掌握高中数学选择题10大解法

合集下载

高考数学选择题十大解法

高考数学选择题十大解法

高考数学选择题十大解法
1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

7.逆推验证法(代答案入题干验证法:将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

8.正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

高考数学选择题十大解法

高考数学选择题十大解法

高考数学选择题十大解法高考数学选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。

选择题的解题思想,渊源于选择题与常规题的联系和区别。

它在一定程度上还保留着常规题的某些痕迹。

高考数学选择题十大解法1.特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B 两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.2√5/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。

题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。

2.极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

例:银行计划将某资金给项目M和N投资一年,其中40%的资金给项目M,60%的资金给项目N,项目M能获得10%的年利润,项目N能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户.为了使银行年利润不小于给M、N总投资的10%而不大于总投资的15%,则给储户回扣率最小值为()A.5%B.10%C.15%D.20%解析:设共有资金为α,储户回扣率χ,由题意得解出0.1α≤0.1×0.4α+0.35×0.6α-χα≤0.15α解出0.1≤χ≤0.15,故应选B.7.逆推验证法(代答案入题干验证法)将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

高考数学选择题十大解题方法总结

高考数学选择题十大解题方法总结

2021高考数学选择题十大解题方法总结数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。

小编准备了高考数学选择题十大解题方法,希望你喜欢。

1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

8.正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

高考数学选择题十大解题方法就为大家介绍到这里,希望对你有所帮助。

高考数学选择题10大解题法则介绍

高考数学选择题10大解题法则介绍

高考数学选择题10大解题法那么介绍高考数学选择题10大解题法那么介绍1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,那么它在一般情况下不真这一原理,到达去伪存真的目的。

2.极端性原那么:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而到达迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.剔除法:利用条件和选择支所提供的信息,从四个选项中剔除掉三个错误的.答案,从而到达正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法:利用数学定理、公式、法那么、定义和题意,通过直接演算推理得出结果的方法。

7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否认错误选择支而得出正确选择支的方法。

8.正难那么反法:从题的正面解决比拟难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比拟、推算,从面得出正确判断的方法。

高考数学选择题十大解题方法总结

高考数学选择题十大解题方法总结

2019高考数学选择题十大解题方法总结数学被运用在世界不同的领域上,包括科学、工程、医学和经济学等。

小编打算了高考数学选择题十大解题方法,希望你喜爱。

1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特别化,利用问题在某一特别状况下不真,则它在一般状况下不真这一原理,达到去伪存真的目的。

2.极端性原则:将所要探讨的问题向极端状态进行分析,使因果关系变得更加明显,从而达到快速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,许多计算步骤繁琐、计算量大的题,一但采纳极端性去分析,那么就能瞬间解决问题。

3.剔除法:利用已知条件和选择支所供应的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特别点代入验证即可解除。

4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简洁的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺干脆量出结果来。

5.递推归纳法:通过题目条件进行推理,找寻规律,从而归纳出正确答案的方法。

6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过干脆演算推理得出结果的方法。

7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

8.正难则反法:从题的正面解决比较难时,可从选择支动身逐步逆推找出符合条件的结论,或从反面动身得出结论。

9.特征分析法:对题设和选择支的特点进行分析,发觉规律,归纳得出正确推断的方法。

10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和推断,此时只能借助估算,通过视察、分析、比较、推算,从面得出正确推断的方法。

高考数学选择题十大解题方法就为大家介绍到这里,希望对你有所帮助。

高考数学选择题十大解题方法高考数学解题方法与技巧

高考数学选择题十大解题方法高考数学解题方法与技巧

高考数学选择题十大解题方法高考数学解题方法与技巧高考数学选择题十大解题方法高考数学选择题十大解题方法高考数学选择题十大解题方法如下:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

例:△ABC的三个顶点在椭圆42+5y2=6上,其中A、B两点关于原点 O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为 A.-5/4B.-4/5C.4/5D.2√5/5 解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。

题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。

2.极端性原则:将所要研究的问题向极端状态进行分析^p ,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析^p ,那么就能瞬间解决问题。

3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

例:银行计划将某资金给项目M和N投资一年,其中40的资金给项目M,60的资金给项目N,项目M能获得10的年利润,项目N能获得35的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户.为了使银行年利润不小于给M、N总投资的10而不大于总投资的15,则给储户回扣率最小值为A.5B.10C.15D.20 解析:设共有资金为α,储户回扣率χ,由题意得解出0.1α≤0.1×0.4α+0.35×0.6α-χα≤0.15α 解出0.1≤χ≤0.15,故应选B.7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

