控制图类型

合集下载

2017年质量工程师:控制图的类型及用途

2017年质量工程师:控制图的类型及用途

2017年质量工程师:控制图的类型及用途控制图是指一种能够帮助质量工程师监控生产过程的图表方法。

控制图的目的是为了在生产过程中能够及时地发现问题、解决问题并改进生产过程。

控制图分为多种类型,每种类型都有其自己的用途,本篇文章将介绍其中几种类型及其用途。

X-bar 和 R 控制图X-bar 和 R 控制图是两种紧密关联的控制图。

这两种控制图主要用于监控一系列连续数据(例如:长度、重量、厚度等等)。

控制图上的 X-bar 线显示出样本平均值的变化,R 线则显示出样本范围的变化。

这两条线都可以用于判断样本数据是否稳定、或者是是否出现了特定的趋势或方差。

当样本数据的范围超出了预定范围,或者是出现了规律性的趋势时,控制图就会给出警报。

这时候,生产工艺需要进行调整,以使整个生产过程恢复正常。

P 控制图P 控制图也是一种非常常见的控制图。

P 是指“比率”(Proportion)。

比率是指符合指定标准的样本数量与总样本数量的比值。

P 控制图用于追踪生产过程中的良品率。

如果某个生产过程中的良品率不稳定,或者是呈现出特定的趋势,控制图将会自动给出警报。

此时,生产工艺需要进行调整,以恢复生产过程的正常状态,以达到稳定的良品率目标。

C 控制图C 控制图是另一种追踪良品率的控制图。

它的名称中的“C”指的是“计数”(Count)。

C 控制图主要用于监控生产过程中缺陷的数量。

它会给出样本中缺陷数目的平均值和范围。

如果监控过程中发现缺陷数量超出了预定范围,或者是出现了规律性的趋势,C 控制图就会警报。

此时,需要对生产过程进行调整,以纠正缺陷,提高生产质量。

过程能力指数控制图过程能力指数控制图也是一种特殊的控制图。

它用于测量生产过程是否具有一定的稳定性。

Ppk 和 Cpk 是过程能力指数的两种类型,它们用于帮助质量工程师决定当前生产能力是否足够满足产量要求。

当 Ppk 或 Cpk 值大于或等于 1.33 时,生产过程被认为是稳定的,质量水平满足要求。

帕累托图、鱼骨图、散点图、条形图、直方图、趋势图、控制图的总结

帕累托图、鱼骨图、散点图、条形图、直方图、趋势图、控制图的总结

系统集成项目管理工程师教程各种图的总结目录帕累托图 (3)一、定义 (3)二、最优 (3)三、最优的条件 (4)四、定律 (4)鱼骨图 (6)一、定义 (6)二、鱼骨图的三种类型 (6)三、鱼骨图制作 (6)四、鱼骨图使用步骤 (7)五、鱼骨图案例分析 (8)六、用统计工具软件MINTAB制作鱼骨图 (8)散点图 (9)条形图 (10)一、简介 (10)二、描绘条形图的要素 (10)直方图 (12)一、科技名词定义 (12)二、百科名片 (12)三、目录 (12)四、直方图的绘制方法 (13)五、用直方图来观察和分析生产过程质量状况 (13)六、如何判断直方图是否正常的形状: (14)七、直方图在摄影上的应用 (16)趋势图 (17)一、简介 (17)二、柱形图 (17)控制图 (20)一、百科名片 (20)二、定义 (20)三、作用 (21)四、控制图的预防原理 (21)五、统计过程控制的实质 (21)六、计量值控制图 (22)七、计数值控制图 (22)八、判断稳态的准则 (23)九、应用控制图需要考虑的问题 (24)十、基本结构 (25)十一、详细分类 (25)十二、扩展阅读 (25)帕累托图一、定义帕累托图又叫排列图、主次图,是按照发生频率大小顺序绘制的直方图,表示有多少结果是由已确认类型或范畴的原因所造成。

