青海省高考数学二轮复习 概率与统计新人教

合集下载

高考数学二轮复习考点知识与题型专题讲解57---概率与统计的创新问题

高考数学二轮复习考点知识与题型专题讲解57---概率与统计的创新问题

高考数学二轮复习考点知识与题型专题讲解第57讲 概率与统计的创新问题概率与统计问题在近几年的高考中背景取自现实,题型新颖,综合性增强,难度加深,主要考查学生的阅读理解能力和数据分析能力.要从已知数表、题干信息中经过阅读分析判断获取关键信息,搞清各数据、各事件间的关系,建立相应的数学模型求解.考点一 概率和数列的综合例1 某商城玩具柜台五一期间促销,购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送节日礼物,现有甲、乙两个系列盲盒,每个甲系列盲盒可以开出玩偶A 1,A 2,A 3中的一个,每个乙系列盲盒可以开出玩偶B 1,B 2中的一个.(1)记事件E n :一次性购买n 个甲系列盲盒后集齐玩偶A 1,A 2,A 3玩偶;事件F n :一次性购买n 个乙系列盲盒后集齐B 1,B 2玩偶.求概率P (E 5)及P (F 4);(2)某礼品店限量出售甲、乙两个系列的盲盒,每个消费者每天只有一次购买机会,且购买时,只能选择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为23,购买乙系列的概率为13;而前一次购买甲系列的消费者下一次购买甲系列的概率为14,购买乙系列的概率为34,前一次购买乙系列的消费者下一次购买甲系列的概率为12,购买乙系列的概率为12;如此往复,记某人第n 次购买甲系列的概率为Q n . ①求{Q n }的通项公式;②若每天购买盲盒的人数约为100,且这100人都已购买过很多次这两个系列的盲盒,试估计该礼品店每天应准备甲、乙两个系列的盲盒各多少个.解 (1)若一次性购买5个甲系列盲盒,得到玩偶的情况总数为35,集齐A 1,A 2,A 3玩偶,则有两种情况:①其中一个玩偶3个,其他两个玩偶各1个,则有C 13C 35A 22种结果; ②其中两个玩偶各2个,另外一个玩偶1个,则有C 13C 15C 24种结果, 故P (E 5)=C 13C 35A 22+C 13C 15C 2435=60+90243=150243=5081; 若一次性购买4个乙系列盲盒,全部为B 1与全部为B 2的概率相等,均为124,故P (F 4)=1-124-124=78.(2)①由题可知,Q 1=23,当n ≥2时,Q n =14Q n -1+12(1-Q n -1)=12-14Q n -1,则Q n -25=-14⎝⎛⎭⎫Q n -1-25,Q 1-25=415, 即⎩⎨⎧⎭⎬⎫Q n -25是以415为首项,以-14为公比的等比数列.所以Q n -25=415×⎝⎛⎭⎫-14n -1, 即Q n =25+415×⎝⎛⎭⎫-14n -1. ②因为每天购买盲盒的100人都已购买过很多次,所以对于每一个人来说,某一天来购买盲盒时,可看作n →+∞,所以其购买甲系列的概率近似于25,假设用ξ表示一天中购买甲系列盲盒的人数, 则ξ~B ⎝⎛⎭⎫100,25, 所以E (ξ)=100×25=40,即购买甲系列盲盒的人数的均值为40,所以礼品店应准备甲系列盲盒40个,乙系列盲盒60个.规律方法 本题的关键是通过审题,找到第n 次购买与前一次购买之间的联系,从而找到数列的递推关系.跟踪演练1 (2022·青岛模拟)规定抽球试验规则如下:盒子中初始装有白球和红球各一个,每次有放回地任取一个,连续取两次,将以上过程记为一轮.如果每一轮取到的两个球都是白球,则该轮记为成功,否则记为失败.在抽取过程中,如果某一轮成功,则停止;否则,在盒子中再放入一个红球,然后接着进行下一轮抽球,如此不断继续下去,直至成功.(1)某人进行该抽球试验时,最多进行三轮,即使第三轮不成功,也停止抽球,记其进行抽球试验的轮次数为随机变量X ,求X 的分布列和均值;(2)为验证抽球试验成功的概率不超过12,有1 000名数学爱好者独立地进行该抽球试验,记t 表示成功时抽球试验的轮次数,y 表示对应的人数,部分统计数据如下:求y 关于t 的经验回归方程y ^=b ^t+a ^,并预测成功的总人数(精确到1);(3)证明:122+⎝⎛⎭⎫1-122132+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132142+…+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-1n 21(n +1)2<12. 附:经验回归方程系数:b ^=∑i =1n x i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x ;参考数据:∑i =15x 2i =1.46,x =0.46,x 2=0.212(其中x i=1t i ,x =15∑i =15x i ). (1)解 由题知,X 的取值可能为1,2,3, 所以P (X =1)=⎝⎛⎭⎫1C 122=14; P (X =2)=⎣⎡⎦⎤1-⎝⎛⎭⎫1C 122⎝⎛⎭⎫1C 132=112;P (X =3)=⎣⎡⎦⎤1-⎝⎛⎭⎫1C 122⎣⎡⎦⎤1-⎝⎛⎭⎫1C 132=23, 所以X 的分布列为所以E (X )=1×14+2×112+3×23=3+2+2412=2912.