高中高考数学选择题的10种常用解法

高中高考数学选择题的10种常用解法

高考数学的10 种常用解法解数学有两个根本思路:一是直接法;二是接法①充分利用干和支两方面提供的信息,快速、准确地作出判断是解的根本策略。

②解的根本思想是:既要看到通常各常的解思想,原上都可以指的解答;更看到。

根据的特殊性,必定存在着假设干异于常的特殊解法。

我需把两方面有机地合起来,具体具体分析。

1、直接求解法11、如果log7log 3log 2 x0 ,那么x 2 等于〔〕A1B3C3D236942、方程xsin x 的数解的个数〔〕100A 61B 62C 63D 64精1. f(x)=x(sinx+1)+ax 2,f(3)=5, f(- 3)=() (A) - 5(B) - 1(C)1(D) 无法确定2.假设定在数集R 上的函数 y=f(x+1)-1的反函数是 y=f(x- 1),且 f(0)=1, f(2001) 的 ( )(A)1(B)2000(C)2001(D)20023.奇函数 f(x) 足: f(x)=f(x+2) ,且当 x∈ (0,1), f(x)=2 x- 1, f (log 1 24) 的2〔A 〕1〔 B 〕5〔 C〕5〔 D 〕23 2224244. a>b>c,n∈ N,且11n恒成立, n的最大是〔〕b c aa b c(A)2(B)3(C)4(D)55.如果把 y=f(x) 在 x=a及 x=b 之的一段象近似地看作直的一段,a≤ c≤b,那么 f(c)的近似可表示〔〕1f (a) f (b)(B) f (a) f (b) (C) f (a)c a[ f (b) f (a)] (D) f (a)c a(A)b a b [ f (b) f (a)]2a6.有三个命:①垂直于同一个平面的两条直平行;② 平面的一条斜 l 有且有一个平面与垂直;③异面直a, b 不垂直,那么 a 的任一平面与 b 都不垂直。

其中正确的命的个数 ().1C7.数列 1,1+2,1+2+2 2, ⋯ ,1+2+22+⋯ +2n-1, ⋯的前 99 的和是〔〕〔 A 〕 2100- 101〔 B〕 299- 101〔 C〕 2100- 99〔 D〕 299- 99精答案: B DACCDA2、特例法把特殊值代入原题或考虑特殊情况、 特殊位置, 从而作出判断的方法称为特例法〔特殊值法〕(1) 、从特殊结构入手3 一个正四面体,各棱长均为2 ,那么对棱的距离为〔〕A 、1B 、1C 、 2D 、222(2)、从特殊数值入手4、 sin xcos x1 x2 ,那么 tan x 的值为〔 〕,54 B 、4 3 3 4A 、或 4C 、D 、33435、△ ABC 中, cosAcosBcosC 的最大值是〔〕3 1 C 、 11A 、3B 、D 、882(3) 、从特殊位置入手6、如图 2,一个正三角形内接于一个边长为 a 的正三角形中,问x 取什么值时,内接正三角形的面积最小〔〕A 、aB 、aC 、aD 、3 a 图 223 427、双曲线 x 2y 2 1的左焦点为 F ,点 P 为左支下半支异于顶点的任意一点,那么直线PF的斜率的变化范围是〔〕A 、 ( ,0)B 、 ( , 1) U (1, )C 、 ( ,0) U (1, )D 、 (1, )(4) 、从变化趋势入手8、用长度分别为 2、3、 4、 5、6〔单位: cm 〕的 5 根细木棍围成一个三角形〔允许连接,但不允许折断〕,能够得到的三角形的最大面积为多少〔〕A 、 8 5 cm 2B 、 610 cm 2 C 、 3 55 cm 2D 、 20 cm 29、 a b1,P lg a lg b ,Q1 lg a lg b , R lgab,那么〔〕22A R P QB P Q RC Q P RD P R Q注:此题也可尝试利用根本不等式进行变换.10、一个 方体共一 点的三个面的面 分 是2, 3,6 , 个 方体 角 的 是A 2 3B 3 2C 6D 6〔〕精1.假设 04, 〔〕(A) sin 2sin (B) cos2cos (C) tan2 tan (D) cot 2 cot 2.如果函数 y=sin2x+a cos2x 的 象关于直x= - 称,那么 a=()8(A) 2(B) - 2(C)1 (D) - 13. f(x)=x1 +1(x ≥ 1).函数 g(x)的 象沿 x 方向平移 1 个 位后,恰好与f(x) 的象关于直 y=x 称, g(x) 的解析式是〔 〕〔A 〕 x 2+1(x ≥0)(B)(x - 2)2+1(x ≥ 2) (C) x 2+1(x ≥1) (D)(x+2) 2+1(x ≥ 2)4.直三棱柱 ABC — A / B / C / 的体 V , P 、 Q 分 棱 AA /、 CC /上的点,且 AP=C / Q ,四棱 B — APQC 的体 是〔 〕〔A 〕 1V〔 B 〕 1V〔 C 〕 1V〔D 〕 1V23455.在△ ABC 中, A=2B , sinBsinC+sin 2B=()(A)sin 2A (B)sin 2B(C)sin 2C(D)sin2B6.假设 (1-2x) 80 12 x 2 8 8128)=a +a x+a +⋯ +a x ,|a |+|a |+ ⋯ +|a|=(〔 A 〕 1〔 B 〕- 1〔 C 〕 38- 1〔 D 〕 28- 17.一个等差数列的前 n 和 48,前2n 和60, 它的前3n 和 〔〕(A) 24(B) 84(C) 72(D) 368.如果等比数列a n 的首 是正数,公比大于1,那么数列 log 1 a n是〔〕3(A) 增的等比数列;(B) 减的等比数列;(C) 增的等差数列;(D) 减的等差数列。