它是将出现的质量问题和质量改进项目按照重要程度依次排列而采用的一种图表。

可以用来分析质量问题,确定产生质量问题的主要因素。

按等级排序的目的是指导如何采取纠正措施:项目班子应首先采取措施纠正造成最多数量缺陷的问题。

从概念上说,帕累托图与帕累托法则一脉相承,该法则认为相对来说数量较少的原因往往造成绝大多数的问题或缺陷。

帕累托图排列图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率.分析线表示累积频率,横坐标表示影响质量的各项因素,按影响程度的大小(即出现频数多少)从左到右排列,通过对排列图的观察分析可以抓住影响质量的主要因素.帕累托法则往往称为二八原理,即百分之八十的问题是百分之二十的原因所造成的。

控制图分类

控制图分类

二、控制图诞生
世界上第一张控制图诞生于1924年5月16日,是由美国贝 尔电话实验室(Bell Telephone Laboratory)质量课题研究 小组过程控制组学术领导人休哈特博士提出的不合格品率p控 制图。随着控制图的诞生,控制图就一直成为科学管理的一 个重要工具,特别方面成了一个不可或缺的管理工具。它是 一种有控制界限的图,用来区分引起的原因是偶然的还是系 统的,可以提供系统原因存在的资讯,从而判断生产过於受 控状态。控制图按其用途可分为两类,一类是供分析用的控 制图,用来控制生产过程中有关质量特性值的变化情况,看 工序是否处於稳定受控状;再一[1]类的控制图,主要用於发 现生产过程是否出现了异常情况,以预防产生不合格品。
四、控制图目的
运用控制图的目的之一就是,通过观察控制图上产品质量 特性值的分布状况,分析和判断生产过程是否发生了异常,一 旦发现异常就要及时采取必要的措施加以消除,使生产过程恢 复稳定状态。也可以应用控制图来使生产过程达到统计控制的 状态。产品质量特性值的分布是一种统计分布.因此,绘制控 制图需要应用概率论的相关理论和知识。
五、控制图分类
类 别
名称
平均值---极差控 制图
计 平均值---标准差 量 控制图 值 控 中位数---极差控 制 制图 图
单值---移动极差 控制图
不合格品数控制 图


不合格品率控制 图

控 制 缺陷数控制图

单位缺陷数控制

控制图 符号 -R -S -R
x--Rs
pn p c u
控制图种类及适用场合
均值-极差控制图
a:最常用、最基本的控制图; b:用于控制对象为长度、重量、强度、厚度、

过程质量控制常用10种工具控制图常见的图形及原因分析

过程质量控制常用10种工具控制图常见的图形及原因分析

过程质量控制常用10种工具控制图常见的图形及原因分析过程质量控制常用10种工具一,矩阵图把问题及与其有对应关系的各因素按数学矩阵形式排列,并在其交点处标出三者之间关系程度,从中确定关键点。

是中、高层管理人员计划,控制的管理方法之一。

二,水平对比法利用量化的标准,寻找行业“最佳做法”,将过程和结果,效益同公认的处于领先地位的竞争者的过程,结果和效益进行比较,从而认清目标,并据此进行过程和系统化的改进。

是高层管理人员的重要管理工具。

三,平衡记分卡通过由顾客(下过程,下工序),过程管理,效益(质量)指标和学习、能力成长等四个项目组成的四维度矩阵表,将企业的目标,岗位的职能任务逐一转化为量化的指标和初始行动,从而进行全面评价和考核,避免片面性。

是企业绩效评价和考核的基本模式工具。

四,过程决策程序图为了完成某个项目业务或达到某个目标,在制定行动计划或方案设计时,预测可能出现的障碍和结果。

并相应提出各种应变计划的方法,这样在计划执行过程中遇到不利情况时,仍能按其他方案顺利进行,以达到预定的计划目标。

是中、高曾管理决策,组织领导的基本工具。

五,统筹法(网络图)把推进计划所必须的各过程和作业,按顺序,占用时间,从属关系,用网络形式表示出矢线走向,找出影响工作计划进度的关键和非主导因素,从而进行统筹,协调。

