高二数学试题:成都七中高二数学月考试题一

合集下载

2023-2024学年四川省成都七中高二(下)月考数学试卷(6月份)(含答案)

2023-2024学年四川省成都七中高二(下)月考数学试卷(6月份)(含答案)

2023-2024学年四川省成都七中高二(下)月考数学试卷(6月份)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若R 上的可导函数y =f(x)在x =x 0处满足limΔx→0f(x 0+Δx)−f(x 0)2Δx=3,则f′(x 0)=( )A. 6B. 32C. 3D. 232.已知向量a =(−1,2,3),b =(1,0,2),则向量a 在向量b 上的投影向量c 的坐标为( )A. (−1,2,3)B. (1,0,2)C. ( 5,0,25)D. (1,2,0)3.已知等比数列{a n }的前n 项和为S n ,a 1+a 3+a 5=1,a 2+a 4+a 6=2,则S 12−S 6=( )A. 18B. 54C. 128D. 1924.直线l :(2m +1)x +(m +1)y−8m−5=0,被圆C :(x−2)2+(y−1)2=25截得最短弦的长为( )A. 46B. 26C. 223D.235.三个数a =2lne e 2,b =ln2,c =ln33的大小顺序为( )A. b <c <aB. b <a <cC. c <a <bD. a <b <c6.给图中A ,B ,C ,D ,E 五个区域进行染色,每个区域只染一种颜色且相邻的区域不同色.若有4种颜色可供选择,则共有( )种不同的染色方案.A. 48B. 60C. 72D. 847.已知椭圆:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,离心率为32,M 、N 为椭圆上关于y 轴对称的两点,|MN|=855,若MF 1⊥NF 1,则椭圆方程为( )A. x 28+y 22=1 B. x 24+y 2=1C. x 22+y 28=1 D. x 2+y 24=18.已知曲线y =1a lnx 与y =e ax 的两条公切线的夹角的正切值43,则a 2的值为( )A.3eB. 1eC. 3e 2D. 1e 2二、多选题:本题共3小题,共18分。

高二数学试题:成都七中高二数学月考试题一

高二数学试题:成都七中高二数学月考试题一

高二数学试题:成都七中高二数学月考试题一你还在为高中数学学习而苦恼吗?别担心,看了高二数学试题:成都七中高二数学月考试题一以后你会有很大的收获:高二数学试题:成都七中高二数学月考试题一一、选择题(每小题5分,共50分。

)1、要完成下列两项调查,①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3人调查学习负担情况,宜采用的抽样方法依次为( A )A.①用分层抽样法,②用简单随机抽样法B.①用随机抽样法,②用系统抽样法C.①用系统抽样法,②用分层抽样法D.①②都用分层抽样法2、如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( C ).A.圆台、三棱柱、圆锥、三棱台B.圆台、三棱锥、圆锥、三棱台C.圆台、四棱锥、圆锥、三棱柱D.圆台、三棱台、圆锥、三棱柱3、长方体的一个顶点上的三条棱长分别为,且它的八个顶点在同一个球面上,这个球的表面积为( B ).A.B.C.D.4、对于一组数据(=1,2,3,,),如果将它们改变为(=1,2,3,,),其中,则下列结论中正确的是(C )A.平均数与方差均不变B.平均数不变,而方差变了C.平均数变了,而方差保持不变D.平均数与方差均发生了变化5、100个个体分成10组,编号后分别为第1组:00,01,02,,09;第2组:10,11,12,,19;;第10组:90,91,92,,99.现在从第组中抽取其号码的个位数与的个位数相同的个体,其中是第1组随机抽取的号码的个位数,则当时,从第7组中抽取的号码是( D )A.B.C.D.6.已知两个不同的平面和两条不重合的直线,则下列命题不正确的是( D )A.若则B. 若则C.若,,则D.若,,则7、如图,平行四边形ABCD中,ABBD,沿BD将△ABD 折起,使面ABD面BCD,连接AC,则在四面体ABCD的四个面中,互相垂直的平面的对数为(C)A.1 B.2C.3 D.48、执行如图所示的程序框图,输出的S值为(D )A.4B.8C.16D.649.如图,在三棱柱中,侧棱垂直于底面,底面是边长为2的正三角形侧棱长为3,则与平面所成的角为( A )A. B. C. D.10、三棱柱中,点的中点以及的中点所决定的平面把三棱柱切割成体积不同的两部分,那么小部分的体积与大部分的体积比是(B)A、B.语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

四川省成都市第七中学2022-2023学年高二下学期3月月考数学(理)试题(含答案解析)

四川省成都市第七中学2022-2023学年高二下学期3月月考数学(理)试题(含答案解析)