(2)解 令x i =1t i,则y ^=b ^x +a ^,由题知∑i =15x i y i =315,y =90,所以b ^=∑i =15x i y i -5x y ∑i =15x 2i -5x2=315-5×0.46×901.46-5×0.212=1080.4=270,所以a ^=90-270×0.46=-34.2,y ^=270x -34.2,故所求的经验回归方程为y ^=270t-34.2, 所以估计t =6时,y ≈11; 估计t =7时,y ≈4; 估计t ≥8时,y <0,预测成功的总人数为450+11+4=465. (3)证明 由题知,在前n 轮就成功的概率为P =122+⎝⎛⎭⎫1-122132+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132142+…+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-1n 21(n +1)2,又因为在前n 轮没有成功的概率为 1-P =⎝⎛⎭⎫1-122×⎝⎛⎭⎫1-132×…×⎣⎡⎦⎤1-1(n +1)2 =⎝⎛⎭⎫1-12⎝⎛⎭⎫1+12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1+13×…×⎝⎛⎭⎫1-1n ×⎝⎛⎭⎫1+1n ×⎝⎛⎭⎫1-1n +1×⎝⎛⎭⎫1+1n +1 =12×32×23×43×…×n -1n ×n +1n ×n n +1×n +2n +1=n +22n +2=12(2n +2)+12n +2=12+12n +2>12, 故122+⎝⎛⎭⎫1-122132+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132142+…+⎝⎛⎭⎫1-122⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-1n 21(n +1)2<12.考点二 概率和函数的综合例2(2022·九江模拟)瑞昌剪纸被列入第二批国家级非物质文化遗产名录.为了弘扬中国优秀的传统文化,某校将举办一次剪纸比赛,共进行5轮比赛,每轮比赛结果互不影响.比赛规则如下:每一轮比赛中,参赛者在30分钟内完成规定作品和创意作品各2幅,若有不少于3幅作品入选,将获得“巧手奖”.5轮比赛中,至少获得4次“巧手奖”的同学将进入决赛.某同学经历多次模拟训练,指导老师从训练作品中随机抽取规定作品和创意作品各5幅,其中有4幅规定作品和3幅创意作品符合入选标准.(1)从这10幅训练作品中,随机抽取规定作品和创意作品各2幅,试预测该同学在一轮比赛中获“巧手奖”的概率;(2)以上述两类作品各自入选的频率作为该同学参赛时每幅作品入选的概率.经指导老师对该同学进行赛前强化训练,规定作品和创意作品入选的概率共提高了110,以获得“巧手奖”的次数均值为参考,试预测该同学能否进入决赛? 解 (1)由题可知,所有可能的情况如下, ①规定作品入选1幅,创意作品入选2幅的概率P 1=C 14C 23C 11C 25C 25=325,②规定作品入选2幅,创意作品入选1幅的概率P 2=C 24C 13C 12C 25C 25=925,③规定作品入选2幅,创意作品入选2幅的概率P 3=C 24C 23C 25C 25=950,故所求概率P =325+925+950=3350.(2)设强化训练后,规定作品入选的概率为p 1,创意作品入选的概率为p 2, 则p 1+p 2=45+35+110=32,由已知可得,强化训练后该同学某一轮可获得“巧手奖”的概率为P =C 12p 1(1-p 1)·C 22p 22+C 22p 21·C 12p 2(1-p 2)+C 22p 21·C 22p 22=2p 1p 2(p 1+p 2)-3(p 1p 2)2=3p 1p 2-3(p 1p 2)2, ∵p 1+p 2=32,且p 1≥45,p 2≥35,即32-p 2≥45,32-p 1≥35, 即p 2≤710,p 1≤910,故可得45≤p 1≤910,35≤p 2≤710,p 1p 2=p 1⎝⎛⎭⎫32-p 1=-⎝⎛⎭⎫p 1-342+916, ∴p 1p 2∈⎣⎡⎦⎤2750,1425, 令p 1p 2=t ,则P (t )=-3t 2+3t =-3⎝⎛⎭⎫t -122+34在⎣⎡⎦⎤2750,1425上单调递减, ∴P (t )≤P ⎝⎛⎭⎫2750=-3×⎝⎛⎭⎫2502+34<34.∵该同学在5轮比赛中获得“巧手奖”的次数X ~B (5,P ), ∴E (X )=5P <5×34=154<4,故该同学没有希望进入决赛.易错提醒 构造函数求最值时,要注意变量的选取,以及变量自身的隐含条件对变量范围的限制. 跟踪演练2 (2022·新余模拟)学习强国中有两项竞赛答题活动,一项为“双人对战”,另一项为“四人赛”.活动规则如下:一天内参与“双人对战”活动,仅首局比赛可获得积分,获胜得2分,失败得1分;一天内参与“四人赛”活动,仅前两局比赛可获得积分,首局获胜得3分,次局获胜得2分,失败均得1分.已知李明参加“双人对战”活动时,每局比赛获胜的概率为12;参加“四人赛”活动(每天两局)时,第一局和第二局比赛获胜的概率分别为p ,13.李明周一到周五每天都参加了“双人对战”活动和“四人赛”活动(每天两局),各局比赛互不影响. (1)求李明这5天参加“双人对战”活动的总得分X 的分布列和均值;(2)设李明在这5天的“四人赛”活动(每天两局)中,恰有3天每天得分不低于3分的概率为f (p ).求p 为何值时,f (p )取得最大值. 解 (1)X 可取5,6,7,8,9,10, P (X =5)=C 05×⎝⎛⎭⎫125=132, P (X =6)=C 15×12×⎝⎛⎭⎫124=532, P (X =7)=C 25×⎝⎛⎭⎫122×⎝⎛⎭⎫123=516, P (X =8)=C 35×⎝⎛⎭⎫123×⎝⎛⎭⎫122=516, P (X =9)=C 45×⎝⎛⎭⎫124×12=532,P (X =10)=C 55×⎝⎛⎭⎫125=132, 分布列为所以E (X )=5×132+6×532+7×516+8×516+9×532+10×132=7.5(分).