取得最佳结果。

是计划管理非常有效的控制工具,方法。

六,因果图用来揭示过程的输出,缺陷和问题,与其潜在原因的关系,表述并分析其因果关系。

是管理和作业中进行偏差纠正的重要方法。

七,排列图帕累托原则:80%的结果源于20%的原因。

比较不同的问题原因和问题类型所导致缺陷产生的频率及其生产的影响,选出最重要的改进项中的优先项目,确定关键变量或决定主要原因,进行解决。

是管理工作中找出关键点的基本数据分析方法。

八,散步图验证因果假设的一种途径,从若干成对数据中验证自变量与因变量之间是否存在相关关系。

是管理层对工作过程输出结果进行数据分析的基本工具。

控制图

控制图
2. 均值-标准差控制图
与均值-极差控制图类似,这种控制图也是用于观察连续数据的均值和变异性(标准差) 的变化情况。如果点子在控制限内随机分布,且无异常点,说明过程处于控制状态;如果 点子超出控制限或出现异常点,说明过程可能失控。
3. 单值-移动极差控制图
这种控制图用于观察单个数据值和连续数据的变化情况。如果点子在控制限内随机分布, 且无异常点,说明过程处于控制状态;如果点子超出控制限或出现异常点,说明过程可能 失控。
4. 观察控制图
观察控制图上的点 子分布情况,判断 过程是否处于控制 状态。
5. 采取行动
如果发现异常点或 过程失控,采取适 当的措施解决问题 并防止问题再次发 生。
控制图的局限性
1. 数据必须是连续的
控制图只能用于观察连续的数据,对于离散的数据或非连续的数 据,需要采用其他方法进行分析。
2. 需要足够的样本数量
控制图原理
控制图基于中心极限定理和概率统计原理。中心极限定理表明,当样本量足够大时,任何随机变量的 取值都会围绕一个中心值波动,且这个波动是有限的。因此,我们可以通过控制图的上下限来判断过 程是否处于控制状态。
控制图的原理是通过对过程进行多次抽样,计算统计量(如均值、中位数、极差等),并将这些统计 量绘制在图上。通过观察图的走势,我们可以判断过程是否受控,并发现异常情况。如果过程受控, 则说明过程的质量稳定;如果过程失控,则说明过程的质量存在问题。
平均数与标准差控制图
总结词
平均数与标准差控制图是一种常用的统计 控制图,用于监控一组数据的平均值和标 准差。
VS
详细描述
平均数与标准差控制图由两个图表组成: 一个图表显示平均数,另一个图表显示标 准差。这种控制图适用于需要了解数据分 布情况的应用场景,如科学研究、质量控 制和金融分析等。

控制图的类型及用途

控制图的类型及用途

控制图的类型及用途
1.Xbar-R控制图Xbar-R.zip
对于计量数据而言,这是常用最基本的控制图。

它的控制对象为长度、重量、纯度、时间和生产量等计量值的场合。

2.Xbar-S控制图Xbar-S.zip
当样本大小n>10或12,这时应用极差估计总体标准差的效率降低,需要用S 图来代替R图。

3.Me-R控制图Me-R.zip
用中位数图代替均值图。

由于中位数的计算觉得,所以多用于现场需要把测定的数据直接记人控制图进行控制的场合,这时为了简便,当然规定奇数个数据。

4.X-Rs,控制图X-Rs.zip
多用于下列场合:对每一个产品都进行检验,采用自动化检查和测量的场合;取样费时、昂贵的场合以及如化工等过程,样品均匀,多抽样也无太大的意义的场合。