四川省成都市第七中学2022-2023学年高二下学期3月月考数学(理)试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .4i ≤B .5i ≤C .6i ≤D .i 6.若x ,y 满足约束条件224 0x y x y y +≤⎧⎪+≤⎨⎪≥⎩,则2z x y =-的最大值为()A .4B .4-C .5D .-二、填空题三、解答题(1)求图中x 的值;(2)用分层随机抽样的方法,从样本内语文成绩在[130,1405名学生,再从这5名学生中随机选出2人,求选出的两名学生中恰有一人语文成绩在[)130140,的概率.18.已知函数()ln af x x x=+,a ∈R .(1)当2a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若函数()f x 在[]1,e 上的最小值是32,求a 的值.19.如图,在三棱柱111ABC A B C -中,侧面11A B BA 和侧面的中点.(1)证明:平面1ADC ⊥平面(2)若直线1AC 与平面1B BCC 20.过抛物线24E x y =:的焦点相交于点A ,B ,2l E 与相交于点圆心)的公共弦所在的直线记为(1)若122k k ⋅=,求FM FN ⋅ (2)若122k k +=,求点M 到直线21.已知函数()(3f x x =-(1)当1a =时,求函数(f x (2)当02a <<时,讨论函数22.已知直线1:(1)l x m -=-设动点P 的轨迹为曲线Γ,直线(1)写出C 的坐标,并求曲线(2)若直线:22,l x y t t =-∈使得ACN BCN ∠=∠恒成立?若存在,求出点参考答案:故选:A 7.D【分析】根据导数的几何意义结合已知方程求出换即可得出答案.【详解】对ln 2y x n =-+求导得1y x'=,由11e y x '==得e x =,则1e 1ln em ⋅++=所以()11112n m m n m n m n m n ⎛⎫+=++=++ ⎪⎝⎭当且仅当12m n ==时取等号.连接11,C B DC ,设BD AC ⋂由正方体1111ABCD A B C D -可得【详解】23F A =,所以12F AF ∽1F BC △,2c =,则24F C c =,设1AF t =,则13BF t =,2AB t =.以A 为原点,以AB,AC ,1AA 坐标系A xyz -,则()0,0,0A ,()1,1,0D ,(10,2,2C 设(),,m x y z =是平面1ADC 的一个法向量,则10,0,AD m AC m ⎧⋅=⎪⎨⋅=⎪⎩ 即0,220,x y y z +=⎧⎨+=⎩取【点睛】处理定点问题的思路:(1)确定题目中的核心变量(此处设为k ),(2)利用条件找到k 与过定点的曲线(),0F x y =的联系,得到有关k 与,x y 的等式,(3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立,此时要将关于k 与,x y 的等式进行变形,直至找到()00,x y ,①若等式的形式为整式,则考虑将含k 的式子归为一组,变形为“()k ⋅”的形式,让括号中式子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去k 变为常数.。

