔此题有10个小题,每一小题3分,一共30分〕下面每一小题给出的四个选项里面,只有一个是正确的 .注意可以用多种不同的方法来选取正确答案 .1. 以下各数中,相反数最小的是〔 〕A.5-B. 3C. 0D. π- 2.以下运算正确的选项是( )A .222()2a a a ---=-B .2332()()m m -=- C .347()()a a a ---= D2m =- 3. 如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( ) A.CD AB = B.BC AD = C.BC AB = D.BD AC =4. 如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,那么∠AED 的度数是〔 〕 A .110°B .108°C .105°D .100°第3题图6. 如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.假设OA∶O B = OC ∶OD,那么以下结论中一定正确的选项是 ( )A .①和②相似B .①和④相似C .①和③相似D .②和④相似7.ABCD 为长方形,AB =4,BC =2,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的间隔 大于2的概率为〔 〕 A .4π B .14π-C . 8π D . 18π-8. 假如α∠和β∠互补,且αβ∠>∠,那么以下表示β∠的余角的式子中:①90β-∠;②90α∠-;③1()2αβ∠+∠;④1()2αβ∠-∠.其中不正确的选项是 〔 〕 A .①B .②C .③D .④9. 如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数221k k y x ++=的图象上。

2010中考数学模拟试卷 数学试卷

2010中考数学模拟试卷 数学试卷

2010中考数学模拟试卷 数学试卷考生须知:1、 本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2、 答题前,必须在答题卷密封区内填写校名、姓名和准考证号.3、 所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4、 考试结束后,上交试题卷和答题卷.一.仔细选一选(本大题共10道小题,每小题3分,共30分.)下面给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确的答案. 1.下列计算结果为负数的是( )A.-|-3|B.(-3)0C.(-3)2D.(-3)-22.一批货物总重1.2×107千克,下列可将其一次性运走的合适运输工具是( )A. 一辆板车B.一架飞机C.一辆大卡车D.一艘万吨巨轮 3. 下列各式计算结果正确的是( )A 、a +a =a 2B 、(3a )2=6a 2C 、(a +1)2=a 2+1D 、a ·a =a 24.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算( )A.甲B.乙C.同样D.与商品的价格有关 5.在闭合电路中,电压U(V)一定时,电流I (A )关于电阻R (Ω)的函数图象是( )6.已知x+y= -5,xy=6, 则x 2+y 2的值是( )A.1B. 13C. 17D.257.一个扇形的圆心角是120°,它的面积是3πcm 2,用这个扇形作为一个圆锥侧面,则该圆锥的底面半径是( )A.3cmB.2cmC.1cmD.4cm 8.下列事件中是必然事件的是( )A.打开电视机,正在播放广告B.父亲的年龄比女儿年龄大C.通过长期努力学习,一定会考上重点大学D.下雨天,每个人都打着雨伞9. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ) A .15°B .30°C .45°D .60°10.矩形ABCD 中,8cm 6cm A D A B ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.可得到矩形CFHE ,设运动时间为x (单第9题位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),则y 与x 之间的函数关系用图象表示大致是下图中的( )二.认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案。

中考数学模拟试题(含答案)

中考数学模拟试题(含答案)

中考数学模拟试题(含答案)中考数学模拟试题本试卷共8页,考试时间100分钟,满分120分。

选择题(共10小题,每小题3分,共30分)1.求-3的倒数。

()A。

-1/3 B。

-1/-3 C。

1/-3 D。

1/32.函数y=1/(x-8),x的取值范围是()。

A。

x8 D。

x≥83.国家游泳中心“水立方”的外层膜展开面积约为平方米,科学记数法表示为()。

A。

2.6×10^5 B。

26×10^4 C。

0.26×10^6 D。

2.6×10^64.下列简单几何体的左视图是()。

A。

B。

C。

D.5.某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数和众数分别是()。

A。

32、31 B。

31、32 C。

31、31 D。

32、356.下列命题中,错误的是()。

A。

矩形的对角线互相平分且相等 B。

对角线互相垂直的四边形是菱形 C。

等腰梯形的两条对角线相等 D。

等腰三角形两底角相等7.下列图形中,能肯定∠1>∠2的是()。

A。

B。

C。

D.8.下列各式计算结果正确的是()。

A。

2a+a=3a B。

(3a)^2=9a^2 C。

(a-1)^2=a^2-1 D。

a×a=a^2非选择题9.已知△ABC中,∠A=60°,AB=√3,AC=2.求BC的长度。

10.已知函数y=2x^2-x-3,求其对称轴的方程。

答案区:1.1/(-3)2.x>83.2.6×10^54.C5.31、316.A7.D8.a×a=a^29.BC=210.x=1/49、在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为12.10、圆柱底面直径为2cm,高为4cm,则圆柱的侧面积为8π cm²。

11、一对互为相反数的数为x和-x。

12、b²-2b可以分解为b(b-2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年广州中考数学模拟试题五考生须知 :1、本试卷分试题卷和答题卷两部分。