(2)设一天得分不低于3分为事件A ,则P (A )=1-(1-p )⎝⎛⎭⎫1-13=1-23(1-p )=2p +13, 则恰有3天每天得分不低于3分的概率f (p )=C 35⎝⎛⎭⎫2p +133·⎝⎛⎭⎫1-2p +132=40243(2p +1)3(1-p )2,0<p <1, 则f ′(p )=40243×6(2p +1)2(1-p )2-40243×2(2p +1)3(1-p )=40243(2p +1)2(1-p )(4-10p ),当0<p <25时,f ′(p )>0;当25<p <1时,f ′(p )<0, 所以函数f (p )在⎝⎛⎭⎫0,25上单调递增,在⎝⎛⎭⎫25,1上单调递减, 所以当p =25时,f (p )取得最大值.专题强化练1.(2022·湖北八市联考)2022年2月6日,中国女足在两球落后的情况下,以3∶2逆转击败韩国女足,成功夺得亚洲杯冠军,在之前的半决赛中,中国女足通过点球大战6∶5惊险战胜日本女足,其中门将朱钰两度扑出日本队员的点球,表现神勇.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有12的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑出点球的个数X的分布列和均值;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙、丁4名女足队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外3人中的1人,接球者接到球后再等可能地随机传向另外3人中的1人,如此不停地传下去,假设传出的球都能接住.记第n 次传球之前球在甲脚下的概率为p n ,易知p 1=1,p 2=0. ①试证明⎩⎨⎧⎭⎬⎫p n -14为等比数列;②设第n 次传球之前,球在乙脚下的概率为q n ,比较p 10与q 10的大小. (1)解 依题意可得,门将每次可以扑出点球的概率为p =13×13×3×12=16,门将在前三次扑出点球的个数X 可能的取值为0,1,2,3,易知X ~B ⎝⎛⎭⎫3,16, P (X =k )=C k 3×⎝⎛⎭⎫16k ×⎝⎛⎭⎫563-k ,k =0,1,2,3. 则X 的分布列为E (X )=3×16=12.(2)①证明 第n 次传球之前球在甲脚下的概率为p n ,则当n ≥2时,第(n -1)次传球之前,球在甲脚下的概率为p n -1,第(n -1)次传球之前,球不在甲脚下的概率为1-p n -1,则p n =p n -1·0+(1-p n -1)·13=-13p n -1+13,从而p n -14=-13⎝⎛⎭⎫p n -1-14, 又p 1-14=34,∴⎩⎨⎧⎭⎬⎫p n -14是以34为首项,-13为公比的等比数列.②解 由①可知p n =34⎝⎛⎭⎫-13n -1+14, p 10=34×⎝⎛⎭⎫-139+14<14, q 10=13(1-p 10)>14,故p 10<q 10.2.某网络购物平台每年11月11日举行“双十一”购物节,当天有多项优惠活动,深受广大消费者喜爱.(1)已知该网络购物平台近5年“双十一”购物节当天成交额如下表:求成交额y (百亿元)与时间变量x (记2018年为x =1,2019年为x =2,…依此类推)的经验回归方程,并预测2023年该平台“双十一”购物节当天的成交额(百亿元);(2)在2023年“双十一”购物节前,某同学的爸爸、妈妈计划在该网络购物平台上分别参加A ,B 两店各一个订单的“秒杀”抢购,若该同学的爸爸、妈妈在A ,B 两店订单“秒杀”成功的概率分别为p ,q ,记该同学的爸爸和妈妈抢购到的订单总数量为X . ①求X 的分布列及E (X );②已知每个订单由k (k ≥2,k ∈N *)件商品W 构成,记该同学的爸爸和妈妈抢购到的商品W 总数量为Y ,假设p =7sin πk 4k -πk 2,q =sinπk4k,求E (Y )取最大值时正整数k 的值.附:经验回归方程y ^=b ^x +a ^中斜率和截距的最小二乘估计公式分别为b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x .解 (1)由已知可得x =1+2+3+4+55=3,y =9+12+17+21+275=17.2,∑i =15x i y i =1×9+2×12+3×17+4×21+5×27=303, ∑i =15x 2i =12+22+32+42+52=55, 所以b ^=∑i =15x i y i -5x y∑i =15x 2i -5x 2=303-5×3×17.255-5×32=4510=4.5, 所以a ^=y -b ^x =17.2-4.5×3=3.7,所以y ^=b ^x +a ^=4.5x +3.7,当x =6时,y ^=4.5×6+3.7=30.7(百亿元),所以预测2023年该平台“双十一”购物节当天的成交额为30.7百亿元.(2)①由题意知,X 的可能取值为0,1,2,P (X =0)=(1-p )(1-q )=1-p -q +pq ,P (X =1)=(1-p )q +(1-q )p =p +q -2pq ,P (X =2)=pq ,所以X 的分布列为E (X )=p +q -2pq +2pq =p +q .②因为Y =kX ,所以E (Y )=kE (X )=k (p +q )=k ⎝ ⎛⎭⎪⎫7sin πk 4k -πk 2+sin πk 4k =2sin πk -πk, 令t =1k ∈⎝⎛⎦⎤0,12,设f (t )=2sin πt -πt ,则E (Y )=f (t ), 因为f ′(t )=2πcos πt -π=2π⎝⎛⎭⎫cos πt -12,且πt ∈⎝⎛⎦⎤0,π2,所以当t ∈⎝⎛⎭⎫0,13时,f ′(t )>0,所以f (t )在区间⎝⎛⎭⎫0,13上单调递增;当t ∈⎝⎛⎭⎫13,12时,f ′(t )<0,所以f (t )在区间⎝⎛⎭⎫13,12上单调递减,所以当t =13,即k =3时,f (t )取得最大值,且f (t )max =f ⎝⎛⎭⎫13=3-π3(百亿元), 所以E (Y )取最大值时,k 的值为3.。