四川省成都市第七中学2024-2025学年高二上学期10月测试数学试题

四川省成都市第七中学2024-2025学年高二上学期10月测试数学试题

四川省成都市第七中学2024-2025学年高二上学期10月测试数学试题一、单选题1.已知a r 和b r 是两个单位向量,若π,3a b =r r ,则向量a r 与向量a b -r r 的夹角为( )A .π6B .π3C .π2D .2π32.在四面体OABC 中,OA a =u u u r r ,OB b =u u u r r ,OC c =u u u r r ,点D 满足BD BC λ=u u u r u u u r,E 为AD 的中点,且111244OE a b c =++u u u r r r r,则λ=( )A .12B .14C .13D .233.有一组样本数据12,,,n x x x ⋯,由这组数据得到新样本数据12,,,n y y y ⋯,其中()1,2,,i i y x c i n =+=L ,c 为非零常数,则下列说法正确的是( )①两组样本数据的样本平均数相同 ②两组样本数据的样本中位数相同 ③两组样本数据的样本标准差相同 ④两组样本数据的样本极差相同 A .①③ B .②③C .②④D .③④4.已知集合(){},20A x y x ay a =++=,(){},10B x y ax ay =+-=,则下列结论正确的是( ) A .存在a ∈R ,使得A =∅ B .当1a =-时,13,22A B ⎛⎫⋂=- ⎪⎝⎭C .当A B =∅I 时,1a =D .对任意的a ∈R ,都有A B ≠5.黄地绿彩云龙纹盘是收藏于中国国家博物馆的一件明代国宝级瓷器.该龙纹盘敞口,弧壁,广底,圈足.器内施白釉,外壁以黄釉为地,刻云龙纹并填绿彩,美不胜收.黄地绿彩云龙纹盘可近似看作是圆台和圆柱的组合体,其口径22.5cm ,足径14.4cm ,高3.8cm ,其中底部圆柱高0.8cm ,则黄地绿彩云龙纹盘的侧面积约为( )(附:π的值取35≈)A .2300.88cmB .2311.31cmC .2322.24cmD .2332.52cm6.如图一,矩形ABCD 中,2,BC AB AM BD =⊥交对角线BD 于点O ,交BC 于点M ,现将ABD △沿BD 翻折至A BD 'V 的位置,如图二,点N 为棱A D '的中点,则下列判断一定成立的是( )A .BD CN ⊥B .AO '⊥平面BCDC .//CN 平面A OM 'D .平面A OM '⊥平面BCD7.过定点A 的直线20ax y +-=与过定点B 的直线420x ay a -+-=交于点(P P 与A 、B 不重合),则PAB V 面积的最大值为( )A B .C .2D .48.如图,已知二面角l αβ--的棱l 上有A ,B 两点,C α∈,AC l ⊥,D β∈,BD l ⊥,且1AC AB BD ===,则下列说法错误的是( )A .当二面角l αβ--的大小为60o 时,直线AB 与CD 所成角为45oB .当二面角l αβ--的大小为60o 时,直线CD 与平面βC .若CD C BD A --7D .若CD ABCD 外接球的表面积为7π3二、多选题9.某次数学考试后,为分析学生的学习情况,某校从某年级中随机抽取了100名学生的成绩,整理得到如图所示的频率分布直方图.为进一步分析高分学生的成绩分布情况,计算得到这100名学生中,成绩位于 80,90 内的学生成绩方差为12,成绩位于[)90,100内的同学成绩方差为10.则( )参考公式:样本划分为2层,各层的容量、平均数和方差分别为:m 、x 、21s ;n 、y 、22s .记样本平均数为ω,样本方差为2s ,()()2222212m n s s x s y m n m n ωω⎡⎤⎡⎤=+-++-⎣⎦⎣⎦++.A .0.004a =B .估计该年级学生成绩的中位数约为77.14C .估计该年级成绩在80分及以上的学生成绩的平均数为87.50D .估计该年级成绩在80分及以上的学生成绩的方差为30.2510.已知m ∈R ,若过定点A 的动直线1l :20x my m -+-=和过定点B 的动直线2l :240mx y m ++-=交于点P (P 与A ,B 不重合),则以下说法正确的是( )A .A 点的坐标为 2,1B .PA PB ⊥C .2225PA PB +=D .2PA PB +的最大值为511.如图,P 是棱长为2的正方体1111ABCD A B C D -的表面上一个动点,则下列说法正确的有( )A .当P 在平面11BCCB 内运动时,四棱锥11P AA D D -的体积不变 B .当P 在线段AC 上运动时,1D P 与11AC 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦C .使得直线AP 与平面ABCD 所成的角为45°的点P 的轨迹长度为π+D .若F 是棱11A B 的中点,当P 在底面ABCD 上运动,且满足PF ∥平面11B CD 时,PF三、填空题12.若直线260x a y ++=和直线(2)320a x ay a -++=没有公共点,则a 的值为. 13.过点()1,4A 的直线在两坐标轴上的截距之和为零,则该直线方程为14.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线P A ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为.四、解答题15.黄山原名“黟山”,因峰岩青黑,遥望苍黛而名,后因传说轩辕黄帝曾在此炼丹,故改名为“黄山”.黄山雄踞风景秀丽的安徽南部,是我国最著名的山岳风景区之一.为更好地提升旅游品质,黄山风景区的工作人员随机选择100名游客对景区进行满意度评分(满分100分),根据评分,制成如图所示的频率分布直方图.(1)根据频率分布直方图,求x 的值;(2)估计这100名游客对景区满意度评分的40%分位数(得数保留两位小数);(3)景区的工作人员采用按比例分层抽样的方法从评分在[)[)50,60,60,70的两组中共抽取6人,再从这6人中随机抽取2人进行个别交流,求选取的2人评分分别在 50,60 和 60,70 内各1人的概率.16.如图,四边形ABCD 是圆柱OE 的轴截面,点F 在底面圆O 上,OA BF AD ===3,点G 是线段BF 的中点,点H 是»BF的中点.(1)证明://EG 平面DAF ; (2)求点H 到平面DAF 的距离.17.如图所示,在平行六面体1111ABCD A B C D -中,11AB AD AA ===,1160,A AB A AD BAD E F ∠∠∠===o 、分别在1B B 和1D D 上,且1112,33BE BB DF DD ==.(1)证明1A E C F 、、、四点共面;(2)若1AC 与EF 相交与点M ,求点M 到直线AB 的距离.18.如图,在三棱柱111ABC A B C -中,1AC ⊥底面ABC ,190,2ACB AA ∠=︒=,1A 到平面11BCC B 的距离为1.(1)证明:1AC AC =; (2)已知1AA 与1BB 的距离为2,求1AB 与平面11BCC B 所成角的正弦值.19.如下图,在ABC V 中,AC BC ⊥,2AC BC ==,D 是AC 中点,E 、F 分别是BA 、BC 边上的动点,且//EF AC ;将BEF △沿EF 折起,将点B 折至点P 的位置,得到四棱锥;(1)求证:EF PC ⊥;(2)若2BE AE =,二面角P EF C --是直二面角,求二面角P CE F --的正切值; (3)当PD AE ⊥时,求直线PE 与平面ABC 所成角的正弦值的取值范围.。

