数学
数学各种数的概念

数学各种数的概念数学是一门研究数量、结构、变化和空间等概念的学科。
在数学中,有各种各样的数概念,这些概念是数学学习的基础,对于理解和应用数学知识都是至关重要的。
本文将介绍数学中一些常见的数的概念。
一、自然数自然数是最简单、最基本的数。
它们由0和正整数组成,用符号{0, 1, 2, 3, ...}表示。
自然数的特点是它们之间存在着顺序关系,后面的数比前面的数大1。
二、整数整数是由自然数、0和负整数组成。
整数集合用符号{..., -3, -2, -1, 0, 1, 2, 3, ...}表示。
整数和自然数不同的地方在于整数不仅包括正数,还包括负数和0。
整数之间的加减运算是封闭的,也就是说对两个整数进行加减运算后,结果仍然是一个整数。
三、有理数有理数是可以表示为两个整数之间的比值的数。
有理数包括整数和分数,它们的集合用符号Q表示。
有理数之间的加减乘除运算依然得到有理数。
四、无理数无理数是不能表示为两个整数之间的比值的数。
无理数包括无限不循环小数和无限循环小数,如π(圆周率)和√2(2的平方根)。
无理数和有理数一起构成了实数集。
五、实数实数包括有理数和无理数,它们构成了一个连续的数轴。
实数是数学中最基本的数系,包括了所有我们平时使用和接触到的数字。
六、复数复数是由实数和虚数组成的数。
虚数单位i是一个满足i²= -1的数,其中i称为虚数单位。
复数的一般形式为a + bi,其中a是实部,b是虚部。
复数在数学和物理学中都有重要的应用,它们可以表示平面上的向量、交流电路中的电压和电流等。
七、小数小数是指不是整数的数。
小数可以分为有限小数和无限循环小数两种类型。
有限小数是指小数部分有限位数的小数,如0.5、2.1等。
无限循环小数是指小数部分具有循环节并且无限循环下去的小数,如1/3=0.3333...。
八、分数分数是指两个整数之间的比值。
分数由一个分子和一个分母组成,分子表示被分割的份数,分母表示整体被分成的份数。
60种数学计算方法

60种数学计算方法标题:60种数学计算方法在数学领域中,计算方法的研究和应用对于问题解决和理论发展具有重要意义。
本文将介绍60种常见的数学计算方法,旨在帮助读者更好地理解和应用数学知识。
一、基本算术计算方法1. 加法:将两个或多个数值相加,求和的结果。
2. 减法:从一个数值中减去另一个数值,得到差。
3. 乘法:将两个或多个数值相乘,得到积。
4. 除法:用一个数值去除另一个数值,得到商。
5. 平方:将一个数值自乘,得到平方值。
6. 开方:对一个数值进行开方运算,得到其平方根。
7. 百分数:将一个数值表示为百分数形式,即乘以100。
8. 混合运算:将多种运算方法结合使用,求得复杂的计算结果。
二、代数计算方法9. 代数式化简:对复杂的代数式进行化简,得到简化的表达形式。
10. 代数方程求解:通过变量的代换和移项操作,求解代数方程的未知数。
11. 代数不等式求解:对代数不等式进行变量的范围判断,解出满足条件的解集。
12. 多项式展开:将一个多项式按照二项式定理展开成简单的项。
13. 因式分解:将一个多项式分解成多个乘积形式。
14. 分式化简:对含有分式的代数式进行化简,得到简化的表达形式。
15. 根式化简:对根式进行化简,得到简化的根式形式。
16. 平方差公式:快速计算两个数的平方差。
17. 二次方程求解:求解二次方程的未知数。
18. 四则运算法则:用于整数和有理数的加减乘除。
三、几何计算方法19. 点与线的位置关系判断:判断一个点与一条直线的位置关系,包括在直线上、在线段上、在线段延长线上或在直线两侧。
20. 直线与平面的位置关系判断:判断一条直线与一个平面的位置关系,包括平面内、平面外或平面相交。
21. 角的类型判断:根据角的度数或特点,判断其类型,包括直角、锐角、钝角、对顶角等。
22. 三角形分类:根据三角形的边长和角度关系,将三角形分为等边三角形、等腰三角形、直角三角形等。
23. 三角形内角和定理:计算三角形内角和的数值。
数学知识大全

数学知识大全数学作为一门科学,是研究数量、结构、空间以及变化等概念的学科。
它是现代科学的基础,也是解决实际问题的重要工具。
本文将为您呈现数学知识的大全,包括数学的基础概念、重要定理与公式、数学在实际生活中的应用等方面的内容。