2023-2024学年青海省西宁市高中数学人教B版 必修二统计与概率章节测试-4-含解析

2023-2024学年青海省西宁市高中数学人教B版 必修二统计与概率章节测试-4-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年青海省西宁市高中数学人教B 版 必修二统计与概率章节测试(4)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分), 且甲比乙成绩稳定 , 且乙比甲成绩稳定,且甲比乙成绩稳定, 且乙比甲成绩稳定1.甲、乙两名同学在5次数学考试中,成绩统计用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用、表示,则下列结论正确的是( )A. B. C. D. 景区A 这七年的空气质量优良天数的极差为98景区B 这七年的空气质量优良天数的中位数为283记景区B 这七年的空气质量优良天数的众数为 ,平均分为 ,则分别记景区A ,B 这七年的空气质量优良天数的标准差为 , ,则2. 某市环境保护局公布了该市A ,B 两个景区2014年至2020年各年的全年空气质量优良天数的数据.现根据这组数据绘制了如图所示的折线图,则由该折线图得出的下列结论中正确的是( )A. B. C. D. 3. 一袋中装有除颜色外完全相同的3个黑球和2个白球,先后两次从袋中不放回的各取一球.已知第一次取出的是黑球,则第二次取出的也是黑球的概率为( )A. B. C. D.4. 魔方又叫鲁比克方块(Rubk's Cube ),是由匈牙利建筑学教授暨雕塑家鲁比克·艾尔内于1974年发明的机械益智玩具,与华容道、独立钻石棋一起被国外智力专家并称为智力游戏界的三大不可思议.三阶魔方可以看作是将一个各面上均涂有颜色的正方体的棱三等分,然后沿等分线把正方体切开所得,现将三阶魔方中1面有色的小正方体称为中心方块,2面有色的小正方体称为边缘方块,3面有色的小正方体称为边角方块,若从这些小正方体中任取一个,恰好抽到边缘方块的概率为()A. B. C. D.20 ,10 , 1015 , 20 , 520, 5, 1520, 15, 55. 一批灯泡400只,其中20 W 、40 W 、60 W 的数目之比为4∶3∶1,现用分层抽样的方法产生一个容量为40的样本,三种灯泡依次抽取的个数为( )A. B. C. D. 正面向上的概率为0.48反面向上的概率是0.48正面向上的频率为0.48反面向上的频率是0.486. 抛掷一枚硬币100次,正面向上的次数为48次,下列说法正确的是( )A. B. C. D. 9时前车流量在逐渐上升车流量的高峰期在9时左右车流量的第二高峰期为12时9时开始车流量逐渐下降7. 为调整某学校路段的车流量问题,对该学校路段时的车流量进行了统计,折线图如图,则下列结论错误的是( )A. B. C. D. 5人6人7人8人8. 为庆祝中国共产党成立100周年,某市举办“红歌大传唱”主题活动,以传承红色革命精神,践行社会主义路线,某高中有高一、高二、高三分别600人、500人、700人,欲采用分层抽样法组建一个18人的高一、高二、高三的红歌传唱队,则应抽取高三( )A. B. C. D. 610899. 某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。

高考数学二轮复习 第一部分 保分专题四 概率与统计 第2讲 概率及应用课件 文

高考数学二轮复习 第一部分 保分专题四 概率与统计 第2讲 概率及应用课件 文

8分
包括 A1 但不包括 B1 的事件所包含的基本事件有:{A1,B2},{A1,
B3},共 2 个,则所求事件的概率为 P=29.
12 分
[规范解释] 列举事件空间. 找出所研究的事件,求概率. 列举总的事件. 找出所研究事件,求概率.
求古典概型概率的方法 正确列举出基本事件的总数和待求事件包含的基本事件数. (1)对于较复杂的题目,列出事件数时要正确分类,分类时应不 重不漏. (2)当直接求解有困难时,可考虑求出所求事件的对立事件的概 率.
其中数学成绩优秀的人数比及格的人数少的有: (10,21),(11,20),(12,19),(13,18),(14,17),(15,16)共 6 组. ∴数学成绩为优秀的人数比及格的人数少的概率为164=37.
考点考查题型 已知两个变量的某些数据,求频率、求概率
考点应用方法 利用频率求概率,利用古典概型求概率
个适花合坛题中意,的则只红有色2和种紫,色其的概花率不P在=同23. 一花坛的概率是( C )
A.13
B.12
2
5
C.3
D.6
技法:无限元素用几何.一个变量为长度.二个变量是平 行人在红灯亮起的 25 秒内到达该路口,即满足至少需要等待 面.变量之比为概率. 15 秒才出现绿灯,根据几何概型的概率公式知所求事件的概 (1)(2016·高考全国卷Ⅱ改编)某路口人行横道的信号灯为红灯 和率绿P灯=交2450替=出58. 现,红灯持续时间为 40 秒.若一名行人来到该
解析:(1)当 X=8 时,由茎叶图可知,乙组四名同学的植树棵 数分别是 8,8,9,10,故 x =8+8+49+10=345,s2=14× 8-3452×2+9-3452+10-3452=1116.