四川省成都市成都市第七中学2023-2024学年高二上学期10月月考数学试题

四川省成都市成都市第七中学2023-2024学年高二上学期10月月考数学试题

四川省成都市成都市第七中学2023-2024学年高二上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.1122a b c++C.1122-++a b c5.某校高一年级15个班参加合唱比赛,90,91,91,91,92,93,94,96,98,则这组数据的A.90B.93.56.四名同学各掷骰子5次,分别记录每次骰子出现的点数,根据四名同学的统计结果,A .23535B 8.已知正方体ABCD -棱所成的角均相等,记为正确的是()A .M 可能为三角形,四边形或六边形B .3cos 3θ=C .M 的面积的最大值为D .正方体ABCD A -二、多选题9.下列命题中是真命题的为()A .若p 与,a b 共面,则存在实数,x y ,使p xa yb =+B .若存在实数,x y ,使向量p xa yb =+,则p 与,a b 共面C .若点,,,P M A B 四点共面,则存在实数,x y ,使MP xMA yMB=+D .若存在实数,x y ,使MP xMA yMB =+,则点,,,P M A B 四点共面10.已知e为直线l 的方向向量,12,n n 分别为平面,αβ的法向量(,αβ不重合),并且直线l 均不在平面,αβ内,那么下列说法中正确的有()A .1e n l α⊥⇔∥B .12n n αβ⊥⇔⊥C .12n n αβ⇔∥∥ D .1e n l α⊥⇔⊥ 11.以下结论正确的是()A .“事件A ,B 互斥”是“事件A ,B 对立”的充分不必要条件.B .假设()()0.7,0.8P A P B ==,且A 与B 相互独立,则()0.56P A B ⋃=C .若()()0,0P A P B >>,则事件,A B 相互独立与事件,A B 互斥不能同时成立D .6个相同的小球,分别标有1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球,设A =“第一次取出球的数字是1”,B =“两次取出的球的数字之和是7”,则A 与B 相互独立12.如图,已知矩形,4,2,ABCD A AD E B ==为AB 中点,F 为线段EB (端点除外)上某一点.沿直线DF 沿ADF △翻折成PDF △,则下列结论正确的是()A .翻折过程中,动点P 在圆弧上运动B .翻折过程中,动点P 在平面BCDF 的射影的轨迹为一段圆弧C .翻折过程中,二面角P DF B --的平面角记为α,直线PA 与平面BCDF 所成角记为β,则2a b >.D .当平面PDC ⊥平面BCDF 时,在平面PDC 内过点P 作,PK DC K ⊥为垂足,则DK 的范围为()1,2三、填空题16.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形围成(如图所示),若它所有棱的长都为四、解答题17.2023年8月8日,世界大学生运动会在成都成功举行闭幕式.某校抽取100名学生进行了大运会知识竞赛并纪录得分(满分:100分),根据得分将他们的成绩分成[)[)[)[)[)[]40,50,50,60,60,70,70,80,80,90,90,100六组,制成如图所示的频率分布直方图.(1)求图中a的值;(2)估计这100人竞赛成绩的平均数(同一组数据用该组数据的中点值代替)及中位数.18.用向量的方法证明:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么DE平面PAB (1)证明://(1)证明:平面//PCD平面QAB (2)设G为QBC△的重心,是否在棱值为3020,若存在,求S到平面。