由于它不像前三种那样能取得较多的信息,所以它判断过程变化的灵敏都也要差一些。

5.p控制图p-chart.zip
用于控制对象为不合格品率或合格率等计数值质量指标的场合。

常见的不良率有不合格品率、废品率、交货延迟率、缺勤率、差错率等等。

6.np控制图np-chart .zip
用于控制对象为不合格品数的场合。

由于计算不合格品率需要进行除法,比较麻烦,所以样本大小相同的情况下,用此图比较方便。

7.C控制图c-chart .zip
用于控制一部机器,一个部件一定的长度,一定的面积或任一定的单位中所出现的缺陷数目。

8.U控制图u-chart .zip
当样品的大小保持不变时可用C控制图,而当样品的大小变化时则应换算为平均每单位的缺陷数后再使用U控制图。

控制图

控制图

控制图控制图就是对生产过程的关键质量特性值进行测定、记录、评估并监测过程是否处于控制状态的一种图形方法。

根据假设检验的原理构造一种图,用于监测生产过程是否处于控制状态。

它是统计质量管理的一种重要手段和工具。

英文control chart定义控制图又称为管制图。

第一张控制图诞生于1924年5月16日,由美国的贝尔电话实验所的休哈特(W.A.Shewhart)博士在首先提出管制图使用後,管制图就一直成控制图为科学管理的一个重要工具,特别方面成了一个不可或缺的管理工具。

它是一种有控制界限的图,用来区分引起的原因是偶然的还是系统的,可以提供系统原因存在的资讯,从而判断生产过於受控状态。

控制图按其用途可分为两类,一类是供分析用的控制图,用来控制生产过程中有关质量特性值的变化情况,看工序是否处於稳定受控状;再一类的控制图,主要用於发现生产过程是否出现了异常情况,以预防产生不合格品。

作用在生产过程中,产品质量由于受随机因素和系统因素的影响而产生变差;前者由大量微小的偶然因素叠加而成,后者则是由可辨识的、作用明显的原因所引起,经采取适当措施可以发现和排除。

当一生产过程仅受随机因素的影响,从而产品的质量特征的平均值和变差都基本保持稳定时,称之为处于控制状态。

此时,产品的质量特征是服从确定概率分布的随机变量,它的分布(或其中的未知参数)可依据较长时期在稳定状态下取得的观测数据用统计方法进行估计。

分布确定以后,质量特征的数学模型随之确定。

为检验其后的生产过程是否也处于控制状态,就需要检验上述质量特征是否符合这种数学模型。

为此,每隔一定时间,在生产线上抽取一个大小固定的样本,计算其质量特征,若其数值符合这种数学模型,就认为生产过程正常,否则,就认为生产中出现某种系统性变化,或者说过程失去控制。