高考数学二轮复习计数原理与概率

高考数学二轮复习计数原理与概率

6
x
3 2
k
,k≤6,k∈N,
由 6-32k=0,解得k=4,
则 T5=(-1)4×32×C46=135,
√A.144种
C.672种
B.336种 D.1 008种
选取的 3 个名称中含有祝融的共有 C29种不同的情况. 分析选取的 3 个名称的不同情况有 A33种, 其中祝融是第 3 个被分析的情况有 A22种, 故祝融不是第 3 个被分析的情况有 C29(A33-A22)=144(种).
(2)(2022·广东联考)现要安排甲、乙、丙、丁四名志愿者去国家高山滑雪
√D.P(A|C)=P(B|C)
由题知,从 10 个数中随机地抽取 3 个数,共有 C310=120(种)可能情况, 对于A选项,“恰好抽的是2,4,6”和“恰好抽取的是6,7,8”为互斥事 件,则P(AB)=0,而P(A)P(B)≠0,故A选项错误; 对于 B 选项,P(C)=CC31290=13260=130,故 B 选项错误; 对于 C 选项,P(AB)=0,P(C)=130,故 C 选项错误; 对于 D 选项,由于 P(AC)=P(BC)=C129=316,故由条件概率公式得 P(A|C) =P(B|C),故 D 选项正确.
跟踪演练2 (1)(2022·淄博模拟)若(1-x)8=a0+a1(1+x)+a2(1+x)2+…+
a8(1+x)8,则a6等于
A.-448
B.-112
√C.112
D.448
(1-x)8=(x-1)8=[(1+x)-2]8 =a0+a1(1+x)+a2(1+x)2+…+a8(1+x)8, a6=C28×(-2)2=112.
③P(B)=12;④B 与 A1 相互独立.
A1,A2,A3中任何两个事件都不可能同时发生,因此它们两两互斥,

青海省玉树藏族自治州高考数学二轮复习:13 概率

青海省玉树藏族自治州高考数学二轮复习:13 概率

青海省玉树藏族自治州高考数学二轮复习:13 概率姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017高三上·张家口期末) 在正三角形△ABC内任取一点P,则点P到A,B,C的距离都大于该三角形边长一半的概率为()A . 1﹣B . 1﹣C . 1﹣D . 1﹣2. (2分) (2016高二下·南昌期中) 某同学同时掷两颗骰子,得到点数分别为a、b,则椭圆 =1 (a >b>0)的离心率e= 的概率是()A .B .C .D .3. (2分) (2017高一下·天津期末) 口袋中装有一些大小相同的红球和黑球,从中取出2个球.两个球都是红球的概率是,都是黑球的概率是,则取出的2个球中恰好一个红球一个黑球的概率是()A .B .C .4. (2分)甲、乙、丙三人独立地去译一个密码,分别译出的概率为,,,则此密码能译出的概率是()A .B .C .D .5. (2分)从集合的所有子集中任取一个,这个集合恰是集合的子集的概率是()A .B .C .D .6. (2分) (2016高二下·晋江期中) (1+x)n的展开式中,xk的系数可以表示从n个不同物体中选出k个的方法总数.下列各式的展开式中x8的系数恰能表示从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法总数的选项是()A . (1+x)(1+x2)(1+x3)…(1+x10)B . (1+x)(1+2x)(1+3x)…(1+10x)C . (1+x)(1+2x2)(1+3x3)…(1+10x10)D . (1+x)(1+x+x2)(1+x+x2+x3)...(1+x+x2+ (x10)7. (2分)(2016·普兰店模拟) P为圆C1:x2+y2=9上任意一点,Q为圆C2:x2+y2=25上任意一点,PQ中点组成的区域为M,在C2内部任取一点,则该点落在区域M上的概率为()B .C .D .8. (2分)在平面直角坐标系中,记抛物线y=x﹣x2与x轴所围成的平面区域为M,该抛物线与直线y=kx(k >0)所围成的平面区域为N,向区域M内随机抛掷一点P,若点P落在区域N内的概率为,则k的值为()A .B .C .D .9. (2分)从有个红球和个黒球的口袋内任取个球,互斥而不对立的两个事件是()A . 至少有一个黒球与都是黒球B . 至少有一个红球与都是红球C . 至少有一个黒球与至少有个红球D . 恰有个黒球与恰有个黒球10. (2分) (2018高二下·黑龙江期中) 10张奖券中有3张是有奖的,某人从中不放回地依次抽两张,则在第一次抽到中奖券的条件下,第二次也抽到中奖券的概率为()A .B .C .11. (2分)(2017·昆明模拟) 在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为()A .B .C .D .12. (2分)从单词“equation”中选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)概率为()A .B .C .D .二、填空题 (共5题;共5分)13. (1分)一个几何体的三视图如图所示,俯视图是边长为2的正方形,正视图与侧视图是全等的等腰直角三角形,则此几何体的侧棱长等于________ .14. (1分) (2017高二下·资阳期末) 如图,圆O:x2+y2=16内的正弦曲线y=sinx,x∈[﹣π,π]与x轴围成的区域记为M(图中阴影部分),随机向圆O内投一个点P,记A表示事件“点P落在一象限”,B表示事件“点P落在区域M内”,则概率P(B|A)=________.15. (1分) (2018高一下·南阳期中) 将一颗骰子先后投掷两次分别得到点数,则直线与圆有公共点的概率为________.16. (1分) (2018高二上·宾阳月考) 将一颗骰子投掷两次分别得到点数a,b,则直线ax-by=0与圆(x-2)2+y2=2相交的概率为________.17. (1分)已知某运动员每次投篮命中的概率都为40%.现采取随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机数模拟产生了20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮有两次命中的概率为________.三、解答题 (共4题;共40分)18. (10分) (2017高一上·深圳期末) 一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.19. (10分)某商场对甲、乙两种品牌的商品进行为期100天的营销活动,为调查这100天的日销售情况,随机抽取了10天的日销售量(单位:件)作为样本,样本数据的茎叶图如图.若日销量不低于50件,则称当日为“畅销日”.(Ⅰ)现从甲品牌日销量大于40且小于60的样本中任取两天,求这两天都是“畅销日”的概率;(Ⅱ)用抽取的样本估计这100天的销售情况,请完成这两种品牌100天销量的2×2列联表,并判断是否有99%的把握认为品牌与“畅销日”天数有关.附:K2=P(K2≥k0)0.0500.0100.001k0 3.841 6.63510.828畅销日天数非畅销日天数合计甲品牌乙品牌合计20. (15分) (2017高二下·濮阳期末) 一个袋子里装有7个球,其中有红球4个,编号分别为1,2,3,4;白球3个,编号分别为2,3,4.从袋子中任取4个球(假设取到任何一个球的可能性相同).(Ⅰ)求取出的4个球中,含有编号为3的球的概率;(Ⅱ)在取出的4个球中,红球编号的最大值设为X,求随机变量X的分布列和数学期望.21. (5分) (2016高二下·东莞期中) 某运动员射击一次所得环数X的分布如下:X78910P0.20.30.30.2现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.(Ⅰ)求该运动员两次都命中7环的概率;(Ⅱ)求ξ的分布列和数学期望.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共4题;共40分) 18-1、18-2、19-1、20-1、21-1、第11 页共11 页。