(成都七中)四川省成都市第七中学高新校区2023-2024学年高二上期10月月考数学试卷

(成都七中)四川省成都市第七中学高新校区2023-2024学年高二上期10月月考数学试卷

成都七中高新校区高 2022 级高二上期学科素养测试数学试卷总分:150分 考试时间:120分钟一、选择题:本题共8小题.每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.直线 y =−12x +1的一个方向向量是A. (1,-2)B. (2,-1)C. (1,2)D. (2,1)2. 利用简单随机抽样的方法抽查某工厂的 100件产品,其中一等品有20件,合格品有70件,具余为不合格品, 现在这个工厂随机抽查一件产品, 设事件A为“是一等品”,B为“是合格品”, C为“是不合格品”,则下列结果错误的是A.P (B )=710B. P(A∩B)=0C.P (B ∩C )=7100D.P (A ∪B )=9103. 一组样本数据为:19、 23, 12, 14, 14、17, 10, 12, 13, 14,27, 则这组数的众数和中位数分别为A. 14, 14B. 12, 14C. 14, 15.5D. 12, 1554.若 {a ⃗,b ⃗⃗,c ⃗}为空间向量的一组基底,则下列各项中,能构成空间向量的基底的一组向量是 A.{a ⃗,a ⃗+b ⃗⃗,a ⃗−b ⃗⃗} B.{b ⃗⃗,a ⃗+b ⃗⃗,a ⃗−b ⃗⃗} C.{c ⃗,a ⃗+b ⃗⃗,a ⃗−b ⃗⃗} D.{a ⃗+2b ⃗⃗,a ⃗+b ⃗⃗,a ⃗−b⃗⃗} 5. 如图,在棱长为 a 的正方体ABCD-A₁B₁C₁D₁中,P 为A₁D₁的中点,Q 为AB₁上任意一点, E, F 为 CD 上两个动点, 且EF 的长为定值,则点Q 到平面PEF 的距离.A.等于 √55aB.和EF 的长度有关 C 和点Q 的位置有关 D.等于 √23a6. 设直线l 的方程为6x-6ycosβ+13=0. 则直线l 的倾斜角α的范围是A. [0,π]B.[π4,π2]C.[π4,π2)∪(π2,3π4])D.[π4,3π4]7. 投掷一枚均匀的骰子,记事件A :“朝上的点数大于3”,B :“朝上的点数为2或4”,下列说法正确的是A. 事件A 与事件B 互斥B. 事件A 与事件B 对立C. 事件A 与事件B 相互独立D.P (A +B )=56 8. 在正四棱锥P-ABCD 中,若 PE ⃗⃗⃗⃗⃗⃗=23PB ⃗⃗⃗⃗⃗⃗,PF ⃗⃗⃗⃗⃗⃗=13PC ⃗⃗⃗⃗⃗⃗,平面AEF 与棱PD 交于点G,则四棱锥 P-AEFG 与四棱锥P-ABCD 的体积比为 ( )A.746B.845C.745D. 445二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合要求的.全部选对得5分,部分选对得2分,有选错的得0分.9. 下列命题是真命题的是A. 若A, B, C, D 在一条直线上, 则AB ⃗⃗⃗⃗⃗⃗与CD ⃗⃗⃗⃗⃗⃗是共线向量B.若A, B, C, D 不在一条直线上, 则AB ⃗⃗⃗⃗⃗⃗与CD ⃗⃗⃗⃗⃗⃗不是共线向量C. 若向量AB⃗⃗⃗⃗⃗⃗与CD ⃗⃗⃗⃗⃗⃗是共线向量,则A ,B ,C ,D 四点必在一条直线上 D. 若向量AB ⃗⃗⃗⃗⃗⃗与 AC⃗⃗⃗⃗⃗⃗是共线向量,则A ,B ,C 三点必在一条直线上 10.已知正方体.ABCD-A₁B₁C₁D₁的棱长为1,点E 、O 分别是 A₁B₁、A₁C₁的中点, P 在正方体内部且满足 AP ⃗⃗⃗⃗⃗⃗=34AB ⃗⃗⃗⃗⃗⃗+12AD ⃗⃗⃗⃗⃗⃗+23AA 1⃗⃗⃗⃗⃗⃗⃗⃗,则下列说法正确的是 A.点A 到直线BE 的距离是 √55 B.点O 到平面ABC₁D₁的距离为 √24C.平面A₁BD 与平面B₁CD₁间的距离为 √33D.点P 到直线AB 的距离为 253611. 在四棱锥P-ABCD 中,底面ABCD 为平行四边形, ∠DAB =π3, A B=2AD=2PD,PD ⊥底面ABCD,则A. PA ⊥BDB. PB 与平面ABCD 所成角为6π C.异面直线AB 与PC 所成角的余弦值为 2√55D.平面PAB 与平面PBC 夹角的余弦值为 √7712.在正四面体 ABCD 中,M ,N 分别是线段AB ,CD(不含端点)上的动点,则下列说法正确的是A. 