一、数学的基础概念1. 数的分类:自然数、整数、有理数、实数、复数等。
2. 基本运算:加法、减法、乘法、除法,以及它们的性质和规律。
3. 数的因数与倍数:素数、合数、最大公约数、最小公倍数等概念。
4. 数列与级数:等差数列、等比数列、调和级数等。
二、重要定理与公式1. 代数方程:一元一次方程、二次方程等的解法及性质。
2. 解析几何:直线方程、圆方程、曲线的性质等。
3. 三角函数:正弦、余弦、正切等基本概念及相关公式。
4. 极限、导数与积分:函数的极限与连续性、导数的定义与应用、积分的概念与计算方法等。
三、数学在实际生活中的应用1. 金融领域:利息计算、投资收益分析、贷款利率计算等。
2. 统计学:数据收集与分析、概率与统计推断等。
3. 工程学:测量、建模、优化等领域中的数学方法应用。
4. 物理学:运动学、力学、电磁学中的数学描述与计算等。
四、数学的发展与进步1. 古代数学:埃及、希腊、印度等古代文明的数学成就。
2. 近代数学:微积分、解析几何等的发展与应用。
3. 现代数学:集合论、代数学、几何学等的研究进展。
4. 数学思维:数学的逻辑思维、证明方法及与其他学科的交叉等。
五、数学的重要性与学习方法1. 提高思维能力:数学训练可以培养逻辑推理能力和问题解决能力。
2. 学科交叉应用:数学与物理、化学、经济学等学科有着密切的联系。
3. 技术创新:现代科技的发展需要数学方法的应用与推动。
4. 学习方法:培养兴趣、理解概念、掌握基础、多实践与思考等。
六、数学的趣味性与乐趣1. 数学竞赛:参加数学竞赛可以激发学习兴趣与提高水平。
2. 数学游戏:数独、数学趣味题、数学解谜等游戏丰富了学习的方式。
数学概念的定义

数学概念的定义
数学是一门抽象的科学,用来探索和表达各种数字的关系和概念。
它是一种独特的分析方法,可以帮助我们更容易地理解和解决实践问题。
1. 数:数学中的基本单位,表示某一具体事物的数量。
2. 变量:是一种形式,可以用来代表某一数量未知,一般可以
是确定的量或未知的量。
3. 方程:是用变量来表达一般的关系的形式。
4. 函数:是一种正确的关系,即当变量的值发生变化时,函数
的值也随之改变。
5. 数列:是数字以特定的次序排列而成的有序集合。
6. 代数:是一种表达数量之间关系的一般化数学方法,是一种
形式上可以进行简化和抽象的数学表示法。
7. 统计:是一种统计学理论的研究,用于分析和比较数据的特征。
8. 几何:是数学中的一种描述形状、空间和大小等的学科,使
用几何图形来说明和表示一般的客观现象。
9. 微积分:是一种研究变化率和变化过程的数学理论,是数学
运算的一种方法,用于计算极限、微分、积分和求解微分方程等。
- 1 -。
数学之道:十大速算窍门

数学之道:十大速算窍门1. 数字拆分法将大数字拆分成易于计算的小数字,例如将 12345 拆分为10000 + 2000 + 300 + 40 + 5,分别进行计算再相加。
2. 倍数加速法利用数字的倍数特性,快速计算结果。
例如,计算156 乘以2,可以先计算 150 乘以 2 得到 300,再加上 6 乘以 2 得到 12,最终结果为 312。
3. 数字分组法将数字进行分组,例如将 1234 分为 12 和 34,先计算 12 乘以5 得到 60,再计算 34 乘以 5 得到 170,最后将两个结果相加得到230。
4. 加减交换律在加减法运算中,可以改变数字的顺序,这样可以简化计算。
例如,计算 123 + 45,可以改为计算 123 + 54,更容易计算出结果。
5. 乘法分配律利用乘法分配律,将复杂的乘法运算简化。
例如,计算 (2 + 3) 乘以 4,可以先计算 2 乘以 4 得到 8,再计算 3 乘以 4 得到 12,最后将两个结果相加得到 20。
6. 数字定位法对于较大的数字,可以通过数字定位法快速计算出结果。
例如,计算 123456 乘以 7,可以先计算 123456 乘以 10 得到 1234560,再减去 123456 得到 1111004。
7. 平方速算法利用平方数的特性,快速计算数字的平方。
例如,计算 13 的平方,可以先计算 10 的平方得到 100,再计算 3 的平方得到 9,最后将两个结果相加得到 169。
8. 立方速算法利用立方数的特性,快速计算数字的立方。
例如,计算 5 的立方,可以先计算 4 的立方得到 64,再加上 1 的立方得到 65。