2020版高考数学二轮复习第2部分专题3概率与统计第1讲概率、随机变量及其分布教案理(最新整理)

2020版高考数学二轮复习第2部分专题3概率与统计第1讲概率、随机变量及其分布教案理(最新整理)

第1讲概率、随机变量及其分布[做小题——激活思维]1.若随机变量X的分布列如表所示,E(X)=1。

6,则a-b=( )X0123P0。

1a b0。

1A.0.2C.0。

8 D.-0。

8B[由0。

1+a+b+0.1=1,得a+b=0。

8,又由E(X)=0×0.1+1×a+2×b+3×0。

1=1。

6,得a+2b=1.3,解得a=0。

3,b=0.5,则a-b=-0。

2.]2.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0。

5,两个路口连续遇到红灯的概率为0。

4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( )A.0。

6 B.0.7C.0.8 D.0。

9C[记“第一个路口遇到红灯"为事件A,“第二个路口遇到红灯”为事件B,则P(A)=0.5,P(AB)=0。

4,则P(B|A)=错误!=0.8,故选C。

]3.两个实习生每人加工一个零件,加工为一等品的概率分别为错误!和错误!,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A。

错误!B。

错误!C。

14D。

错误!B[设事件A:甲实习生加工的零件为一等品;事件B:乙实习生加工的零件为一等品,且A,B相互独立,则P(A)=错误!,P(B)=错误!,所以这两个零件中恰有一个一等品的概率为P(A错误!)+P(错误!B)=P(A)P(错误!)+P(错误!)P(B)=错误!×错误!+错误!×错误!=错误!。

]4.设随机变量X~B(2,p),Y~B(4,p),若P(X≥1)=错误!,则P(Y≥1)=( )A.错误!B。

错误!C。

错误!D.1C[∵X~B(2,p),∴P(X≥1)=1-P(X=0)=1-C错误!(1-p)2=错误!,解得p=错误!,∴P(Y≥1)=1-P(Y=0)=1-C0,4(1-p)4=1-错误!=错误!,故选C.]5.罐中有6个红球和4个白球,从中任取1球,记住颜色后再放回,连续取4次,设X为取得红球的次数,则X的方差D(X)的值为________.错误![因为是有放回地取球,所以每次取球(试验)取得红球(成功)的概率均为错误!,连续取4次(做4次试验),X为取得红球(成功)的次数,则X~B错误!,∴D(X)=4×错误!×错误!=错误!.]6.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为________.(附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ<X<μ+σ)=0。

新高考数学二轮总复习第三部分专题六.3统计与概率小题专项练课件

新高考数学二轮总复习第三部分专题六.3统计与概率小题专项练课件
种不同的
C 15 C 110
取法,所求概率为 2
C 15
=
50
105
=
10
.
21
4.(2021江西萍乡高三检测,8)算盘是中国传统的计算工具,其形长方,周为
木框,内贯直柱,俗称“档〞,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每
珠作数一.算珠梁上局部叫上珠,梁下局部叫下珠.例如:在十位档拨上一颗
=
4
4
P(B|A2)= ,P(B|A3)= ,而
11
11
1
3
,P(A3)= ;P(B|A1)=
5
10
=
5
,由此知选项
11
B 正确.
P(B)=P(A1B)+P(A2B)+P(A3B)
1
=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=2
此知选项 AC 不正确.
1 5
×
2 11
1
2
×
5
11
1
+5
×
4
11
+
3
10
×
4
11
=
9
.由
22
考向四
相互独立事件及二项分布
10.(2021天津,13)甲、乙两球落入盒子的概率分别为
落入盒子互不影响,那么甲、乙两球都落入盒子的概率为
乙两球至少有一个落入盒子的概率为
答案
1
6
1 1
.假定两球是否