对任意点M, N, 都有MN 与AD 异面B. 存在点 M, N, 使得 MN 与BC 垂直C. 对任意点M,存在点 N, 使得MN ⃗⃗⃗⃗⃗⃗⃗⃗与AD ⃗⃗⃗⃗⃗⃗, BC⃗⃗⃗⃗⃗⃗共面 D. 对任意点M, 存在点 N, 使得 MN 与AD, BC 所成的角相等三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13. 点P(1,-2,5)到xOy 平面的距离 .14.为已知过点A(-2,m)和点B(m,4)的直线为1l , 2l ∶y =−2x +1, l 3:y =−1n x −1n .若1l //2l ,23l l ⊥,则m+n 的值为 . 15.在正方体ABCD-A'B'C'D'中,点P 是AA'上的动点,Q 是平面BB'C'C 内的一点,且满足A'D ⊥BQ ,则二面角P-BD-Q 余弦值的取值范围是 . 16.已知四棱锥P-ABCD 的各个顶点都在球 O 的表面上,PA ⊥平面ABCD ,底面 ABCD 是等腰梯形,AD ∥BC, AB=AD=CD=3,∠ABC=3, PA=2 √2 ,M 是线段AB 上一点, 且AM=λAB. 过点M 作球O 的截面, 所得截面圆面积的最小值为2π, 则λ= .四、解答题:本题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤.17.(10分)在四棱锥P-ABCD 中,PD ⊥底面ABCD,CD ∥AB,AD=DC=CB=1 AB =2,DP =√3.(1) 证明: BD ⊥PA;(2) 求PD 与平面PAB 所成的角的正弦值.18.(12分) 已知A(3,3), B(-4,2), C(0,-2).(1)若点D 在线段AB (包括端点) 上移动时,求直线CD 的斜率的取值范围.(2)求函数 y =sinθcosθ+2,θ∈R 的值域.19. (12分)如图, 一个结晶体的形状为平行六面体ABCD-A₁B₁C₁D₁,其中, 以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°(1:)证明AC1⊥BD.(2)求BD₁与AC 所成角的佘弦值.20.(12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,用合适的符号写出样本空间,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,用合适的符号写出样本空间,并求选出的2名教师来自同一学校的概率.21. (12分)从2022年秋季学期起,四川省启动实施高考综合改革,实行高考科目“3+1+2”模式.“3”指语文、数学、外语三门统考学科,以原始分数计入高考成绩;“1”指考生从物理、历史两门学科中“首选”一门学科,以原始分数计入高考成绩;“2”指考生从政法、地理、化学、生物四门学科中“再选”两门学科,以等级分计入高考成绩.按照方案,再选学科的等级分赋分规则如下,将考生原始成绩从高到低划分为A,B,C,D. E五个等级,各等级人数所占比例及赋分区间如下表:等级A B C D E人数比例15%35%35%13%2%赋分区间[86,100][71,85][56,70][41,55][30,40]为Y2−YY−Y1=T2−TT−T1,其中X₁,X₁分别表示原始分区间的最低分和最高分,T₁,T₁分别表示等级赋分区间的最低分和最高分,Y表示考生的原始分,Γ表示考生的等级分,规定原始分为Y₁时,等级分为T₁,计算结果四舍五入取整.某次化学考试的原始分最低分为50,最高分为98,呈连续整数分布,其频率分布直方图如下:(1)根据频率分布直方图,求此次化学考试成绩的平均值;(2)按照等级分赋分规则,估计此次考试化学成绩A等级的原始分区间.(3)用估计的结果近似代替原始分区间,若某学生化学成线的原始分为90,试计算其等级分;22. (12分)如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E是PB的中点.(1) 求证: OE∥平面PAC;(2) 若∠ABO=∠CBO=30°, PO=3, PA=5①求二面角C-AE-B所成平面角的正弦值.②在线段CE上是否存在一点M,使得直线MO 与平面BCP所成角为30°?高考质量提升是一项系统工程,涉及到多个方面、各个维度,关键是要抓住重点、以点带面、全面突破,收到事半功倍的效果。