9. 递减相加法在加法运算中,可以使用递减相加法,将计算简化。
例如,计算 123 + 45,可以先从 123 中减去 40 得到 83,再加上 5 得到 88。
10. 递增相减法在减法运算中,可以使用递增相减法,将计算简化。
例如,计算 123 - 45,可以先加上 1 得到 124,再减去 40 得到 84。
数学的数学技能

数学的数学技能数学作为一门学科,是研究数量、结构、空间以及变化等概念和关系的学科。
在学习和应用数学的过程中,数学技能是必不可少的。
本文将探讨数学的数学技能,并介绍如何提升和应用这些技能。
一、基本的计算技能1. 加法和减法:加法和减法是最基本的计算技能,它们是进行数学运算的基础。
通过在日常生活中的实际应用中练习这些技能,如购物时计算物品的价格,可以帮助我们提高加法和减法的能力。
2. 乘法和除法:乘法和除法是进行更复杂的数学运算的基础,它们能够帮助我们解决实际问题。
通过练习乘法和除法,我们能够计算面积、体积、速度等各种实际物理量。
3. 百分比和比例:百分比和比例是量化和比较概念的重要工具。
掌握百分比和比例的计算方法可以帮助我们分析统计数据,了解各种比率关系,比如利润率、增长率等。
二、代数技能1. 代数方程式:代数方程式是数学中的一种常见形式,它们可以用来解决各种问题。
通过学习解方程的方法和技巧,我们可以解决实际生活中的各种问题,如物体运动的轨迹、经济模型的建立等。
2. 函数和图像:函数是一种描述变量之间关系的数学工具,图像是函数关系的可视化呈现。
掌握函数和图像的概念和技能,可以帮助我们分析和解释各种现象,如物体的运动规律、市场需求曲线等。
三、几何技能1. 图形的认识和测量:几何学研究的是形状、大小和相对位置等概念。
认识各种常见的图形,如点、线、面、体等,以及测量各种物体的长度、面积、体积等,是提高几何技能的基础。
2. 角度和三角形:角度和三角形是几何学中的基本概念,它们是解决几何问题的重要工具。
通过学习角度的测量和计算方法,以及三角形的性质和计算方法,我们可以解决各种几何问题,如建筑设计、地理测量等。
四、概率和统计技能1. 概率:概率是描述事件发生可能性的数学工具。
掌握概率的概念和计算方法可以帮助我们分析和预测各种事件的可能性,如天气预报、股票走势等。
2. 统计:统计是对数据进行收集、整理和分析的过程。
什么是数学

5
15个“定义” 来自
6
2.数学的15个“定义”
1)哲学说 2)符号说 3)科学说 4)工具说 5)逻辑说 6)创新说 7)直觉说 8)集合说 9)结构说(关系说) 10)模型说 11)活动说 12)精神说 13)审美说 14)艺术说
15)万物皆数说
7
只 讲解“哲学说”,其他只作一句话的解释,并请查资料。
数学的精确性表现在数学推理的逻辑严格性和数学结论的 确定无疑性。 汉克尔说:“在大多数科学里,一代人要推倒另一代人 所修筑的东西,只有数学,每一代人都能在旧建筑上增添一
层新楼。”
作为对照的三个例子:
① 电子管电路→ 半导体电路→ 集成电路
② 托勒密地心说→哥白尼日心说→开普勒三定律 ③ 高温超导的上界(朱经武)
(英)罗素:“数学是所有形如p蕴含q的命题的类”, 而最前面的命题p是否对,却无法判断。 因此“数 学是我们永远不知道我们在说什么,也不知道我们 说的是否对的一门学科。”
4
2.数学的15个“定义”
1)哲学说 2)符号说 3)科学说 4)工具说 5)逻辑说 6)创新说 7)直觉说 8)集合说 9)结构说(关系说) 10)模型说 11)活动说 12)精神说 13)审美说 14)艺术说
如微积分是物体运动的模型,概率论是偶然 与必然现象的模型,欧氏几何是现实空间的 模型,非欧几何是非欧空间的模型。
活动说:是说“数学是人类最重要的活动之
一”。
精神说:是说“数学不仅是一种技巧,更是
一种精神,特别是理性的精神。”
12
审美说:是说“数学家无论是选择题材还是
判断能否成功的标准,主要是美学的原则。”
数学名词

内对角、连心线、公切线、公共弦、中心角、圆周长、圆面积
反证法、主视图、俯视图、二视图、三视图、虚实线、左视图
离心率、双曲线、渐近线、抛物线、倾斜角、点斜式、斜截式
两点式、一般式、参变数、渐开线、旋轮线、极坐标、公垂线
斜线段、半平面、二面角、斜棱柱、直棱柱、正梭柱、直观图