高考数学选择题十大解题方法总结

高考数学选择题十大解题方法总结

高考数学选择题十大解题方法总结数学被运用在世界不同的范围上,包括迷信、工程、医学和经济学等。

小编预备了高考数学选择题十大解题方法,希望你喜欢。

1.特值检验法:关于具有普通性的数学效果,我们在解题进程中,可以将效果特殊化,应用效果在某一特殊状况下不真,那么它在普通状况下不真这一原理,到达去伪存真的目的。

2.极端性原那么:将所要研讨的效果向极端形状停止剖析,使因果关系变得愈加清楚,从而到达迅速处置效果的目的。

极端性少数运用在求极值、取值范围、解析几何下面,很多计算步骤繁琐、计算量大的题,一但采用极端性去剖析,那么就能瞬间处置效果。

3.剔除法:应用条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而到达正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或许有数值范围时,取特殊点代入验证即可扫除。

4.数形结合法:由标题条件,作出契合题意的图形或图象,借助图形或图象的直观性,经过复杂的推理或计算,从而得出答案的方法。

数形结合的益处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归结法:经过标题条件停止推理,寻觅规律,从而归结出正确答案的方法。

6.顺推破解法:应用数学定理、公式、法那么、定义和题意,经过直接演算推理得出结果的方法。

7.逆推验证法(代答案入题干验证法):将选择支代入题干停止验证,从而否认错误选择支而得出正确选择支的方法。

8.正难那么反法:从题的正面处置比拟难时,可从选择支动身逐渐逆推找出契合条件的结论,或从反面动身得出结论。

9.特征剖析法:对题设和选择支的特点停止剖析,发现规律,归结得出正确判别的方法。

10.估值选择法:有些效果,由于标题条件限制,无法(或没有必要)停止精准的运算和判别,此时只能借助预算,经过观察、剖析、比拟、推算,从面得出正确判别的方法。

高考数学选择题十大解题方法就为大家引见到这里,希望对你有所协助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

掌握高中数学选择题10大解法
高中数学!毫无疑问,是80%的高考生最头疼的问题。

怎样才能将高考分数维持在一个可观的成绩上?请先把选择题的正确率提高到100%!下面给大家介绍十大方法:
1.特值检验法:
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为
A.-5/4
B.-4/5
C.4/5
D.2√5/5
解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。

题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C 为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B.
2.极端性原则:
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.剔除法:
利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法:
由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法:
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法:
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

例:银行计划将某资金给项目M和N投资一年,其中40%的资金给项目M,60%的资金给项目N,项目M能获得10%的年利润,项目N能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户。

为了使银行年利润不小于给M、N总投资的10%而不大于总投资的15%,则给储户回扣率最小值为( )
A.5%
B.10%
C.15%
D.20%
解析:设共有资金为α,储户回扣率χ,由题意得解出
0.1α≤0.1×0.4α+0.35×0.6α-χα≤0.15α
解出0.1≤χ≤0.15,故应选B.
7.逆推验证法(代答案入题干验证法):
将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

例:设集合M和N都是正整数集合N*,映射f:M→把集合M中的元素n映射到集合N中的元素2n+n,则在映射f下,象37的原象是
A.3
B.4
C.5
D.6
8.正难则反法:
从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

9.特征分析法:
对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

例:256-1可能被120和130之间的两个数所整除,这两个数是:
A.123,125
B.125,127
C.127,129
D.125,127
解析:初中的平方差公式,由
256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故选C.
10.估值选择法:
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

总结:
高考中的选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。

例如:估值选择法、特值检验法、顺推破解法、数形结合法、特征分析法、逆推验证法等都是常用的解法。

解题时还应特别注意:选择题的四个选择支中有且仅有一个是正确的,因而在求解时对照选择支就显得非常重要,它是快速选择、正确作答的基本前提。

相关文档
最新文档