四川省成都市第七中学2024-2025学年高二上学期十月阶段测试数学试题

四川省成都市第七中学2024-2025学年高二上学期十月阶段测试数学试题

四川省成都市第七中学2024-2025学年高二上学期十月阶段测试数学试题一、单选题1.已知点((,A B ,若向量AB u u u r是直线l 的方向向量,则直线l 的倾斜角为( ) A .30o B .60o C .120o D .150o 2.方程2222x y x y a +-+=表示圆,则实数a 的取值范围是( )A .[)2,+∞B .()2,+∞C .[)2,-+∞D .()2,-+∞3.已知向量()()1,21,0,2,,a t t b t t =--=r r ,则b a -r r 的最小值为( )ABCD4.已知直线()1111111:0,,,0l A x B y C A B C ++=≠与直线()2222222:0,,,0l A x B y C A B C ++=≠,则直线12,l l 关于y 轴对称的充要条件是( )A .1122BC B C = B .1122A B A B -= C .111222A B C A B C -=≠ D .111222A B C A B C -== 5.在空间直角坐标系中,点()()()1,2,1,2,2,1,0,0,2A B C --,向量a r 是平面ABC 的法向量,则向量a r 的坐标可以是( )A .()8,5,6B .()8,6,5C .()6,5,8D .()5,8,6 6.已知平面上两点()()4,1,0,4,A B M 是直线310x y --=上一动点,则MA MB -的最大值为( )A .52 BC.D .57.在长方体1111ABCD A B C D -中,13,2,3AB BC AA ===,点M 满足()11AM AB AC λλ=+-u u u u r u u u r u u u u r ,()λ∈R ,点N 满足()()11,AN AC AD μμμ=+-∈R u u u r u u u r u u u u r ,则向量MN u u u u r 模的最小值为( ) ABCD8.平面内四个点()()()()12340,3,2,0,4,1,6,4M M M M 分布在直线:0l Ax By C ++=的两侧,且两侧的点到直线l 的距离之和相等,则直线l 过定点( )A .()2,3B .()3,2C .()2,3--D .()3,2--二、多选题9.记空间向量,,OA a OB b OC c ===u u u r u u u r u u u r r r r ,向量,,a b c r r r 均为单位向量且两两夹角为60o .则下列命题中,正确的是( )A .向量,,a b b c a c +++r r r r r r 不能作为空间向量的基底B .向量a b c ++r r r 是平面ABC 的法向量C .向量171362OD a b c =+-u u u r r r r ,则D 点在ABC V 内D .向量c r 在向量a b +r r 10.已知直线:sin cos 1l x y αα-=,其中[)0,2πα∈.有以下命题正确的有( )A .直线l 的倾斜角为αB .若(),P x y 是直线l 上的任意一点,则221x y +≥C.当π,π2α⎛⎫∈ ⎪⎝⎭时,直线l 与两坐标轴的截距之和的最小值为D .集合{}PP l ∈∣,当α变化时,该集合在坐标平面内的补集构成的图形面积为π 11.在平面直角坐标系中,点A 关于直线y x =的对称点为A ',向量2||OA OA 'u u u r u u u r 对应的点叫做点A 的仿射点,在下列选项中,对点A 的仿射点的描述,正确的是( )A .若点A 在圆221x y +=上,则点A 到仿射点的距离的最大值为2B .点A 的仿射点的仿射点是AC .若点A 的轨迹是一条不过原点的直线,则其仿射点的轨迹是圆D .若点A 的轨迹是圆,则其仿射点的轨迹是一条直线三、填空题12.在空间直角坐标系Oxyz 中,已知点()()2,0,2,1,2,4A B ,则直线AB 与坐标平面Oxy 的交点坐标为.13.已知直线12:220,:220l x y l x y -+=--=,若直线1l 与2l 关于直线l 对称,则直线l 的方程为.14.已知棱长为2的正四面体ABCD ,动点P 是正四面体ABCD 内切球上一动点,则()()PA PB PC PD +⋅+u u u r u u u r u u u r u u u r 的值等于.四、解答题15.某保险公司在2023年度给年龄在20~70岁的民众提供某种疾病的医疗保障,设计了一款针对该疾病的保险,现从10000名参保人员中随机抽取100名进行分析,这100个样本按年龄段[)[)[)[)[]20,30,30,40,40,50,50,60,60,70分成了五组,其频率分布直方图如下图所示,每人每年所交纳的保费与参保年龄如下表格所示.(保费:元)据统计,该公司每年为该项保险支出的各种费用为一百万元.(1)用样本的频率分布估计总体的概率分布,判断该公司本年度是亏本还是盈利?(2)经调查,年龄在[)30,50之间的中年人对该疾病的防范意识还比较弱,为加强宣传,按分层抽样的方法从年龄在[)30,40和 40,50 的中年人中选取6人进行教育宣讲,再从选取的6人中随机选取2人,被选中的2人免一年的保险费,求被免去的保费超过150元的概率. 16.已知ABC V 的顶点()5,1A ,边AB 上的中线CM 所在直线方程为250x y --=,边AC 上的高BH 所在直线方程为250x y --=.(1)求顶点,B C 的坐标;(2)求过ABC V 三个顶点的圆的方程,并求出该圆的圆心和半径. 17.已知点()3,1M ,直线()1:2140l ax a y -++=,()a ∈R ,2:210l x y ++=,3:20l x y --=.(1)若这三条直线不能围成三角形,求实数a 的值;(2)点M 关于直线1l 的对称点为N ,求OM ON ⋅u u u u r u u u r 的取值范围.18.如图,在三棱柱111ABC A B C -中,1AA ⊥平面1,90,2ABC ABC BA AA ∠==o ,D 是棱AC 的中点,E 在棱1BB 上,且1AE AC ⊥.(1)证明:BD ∥平面1AEC ;(2)若点1C 到平面11ABB A①求直线BD 到平面1AEC 的距离;②求平面1AEC 与平面11ABB A 的夹角.19.在棱长为1的正方体1111ABCD A B C D -中,点,E F 分别是棱11,CC AA 的中点,点P 是正方形ABCD 内一动点(包括正方形ABCD 边界).(1)当1A PF ∠取得最大值时,求点P 在正方形ABCD 内轨迹的长度;(2)在(1)的条件下,求向量BP u u u r 在向量1BD u u u u r 上投影的取值范围;(3)当1A PE 取得最大值时,求线段AP 的长度.。