2 3
;甲、
.
2
3
解析 两球都落入
1
p1=2
1
2 2

适用于新高考新教材2023届高考数学二轮总复习专题四概率与统计课件

适用于新高考新教材2023届高考数学二轮总复习专题四概率与统计课件

4.独立性检验
对于取值分别是{x1,x2}和{y1,y2}的分类变量X和Y,其2×2列联表是:
变量
y1
y2
合计
x1
a
b
a+b
x2
c
d
c+d
a+c
b+d
n
合计
随机变量
2
(-)
2
χ =(+)(+)(+)(+),其中 n=a+b+c+d.
5.概率的计算公式
事件包含的基本事件数
1.重视新增知识,如百分位数、条件概率与全概率公式、分层抽样中
的样本数字特征等,在理解的基础上能熟练运用相关公式进行计算.
2.重视阅读理解,本部分知识与实际联系密切,一般阅读量较大,需要平
时多加训练,抓住材料本质,提炼关键内容,通过数学建模达到处理题
备考 目信息的目的.
策略 3.重视对统计图表信息题的训练,此类问题常通过真实的统计图表,以
3.(2021·全国甲·理10)将4个1和2个0随机排成一行,则2个0不相邻的概率为
(
)
1
A.3
2
B.5
2
C.3
4
D.5
答案 C
解析 将 4 个 1 和 2 个 0 随机排成一行的总的排法为C62 =15 种,其中 2 个 0 不相
邻的排法为C52 =10
种,所以 2 个 0
2
不相邻的概率为 .
3
(1)古典概型的概率计算公式 P(A)=
基本事件总数
(2)互斥事件的概率计算公式 P(A∪B)=P(A)+P(B);
(3)对立事件的概率计算公式 P()=1-P(A);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率与统计概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结:类型一 “非等可能”与“等可能”混同例1 掷两枚骰子,求所得的点数之和为6的概率.错解 掷两枚骰子出现的点数之和2,3,4,…,12共11种基本事件,所以概率为P=111剖析 以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=536.类型二 “互斥”与“对立”混同例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .以上均不对 错解 A剖析 本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在 :(1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生.事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C .类型三 “互斥”与“独立”混同例3 甲投篮命中率为O .8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?错解 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,则两人都恰好投中两次为事件A+B ,P(A+B)=P(A)+P(B):2222330.80.20.70.30.825c c ⨯+⨯=剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同.解: 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,且A ,B相互独立,则两人都恰好投中两次为事件A·B,于是P(A·B)=P(A)×P(B)= 0.169类型四 “条件概率P(B / A )”与“积事件的概率P(A·B)”混同例4 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.错解 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件C,所以P(C)=P(B/A)=6293=.剖析 本题错误在于P(A ⋅B)与P(B/A)的含义没有弄清, P(A ⋅B)表示在样本空间S中,A 与B 同时发生的概率;而P (B/A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率。

解: P (C )= P(A ⋅B)=P (A )P (B/A )=46410915⨯=.备用1. 某班数学兴趣小组有男生和女生各3名,现从中任选2名学生去参加校数学竞赛,求(I ) 恰有一名参赛学生是男生的概率; (II )至少有一名参赛学生是男生的概率; (Ⅲ)至多有一名参赛学生是男生的概率。

解:基本事件的种数为26c =15种(Ⅰ)恰有一名参赛学生是男生的基本事件有1313c c ⋅=9种 ∴所求事件概率P 1=159=0.6 (Ⅱ)至少有一名参赛学生是男生这一事件是由两类事件构成的,即恰有一名参赛学生是男生和两名参赛学生都是男生,∴所求事件概率P 2=8.0151215923==+c (Ⅲ)至多有一名参赛学生是男生这一事件也是由两类事件构成的,即参赛学生没有男生和恰有一名参赛学生是男生,∴所求事件概率P 3=8.0151215923==+c 2. 已知两名射击运动员的射击水平,让他们各向目标靶射击10次,其中甲击中目标7次,乙击中目标6次,若在让甲、乙两人各自向目标靶射击3次中,求:(1)甲运动员恰好击中目标2次的概率是多少?(2)两名运动员都恰好击中目标2次的概率是多少?(结果保留两位有效数字) 解. 甲运动员向目标靶射击1次,击中目标的概率为7/10=0.7乙运动员向目标靶射击1次,击中目标的概率为6/10=0.6(1)甲运动员向目标靶射击3次,恰好都击中目标2次的概率是44.0)7.01(7.01223=-⨯⨯c(2)乙运动员各向目标靶射击3次,恰好都击中目标2次的概率是[][]19.0)6.01(6.0)7.01(7.012231223=-⋅⋅⋅-⋅⋅c c作业1. 甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是 ( ) (A )21p p (B ))1()1(1221p p p p -+- (C )211p p - (D ))1)(1(121p p --- 2. 连续掷两次骰子,以先后得到的点数m 、n 为点P (m ,n )的坐标,那么点P在圆x 2+y 2=17外部的概率应为( )(A )31 (B )32 (C )1811 (D )18133. 从含有500个个体的总体中一次性地抽取25个个体,假定其中每个个体被抽到的概率相等,那么总体中的每个个体被抽取的概率等于_______。