复平面、纯虚数、零向量、长方体、正方体、正方形、相交线
延长线、中垂线、对预角、同位角、内错角、无限极、长方形
平行线、真命题、假命题、三角形、内角和、辅助线、直角边
全等形、对应边、对应角、原命题、逆命解、原定理、逆定理
对称点、对称轴、多边形、对角线、四边形、五边形、三角形
否命题、中位线、相似形、比例尺、内分点、外分点、平面图
斜二测画法、三垂线定理、平行六面体、直接积分法、换元积分法
第二积分法、分部积分法、混循环小数、第一积分法、同类二次根
一元一次方程、一元二次方程、完全平方公式、最简二次根式
直接开平方法、半开半闭区间、万能置换公式、绝对值不等式
实系数多项式、复系数多项式、整系数多项式、不等边三角形
中心对称图形、基本初等函数、基本积分公式、分部积分公式
四舍五人、单位长度、加法法则、减法法则、乘法法则、除法法则
数量关系、升幂排列、降幂排列、分解因式、完全平方、完全立方
同解方程、连续整数、连续奇数、连续偶数、同题原理、最简方程
最简分式、字母系数、公式变形、公式方程、整式方程、二次方根
三次方根、被开方数、平方根表、立方根表、二次根式、几次方根
指数方程、对数方程、单值对应、单调区间、单调函数、诱导公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列 geometric sequence
an a1q n 1 1 qn a1 Sn a1 (n ) 1 q 1 q
C)集合 Set 并集 union
图表题
真子集 proper subset
矩形 rectangle 对角线 diagonal
Part 4.数据分析
A)描述统计学 Descriptive statistics
算术平均数 arithmetic mean, mean
1 n E ai n i 1
众数 mode:一组数中出现次数最多的数
极差 range:一组数中最大值和最小值之差
柱状图 bar graphs
饼图 circle graphs
区间柱图 histograms
散点图 scatterplots
时间序列图 time plots
C)排列和组合 Permutations & Combinations 从n个人中挑出m个进行排列的可能数——
n! P (n m)!
m n
从n个人中挑出m个进行组合的可能数——
n! C m !(n m)!
m n
m Cn m ! Pnm
m n m Cn Cn
加法原理—— 完成某事有两种方式,第一种有m个方法完成,第二 种有n个方法完成,则该事有(m+n)个方法完成. 乘法原理—— 完成某事有两个步骤,第一步有m个方法完成,第二 步有n个方法完成,则该事有(mn)个方法完成.
Quantitative Reasoning
of Revised GRE
一、新GRE数学总体介绍
1.时间与分值
35 mins
×2
sections
130 ~ 170分,最小分数段1分
2.考查内容
算术:整数的性质,算术运算,数列等
代数:代数运算,方程(组)和不等式(组),解析几何 几何:基本概念 数据分析:描述统计学,图表分析,初等概率及概率分 布,排列组合
Ex7. If all of the telephone extensions in a certain company must be even numbers, and if each of the extensions uses all four of the digits 1, 2, 3 and 6, what is the greatest number of four-digi
解集 solution set
A B A B A B A B C A B C A B AC B C A B C A B A B A B A B
Part 2.代数
A)一元二次方程 因式分解求解 公式法求解 B)二元一次方程 唯一解 无穷多组解 无解
(A) 4 (B) 6 (C) 12 (D) 16 (E) 24
Ex8. What is the total number of different 4-digit integers in which the units’ digit is an odd integer while the thousands’ digit is an even integer?