满分120分,考试时间120分钟。

2、答题前,必须在答题卷的密封区内填写校名、姓名和准考证号。

3、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。

4、考试结束后,上交试题卷和答题卷。

一、精心选一选:(本大题共8小题,每题3分,共24分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1.下列等式正确的是( )A .3(1)1--=B .236(2)(2)2-⨯-=C .826(5)(5)5-÷-=-D .0(4)1-=2.一元二次方程230x x -=的解是( ) A .0x =B .1203x x ==,C .1210,3x x ==D .13x = 3. 若23a b b -=,则ab=( ) A .13B .23C .43D .534.在半径为18的圆中,120°的圆心角所对的弧长是( ) A .12 B .10 C .6 D .3 5. 如图,在ABC ∆中,AD 平分BAC ∠且与BC 相交于点D , ∠B = 40°,∠BAD = 30°,则C ∠的度数是( ) A .70° B .80° C .100° D .110°6.已知x+y = –5,xy = 6,则22x y +的值是( )A . 1B . 13C . 17D . 25第5题图 第7题图7.如图,正方形ABCD 的边长是3cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边AB →BC →CD →DA →AB 连续地翻转,那么这个小正方形第一次回到起始位置时,它的方向是( )8.如果一条直线l 经过不同的三点A (a ,b ),B(b ,a ),C (a-b ,b-a ),那么直线l 经过( ) (A) 第二、四象限 (B) 第一、二、三象限(C) 第一、三象限 (D) 第二、三、四象限 9.右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是 这个纸盒的展开图,那么这个展开图是( )10.某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为A .小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法: 方法一:在底边BC 上找一点D ,连接AD 作为分割线; 方法二:在腰AC 上找一点D ,连接BD 作为分割线;方法三:在腰AB 上找一点D ,作DE ∥BC ,交AC 于点E ,DE 作为分割线;方法四:以顶点A 为圆心,AD 为半径作弧,交AB 于点D ,交AC 于点E ,弧DE 作为分割线.这些分割方法中分割线最短的是( )(A )方法一 (B )方法二 (C )方法三 (D )方法四(A )(B )(C )(D )A.B.C.D.二、细心填一填:(本大题共有6小题,每题4分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)11.据中央电视台2007年5月22日报道,“杂交水稻之父”袁隆平院士培育的杂交水稻,自1976年推广种植以来,累计增产5200亿公斤,如果按照每年每人消耗500斤计算,就等于解决了世界上20亿人口一年的温饱问题.5200亿公斤用科学记数法可以表示为公斤.△中,∠C为直角,AC = 4cm,BC = 3cm,sin∠A= .12.已知在Rt ABC13.2008年奥运火炬将在我省传递(传递路线为:昆明—丽江—香格里拉),某校学生小明在我省地图上设定的临沧市位置点的坐标为(–1,0),火炬传递起点昆明市位置点的坐标为(1,1).如图,请帮助小明确定出火炬传递终点香格里拉位置点的坐标为___________.14.已知m,n是关于x的方程(k+1)x2-x+1=0的两个实数根,且满足k+1=(m+1)(n+1),则实数k的值是.15.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30o到正方形AB′C′D′,则它们的公共部分的面积等于.16.把正整数1,2,3,4,5,……,按如下规律排列:12,3,4,5,6,7,8,9,10,11,12,13,14,15,…………按此规律,可知第n行有个正整数.三、认真答一答:(本大题8小题,满分66分. 只要你认真思考, 仔细运算, 一定会解答正确的!) 17.(5+5分)(1)计算:2152-⎛⎫-- ⎪⎝⎭(2) 用配方法解方程:0252=++x x18、(6分)解不等式组2012x x x -⎧⎪⎨-<⎪⎩≥,并利用数据表示不等式组的解集.19、(6分)化简求值:221323322+-++÷+++a a a a a a a ,其中,3=a .1 2 3 4 0 1- 2- 3- 4- x20.(本小题6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)作出格点ABC ∆关于直线DE 对称的111A B C ∆;(2)作出111A B C ∆绕点1B 顺时针方向旋转90°后的212A B C ∆; (3)求212A B C ∆的周长.21.(本题满分8分)2006年,全国30个省区市在我省有投资项目,投资金额如下表:根据表格中的信息解答下列问题:(1)求2006年外省区市在陕投资总额; (2)补全图①中的条形统计图;(3)2006年,外省区投资中有81亿元用于西安高新技术产业开发区,54亿元用于西安经济技术开发区,剩余资金用于我省其它地区.