这时,就需要考虑采取包括停产检查在内的各种措施,以期查明原因并将其排除,以恢复正常生产,不使失控状态延续而发展下去。

通常应用最广的控制图是W.A.休哈特在1925年提出的,一般称之为休哈特控制图。

控制图类型的绘制

控制图类型的绘制

控制图类型的绘制引言控制图是一种用于监控和评估过程稳定性的图表工具。

它能够帮助我们识别过程中的特殊因素和异常情况,从而及时采取措施进行调整和改进。

控制图有许多类型,每种类型都适用于不同的情况和数据类型。

本文将介绍几种常见的控制图类型,并详细介绍它们的绘制方法和解读方法。

1. 均值图均值图是用于监控数据的中心趋势的一种控制图。

它通过绘制数据的均值和控制线来反映过程的稳定状态。

下面是均值图的绘制步骤:1.收集数据,计算每组数据的平均值。

2.确定控制线的位置。

通常有一个中心线(平均值的线)和上下限,上下限可以通过计算平均值的标准差得到。

3.将数据的平均值绘制在均值图上。

4.根据控制线的位置,判断数据的稳定性。

均值图的解读方法是观察数据是否在控制线内波动,如果有超出控制线的数据点出现,则可能表示过程存在特殊因素。

2. 范围图范围图是用于监控数据的变异性的一种控制图。

它通过绘制数据的范围和控制线来反映过程的稳定状态。

下面是范围图的绘制步骤:1.收集数据,计算每组数据的范围(最大值减去最小值)。

2.确定控制线的位置。

通常有一个中心线和上下限,上下限可以通过计算范围的标准差得到。

3.将数据的范围绘制在范围图上。

4.根据控制线的位置,判断数据的稳定性。

范围图的解读方法是观察数据的范围是否在控制线内波动,如果有超出控制线的范围出现,则可能表示过程存在特殊因素。

3. 标准差图标准差图是用于监控数据的离散程度的一种控制图。

它通过绘制数据的标准差和控制线来反映过程的稳定状态。

下面是标准差图的绘制步骤:1.收集数据,计算每组数据的标准差。

2.确定控制线的位置。

通常有一个中心线和上下限,上下限可以通过计算标准差的标准差得到。

3.将数据的标准差绘制在标准差图上。

4.根据控制线的位置,判断数据的稳定性。

标准差图的解读方法是观察数据的标准差是否在控制线内波动,如果有超出控制线的标准差出现,则可能表示过程存在特殊因素。

4. p图p图是用于统计控制的一种控制图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制图的类型2011-5-12 16:54|发布者: 小编H|查看: 2293|评论: 5摘要: 4.2.1 均值极差图――对于计量型数据而言,这是最常用最基本的控制图。