I. The median of the five number cannot be 5
II. At least one of x, y, and z is greater than 9 III. The range of the five number is 2 or more (A) I only (B) II only (C) III only (D) I and III (E)II and III
3.新GRE的变化
(1) 增加日常真实背景问题的比例 (2) 几何试题减少,图表题仍是考察重点 (3) 提供辅助工具,如屏幕计算器 (4) 增加不定项选择和填空题型 (5) 对统计学概念的理解要求提高
4.题量与题型
20 questions / section
比大小:Quantitative Comparison 单项选择:Multiple-choice questions ——Select One Answer Choice 不定项选择: Multiple-choice questions
2) What is the median number of errors in the sample? (A) 3 (B) 3.5 (C) 4 (D) 4.5
(E) It cannot be determined from the information given
B)表格和图形中的数据解析(OG p263) 频率分布 frequency distributions
C)不等式
ab 0, a 0 b 0 a b, c 0 ac bc a b, c 0 ac bc | x a | b b x a b | x a | b x a b或x a b ab a 2 b2 ab ( a, b 0) 2 2
Enter the exact answer unless the question asks you to round your answer. For the following question, select all the answer choices that apply.
二、GRE数学概念与算法
中位数 median:按顺序排列后位于中间位置的数
n=奇数,正中位置;n=偶数,正中两数的算术平均
标准方差 standard deviation 描述一组数对于算术平均值的波动幅度.
方差 variance:标准方差的平方
1 n 2 ( a E ) i n i 1 D 2
Ex5. If the average (arithmetic mean) of x, y, z, 5 and 7 is 8, which of the following must be true?
■ 整数的整除性质
1)被3整除:看各位数字之和
2)被4整除:看末两位
3)被5整除:看末位 4)被8整除:看末三位 5)0可以被除0以外的其他所有整数整除 6)n个连续自然数的乘积能被n!整除 7)若n能被a整除,且能被b整除,则n能被a和 b的最小公倍数整除
Ex1. If n is an odd integer, then n 2 1 must could be be (A) a prime number (B) an odd integer (C) divisible by 8 (D) a multiple of 2 n (E) a positive integer 代入法
Ex4. The value of the units’ digit in121121 , 5632 , 9544 ?
B)数列 Sequence / Progression 有穷数列 finite sequence
无穷数列 infinite sequence
等差数列 arithmetic sequence
有限小数 terminating decimals
四舍五入 round to the nearest (tenths)
分数 Fractions 分子 numerator 分母 denominator 最小公分母 the least common denominator
■ 数的各个数位的表达
个位:units,ones 十位以上的其他整数位:基数词+s,如tens 小数位:序数词+s,如tenths
ax 2 bx c 0
a( x x1 )( x x2 ) 0
b b2 4ac x1,2 2a
a1 x b1 y c1 a2 x b2 y c2
a1 / a2 b1 / b2 a1 / a2 b1 / b2 c1 / c2 a1 / a2 b1 / b2 c1 / c2
■ 质数与奇偶性
1)2是最小的质数,也是唯一的偶质数; 两个质数之和为奇数,则其中之一必是2. 2)0,1非质非合 3)质数没有负数 4)任何一个大于等于4的偶数都能够表示成为 两个质数的和(哥德巴赫猜想)
Ex2. If p is a prime number greater than 11, and p is the sum of the two prime numbers x and y, then x could be which of the following? 代入法 (A) 2 (B) 5 (C) 7 (D) 9 (E) 13
——Select One or More Answer Choices
填空:Numeric Entry questions
Question 11 to 20 have several different formats. directed, select a single answer Unless otherwise directed choice. For Numeric Entry questions, follow the instructions below. …… ……
把单选当 多选来做!
Ex6. A sample of employees were tested on data-entry skills for one hour, and the number of errors (x) they made and the percent of employees (p) making x errors were recorded as follows. Number of Errors x 0 1 2 3 4 5 6 or more Percent of Employees p 2% 5% 10% 24% 17% 20% 22%