请在图②中画出外省区市在我省投资金额使用情况的扇形统计图(扇形统计图中的圆心角精确到1,百分比精确到1%).图①图②2006年外省区市在陕投资金额使用情况统计图(第20题图)东建京江它2006年外省区市在陕投资金额统计图22.(10)如图,已知矩形ABCD ,AB=3,BC=3,在BC 上取两点E 、F (E 在F 左边),以EF 为边作等边三角形PEF ,使顶点P 在AD 上,PE 、PF 分别交AC 于点G 、H. (1)求△PEF 的边长;(2)若△PEF 的边EF 在线段BC 上移动.试猜想:PH 与BE 有什么数量关系?并证明你猜想的结论. (22题)23.(本小题8分)据国家税务总局通知,从2007年1月1日起,个人年所得12万元(含12万元)以上的个人需办理自行纳税申报.小张和小赵都是某公司职员,两人在业余时间炒股.小张2006年转让沪市股票3次,分别获得收益8万元、1.5万元、5-万元;小赵2006年转让深市股票5次,分别获得收益2-万元、2万元、6-万元、1万元、4万元.小张2006年所得工资为8万元,小赵2006年所得工资为9万元.现请你判断:小 张、小赵在2006年的个人年所得.....是否需要向有关税务部门办理自行纳税申报并说明理由. (注:个人年所得 = 年工资(薪金)+ 年财产转让所得.股票转让属“财产转让”,股票转让所得盈亏相抵后为负数的,则财产转让所得部分按零..“填报..”)PH G FEDCBA24.(本小题12分)在平面直角坐标系xOy中,抛物线2y mx n=++经过5)(02)P A,两点.(1)求此抛物线的解析式;(2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式;(3)在(2)的条件下,求到直线OB OC BC,,距离相等的点的坐标.2009年数学中考模拟试题五参考答案一、精心选一选二、细心填一填11、 5.2×1011 12、 0.6 13、(1,4)14、 -2 15、33 16、 2n-1x三、认真答一答17、(1)20152-⎛⎫-- ⎪⎝⎭=1-4+5-4 =-2(2)解:移项,得x 2+5x=-2, …………………………………1分配方,得222)25(2)25(5+-=++x x …………………2分整理,得(25+x )2=417…………………………………3分直接开平方,得25+x =217± …………………………4分 ∴x 1=25217-,x 2=25217-- …………………………5分18、 解:解不等式(1)得2x ≤ 1分解不等式(2)得1x >- 3分能在数轴上正确表示出不等式组的解集 5分∴不等式组的解集是12x -<≤ 6分19、 化简代入得:272a a -=+20. 解:(1)、(2)如图所示:作出111A B C △、212A B C △; ······················ 4分 (3)212A B C △的周长为4+. ·················· 6分 21.解:(1)2006年外省区市在陕投资总额为:124676647119423++++=(亿元). ··················· 2分(2)如图①所示. ···························· 5分 2006年外省区市在陕投资金额计图 2006年外省区市在陕投资金额使用情况统计图(3)如图②所示. ···························· 8分 22、解: (1)过P 作PQ BC ⊥于Q矩形ABCD90B ∴= ∠,即AB BC ⊥,又AD BC ∥PQ AB ∴== ………………1分PEF △是等边三角形60PFQ ∴= ∠在Rt PQF △中sin 60PF=2PF ∴= ……………………………3分PEF ∴△的边长为2.PH 与BE 的数量关系是:1PH BE -=………4分(第21题答案图①)(第21题答案图②)东建京江它省区 市13% 西安高新技术 19%BB在Rt ABC △中,3AB BC ==tan 1AB BC ∴==∠ 130∴= ∠ …………………………………5分PEF △是等边三角形2602PF EF ∴=== ∠, ……………………………6分213=+ ∠∠∠330∴= ∠13∴=∠∠FC FH ∴= …………………………………………7分23PH FH BE EF FC +=++= ,1PH BE ∴-= ……………………………………………8分注:每题只给了一种解法,其他解法按本评标相应给分.23、解:小张需要办理自行纳税申报,小赵不需要办理自行纳税申报.理由如下:设小张股票转让总收益为x 万元,小赵股票转让总收益为y 万元,小张个人年所得为1W 万元,小赵个人年所得为2W 万元. ··············· 1分 则8 1.55 4.5x =+-= ,2261410y =-+-++=-<. ······· 3分 ∴ 18 4.512.5W =+=(万元),2909W =+=(万元). ······· 5分 ∵ 112.5W =万元>12万元,29W =万元<12万元.∴ 根据规定小张需要办理自行纳税申报,小赵不需要申报. ······ 7分24、解:(1)根据题意得3652m m n n ++=⎧⎨=⎩ 解得132m n ⎧=⎪⎨⎪=⎩所以抛物线的解析式为:21233y x x =++()由2123y x x =++得抛物线的顶点坐标为B(1), 依题意,可得C(-1),且直线 过原点, 设直线 的解析式为y kx =,则1=-解得k = 所以直线的解析式为y x = (3)到直线OB 、OC 、BC 距离相等的点有四个,如图,由勾股定理得 OB=OC=BC=2,所以△OBC 为等边三角形。

相关文档
最新文档