它用于控制对象为长度、重量、强度、纯度、时间和生产量等计量值的场合...4.2.1 均值极差图――对于计量型数据而言,这是最常用最基本的控制图。

它用于控制对象为长度、重量、强度、纯度、时间和生产量等计量值的场合。

Xbar控制图用于观察分布均值的变化,R控制图用于观察分布的分散情况或变异度的变化,Xbar-R图将二者联合运用,用于观察分布的变化。

4.2.2 均值极差图――控制图是用标准差图(S图)代替极差图(R图)。

极差计算简便,故R图得到广泛应用,但当样本大小n>10或n>12,这时用极差估计总体标准差的效率降低,要用S图来代替R图。

4.2.3 中位数极差图――用中位数图(Xmed图)代替均值图(Xbar图)。

中位数指一组按大小顺序排列的数列中居中的数。

例如,在数列2、3、7、13、18,中位数为7,在数列2、3、7、9、13、18,有偶数个数据,中位数规定为中间两个数的均值,即=8。

中位数的计算比均值简单,多用于现场需要把测定数据直接记入控制图进行控制的场合,为了简便,规定用奇数个数据。

4.2.4 单值移动极差图――用于对每一个产品都进行检验,采用自动化检查和测量;取样费时、昂贵以及化工过程,样品均匀,多抽样也无太大意义的场合。

X-Rs不能获得较多的信息,判断过程变化的灵敏度要差一些。

4.2.5 指数权重移动均值图4.2.6 运行图――运行图不是控制图,它只直接反映产品质量特性数据的变化情况,而没有反应过程统计受控的稳定控制线。

仅仅供掌握测量值的变化曲线。

4.2.7 预控图――它根据用户给定的控制百分率来确定控制线的一种控制图,该控制图分别以红,黄,绿三种颜色区域表示过程失控,警戒和受控状态。

控制线计算简单方便,控制图清晰醒目。

4.2.8 不合格品率图(P图)――属于计数类控制图,不合格品率图是由每一组数据不合格品率组成的连线图。

不合格品率图由数据点、数据线、控制线、判异线组成.控制线、判异线均可通过属性菜单选择。

4.2.9 不合格品数图(Pn图)――属于计数类控制图,不合格品数图是由每一组数据不合格品数组成的连线图。

不合格品数图由数据点、数据线、控制线、判异线组成.控制线、判异线均可通过属性菜单选择。

4.2.10 不合格数图(C图)――属于计数类控制图,不合格数图是由每一组数据不合格数组成的连线图。

不合格数图由数据点、数据线、控制线、判异线组成.控制线、判异线均可通过属性菜单选择。

4.2.11 单位不合格数图(U图)――属于计数类控制图,不合格数图是由每一组数据平均不合格数组成的连线图。

不合格数图由数据点、数据线、控制线、判异线组成.控制线、判异线均可通过属性菜单选择。

4.2.12 直方图――是由每一区间的频数组成的柱状图。

计数和计量类参数都可以做直方图。

直方图的数据取决于前一图的数据。

对于计量类参数,可以做均值直方图、中位数直方图、单值直方图。

对于计数类型参数可以做不合格品率直方图、不合格品数直方图、不合格数直方图、单位不合格数直方图。

直方图可以显示控制线(需设定)、规范线、合理线、目标线等信息。

4.2.13 个体直方图――是由每一区间的频数组成的柱状图。

计量类参数可以做个体直方图。

直方图的数据为录入的每一个数据。

直方图可以显示控制线(需设定)、规范线、合理线、目标线等信息。

4.2.14 原因排列图――将各类异常原因出现的次数从高到低排列的柱状图。

通过原因排列图用户可以很方便找出重要的原因,为企业进行决策。

计量和计数类参数均可做原因排列图。

4.2.15 措施排列图――将各类纠正措施出现的次数从高到低排列的柱状图。

计量和计数类参数均可做措施排列图。

4.2.16 备注排列图――将各类备注信息出现的次数从高到低排列的柱状图。

计量和计数类参数均可做备注排列图。

4.2.17 DPTO图――将各类缺陷信息的占质量特性的总数的百分比值从高到低排列的柱状图。

只有缺陷类型的计数参数可做DPTO图。

缺陷类型可以在系统管理中进行定义。

4.2.18 DPMO图――将各类缺陷信息的占质量特性的总数的百分比放大100万倍的数据从高到低排列的柱状图。

只有缺陷类型的计数参数可做DPMO图。

缺陷类型可以在系统管理中进行定义。

4.3 图形属性图形属性界面分基本和可选两页。

界面如下:基本页用于设置图形线的颜色和点的形状。

可以设置的颜色有:数据线的颜色、正常点的颜色、异常点的颜色、控制线(UCL,CL,LCL)、规范线、合理限、目标线、判异线颜色、柱状条、柱状条标记颜色。

颜色设定操作流程:下拉颜色组合框――〉选择要改变颜色的对象――〉单击颜色显示区右边的按钮-――〉在颜色对框中选定颜色――〉单击设定按钮,即可生效。

另外还可以设置点的形状和大小,该设置仅对数据点有效。

可选页面中可以设置图形区域中显示Y轴数据的范围。

当选为所有数据可见时,则只有图形数据点范围内的数据可见。

当选择控制线范围可见时,则数据显示的上下范围分别为UCL和LCL。

当选择两者时,控制线和数据都将显示。

选择手工,可设定数据的显示范围:设置显示的数据点数可以控制水平方向上显示的范围。

通过右侧的可选按钮可以控制某些数据线的显示与不显示。

当图形为直方图时,可设定直方图的分组数。

4.4判异4.4.1 判异规则当现场数据不满足用户或者管理者定义的判异规则时,图形区域中的相关点会以异常色彩标出。

用户定义的判异规则有八种基本情况:(1)n个点出界;(2)连续n个点落在中心线同一侧;(3)连续n个点递增或者递减;(4)连续点n中相邻点交替上下;(5)连续n点中有m点落在中心线同一侧的B区以外;(6)连续n点中有m点落在中心线同一侧的C区以外;(7)连续n点落在中心线两侧的C区内;(8)连续n点落在中心线两侧且无一在C区内。

用户基于这八种基本情况进行任意延伸形成符合用户需求的判异规则。

当数据出现异常且该点为失控点时,单击该点可以察看异常信息,关联点以异常色标注。

4.4.2失控点与关联点以数据顺序进行判断,当不符合判异规则的情形出现时所对应的点即为失控点,该规则在判断时所涉及的点为相关点。

一个点可能有多处异常。

各异常信息会在点的拾取界面中显示出来。

4.4.3控制线(1)关于控制线设定控制线的设定影响到了判异。

控制线主要有三种设定方式:指定控制线、按照理论值计算控制线、按照公式计算方式。

若设为指定控制线,则在作图前请指定控制线。

指定控制线有两种方式:在系统管理中指定,即在参数设定时指定。

另外可在现场监控中指定控制线。

其操作流程为:选择主菜单中的“工具“――〉选择设置控制线菜单项――〉在下拉组合框中选择图形类型(如均值极差图)――〉填写控制线的值(对于双图的图形类型,需要同时设定主副图的控制线)。