4. 若在二项式(x +1)10的展开式中任取一项,则该项的系数为奇数的概率是 .(结果用分数表示)5. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(Ⅰ)摸出2个或3个白球 ; (Ⅱ)至少摸出一个黑球.6. 已知甲、乙两人投篮的命中率分别为0.4和0.6.现让每人各投两次,试分别求下列事件的概率:(Ⅰ)两人都投进两球;(Ⅱ)两人至少投进三个球.作业答案1. B2. D3. 0.054. 1145.(Ⅰ)P (A+B )= P (A )+P (B )=481325482325C C C C C C ⋅+⋅=76; (Ⅱ) P=1-4845C C =14131411=-6.(Ⅰ)P(两人都投进两球)=0222)6.0()4.0(C 2022)6.0()4.0(C =.0576.036.016.0=⨯ (Ⅱ)P (两人至少投进三个球)=3072.01728.00768.00576.0=++ 第二课时 例题例1 甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.(Ⅰ)甲抽到选择题、乙抽到判断题的概率是多少?(Ⅱ)甲、乙二人中至少有一人抽到选择题的概率是多少?(2000年新课程卷)例2 如图,用A 、B 、C 三类不同的元件连接成两个系统N 1、N 2.当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80,0.90,0.90.分别求系统N 1、N 2正常工作的概率P 1、P 2. (2001年新课程卷)例3 某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).(Ⅰ)求至少3人同时上网的概率;(Ⅱ)至少几人同时上网的概率小于0.3?(2002年新课程卷)例4 有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.(Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率.(精确到0.001) (2003年新课程卷)备用 从分别写有0,1,2,3,4,5,6的七张卡片中,任取4张,组成没有重复数字的四位数,计算:(1)这个四位数是偶数的概率; (2)这个四位数能被9整除的概率; (3)这个四位数比4510大的概率。

解: (1)组成的所有四位数共有7203616=⋅A C 个。

四位偶数有:个位是0时有12036=A ,个位不是0时有300251513=⋅⋅C C C ,共有120+300=420个.∴ 组成的四位数为偶数的概率为127720420= (2)能被9整除的数,应该各位上的数字和能被9整除.数字组合为:1,2,6,0 1,3,5,0 2,4,5,0 3,4,5,6 2,3,4,0 此时共有9624724443313=+=+⋅⨯A A C .∴ 能被9整除的四位数的概率为15272096= (3)比4510大的数分别有:千位是4,百位是5时,有15525=-A ;千位是4,百位是6时,有2025=A ;千位大于4时,有2403612=⋅A C ;故共有240+20+18=278.∴四位数且比4510大的概率为360139720278=作业1. 一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是 ( )(A )0.1536(B ) 0.1808 (C ) 0.5632 (D ) 0.97282. 种植两株不同的花卉,它们的存活率分别为p 和q ,则恰有一株存活的概率为 ( )(A) p+q -2p q (B) p+q -pq (C) p+q (D) pq 3. 有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2和3,现任取出3面,它们的颜色与号码不相同的概率是 . 4. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是 (用分数作答)5. 某产品检验员检查每一件产品时,将正品错误地鉴定为次品的概率为0.1,将次口错误地鉴定为正品的概率为0.2,如果这位检验员要鉴定4件产品,这4件产品中3件是正品,1件是次品,试求检验员鉴定成正品,次品各2件的概率.6. 如图,用D C B A ,,,表示四类不同的元件连接成系统M .当元件B A ,至少有一个正常工作且元件D C ,正常工作.已知元件D C B A ,,,正常工作的概率依次为0.5,0.6,0.7,0.8统M 正常工作的概率)(M P .例题答案1. (Ⅰ) 154; (Ⅱ)1513.2. 0.648; 0.792.3. (Ⅰ) 3221; (Ⅱ) 5人. 4.(Ⅰ) 0.176 ; (Ⅱ) 0.012 . 作业答案1. D2. A3.141 4. 755.解:有两种可能:将原1件次品仍鉴定为次品,原3件正品中1件错误地鉴定为次品;将原1件次品错误地鉴定为正品,原3件正品中的2件错误地鉴定为次品. 概率为P =9.01.02.09.01.08.0223213⨯⨯⨯+⨯⨯⨯C C =0.1998 6.解: =)(M P )](1[B A P ⋅-)](1[D C P ⋅-=0.752 第三课时 例题例1 从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求: (Ⅰ)选出的3位同学中,至少有一位男同学的概率;(Ⅱ)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.(2004年全国卷Ⅰ)例2 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率;(Ⅱ)A 组中至少有两支弱队的概率. (2004年全国卷Ⅱ)例3 某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率;(Ⅱ)求这名同学至少得300分的概率. (2004年全国卷Ⅲ)例4 从4名男生和2名女生中任选3人参加演讲比赛.(Ⅰ)求所选3人都是男生的概率; (Ⅱ)求所选3人中恰有1名女生的概率;(Ⅲ)求所选3人中至少有1名女生的概率. (2004年天津卷)备用 A 、B 、C 、D 、E 五人分四本不同的书,每人至多分一本,求:(1)A 不分甲书,B 不分乙书的概率;(2)甲书不分给A 、B ,乙书不分给C 的概率。

相关文档
最新文档