若设为按理论值计算控制线。

对于不同的图形,其相关的理论参数也不同。

对于均值标准差图、均值极差图、中位数极差图、单值移动极差图需要指定参数的期望值(µ)、方差(σ)对于EWMA图需要指定目标值和方差(σ).对于不合格品图、不合格品数图需要指定不合格品率(p)、对于缺陷图(不合格数图、单位不合格数图)需要指定不合格数(c)若设为公式计算方式,作图时系统会按照指定的公式计算出控制线。

(2)关于判异所有的判异都是基于控制线进行的。

通常将中心线与上控线之间分为三等分,分别称之为C区、B区、A区。

下方也同样。

可以在图形属性界面中选中使用判异线,清楚的察看异常情况。

4.5 点的拾取在图形界面左键单击数据点即可弹出点的拾取界面。

点的拾取界面由点的本身数据信息、关联数据信息、控制线信息、标签信息、异常信息组成,同时还提供数据异常时,异常原因、纠正措施的选择备注信息的登记和点的剔除功能。

选择剔除当前点后,该点将不会参与作图、判异和计算。

在点的拾取界面界面的操作(追加原因、措施、备注、剔除点)均针对特定子组。

因此在计量参数点的拾取界面剔除一个点,则该组数据全被剔除。

SPC控制图详解什么是控制图?控制图是对过程质量加以测定、记录从而进行控制管理的一种用科学方法设计的图。

控制图的应用控制图中包括三条线1.控制上限(UCL)2.中心线(CL)3.控制下限(LCL)控制图的种类数据:是能够客观地反映事实的资料和数字数据的质量特性值分为:计量值可以用量具、仪表等进行测量而得出的连续性数值,可以出现小数。

计数值不能用量具、仪表来度量的非连续性的正整数值。

计量型数据的控制图Xbar-R图(均值-极差图)Xbar-S图(均值-标准差图)X-MR图(单值-移动极差图)X-R(中位数图)计数型数据的控制图P图(不合格品率图)np图(不合格品数图)c图(不合格数图)u图(单位产品不合格数图)控制图的判异控制图可以区分出普遍原因变差和特殊原因变差1.特殊原因变差要求立即采取措施2.减少普遍原因变差需要改变产品或过程的设计错误的措施1.试图通过持续调整过程参数来固定住普通原因变差,称为过渡调整,结果会导致更大的过程变差造成客户满意度下降。

2.试图通过改变设计来减少特殊原因变差可能解决不了问题,会造成时间和金钱的浪费。

控制图可以给我们提供出出现了哪种类型的变差的线索,供我们采取相应的措施。

控制图上的信号解释有很多信号规则适用于所有的控制图(Xbar图和R图),主要最常见的有以下几种:规则1:超出控制线的点规则2:连续7点在中心线一侧规则3:连续7点上升或下降规则4:多于2/3的点落在图中1/3以外规则5:呈有规律变化SPC控制图建立的步骤1.选择质量特性2.决定管制图之种类3.决定样本大小,抽样频率和抽样方式4.收集数据5.计算管制参数(上,下管制界线等)6.持续收集数据,利用管制图监视制程SPC控制图选择的方法1.X-R控制图用于控制对象为长度、重量、强度、纯度、时间、收率和生产量等计量值的场合。

X控制图主要用于观察正态分布的均值的变化,R控制图主要用于观察正态分布分散或变异情况的变化,而X-R控制图则将二者联合运用,用于观察正态分布的变化。

2.X-s控制图与X-R图相似,只是用标准差(s)图代替极差(R)图而已。

3.Me-R控制图与X-R图也很相似,只是用中位数(Me)图代替均值(X)。

4.X-Rs控制图多用于对每一个产品都进行检验,采用自动化检查和测量的场合。

5.p控制图用于控制对象为不合格品率或合格品率等计数质量指标的场合,使用p图时应选择重要的检查项目作为判断不合格品的依据;它用于控制不合格品率、交货延迟率、缺勤率、差错率等。

6.np控制图用于控制对象为不合格品数的场合。

设n为样本,p为不合格品率,则np为不合格品数。

相关文档
最新文档