四川省成都市第七中学高二数学12月月考试题文(无答案

四川省成都市第七中学高二数学12月月考试题文(无答案

成都七中实验学校高二(上)第二次月考文科数学试题第Ⅰ卷一、选择题:(本大共12小题,每小题5分,共60分,在每个小题所给出的四个选项中,只有一项是符合要求的,把正确选项的代号填在答题卡的指定位置.)1.某大学中文系共有本科生5000人,其中一、二、三、四年级的学生比为5:4:3:1, 要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,则应抽二年级的学生 A .80人 B . 60人 C . 100人 D . 20人2.已知一组数据为20、30、40、50、60、60、70,则这组数据的众数、中位数、平均数的大小关系为 A . 中位数 >平均数 >众数 B . 众数 >中位数 >平均数C . 众数 >平均数 >中位数D . 平均数 >众数 >中位数 3.若某几何体的三视图(单位:cm ) 如图所示,则此几何体的体积 A .π B .π2C .π3D .π44.若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是A .//,,l n αβαβ⊂⊂⇒//l nB .,l αβα⊥⊂⇒l β⊥C .,l n m n ⊥⊥⇒//l mD .,//l l αβ⊥⇒βα⊥5. 对任意的实数k ,直线y =kx +1与圆222x y +=的位置关系一定是A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心6.已知圆22:(2)(1)3C x y -++=,从点(1,3)P --发出的光线,经x 轴反射后恰好经过圆心C ,则入射光线的斜率为A .43-B .23- C .43 D .23 7.已知三棱锥A PBC -中,PA ⊥面,ABC AB AC ⊥22BA CA PA ===,则三棱锥A PBC -底面PBC 上的高是A.6B.3C .3D .38.执行右面的程序框图,如果输入的t ∈[-1,3], 则输出的s 属于A .[-3,4]B . [-5,2]C . [-4,3]D . [-2,5]9.已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x2+y 2-2y =0的两条切线,A ,B 为切点,若四边形PACB 的最小面积是2,则k 的值为俯视图A .4B .3C .2 D10.如图所示,在棱长为2的正四面体A BCD -中,E 是棱AD 的中点,若P 是棱AC 上一动点,则BP PE +的最小值为A .3 BC.1D11.若直线b x y +=与曲线224690(3)x x y y y -+-+=≤有公共点,则b 的取值范围是A .]221,1[+-B .]221,221[+- C.[1- D .]3,21[-12.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF = 12.则下列结论中正确的个数.....为 ①AC ⊥BE ;②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值; ④AEF ∆的面积与BEF ∆的面积相等, A .4 B .3 C .2 D .1二、填空题:本大题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学试题:成都七中高二数学月考试题

你还在为高中数学学习而苦恼吗?别担心,看了高二数学试题:成都七中高二数学月考试题一以后你会有很大的收获:
高二数学试题:成都七中高二数学月考试题一
一、选择题(每小题5分,共50分。


1、要完成下列两项调查,①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3人调查学习负担情况,宜采用的抽样方法依次为( A )A.①用分层抽样法,②用简单随机抽样法B.①用随机抽样法,②用系统抽样法
C.①用系统抽样法,②用分层抽样法D.①②都用分层抽样法
2、如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( C ).
A.圆台、三棱柱、圆锥、三棱台B.圆台、三棱锥、圆锥、三棱台
C.圆台、四棱锥、圆锥、三棱柱D.圆台、三棱台、圆锥、三棱柱
3、长方体的一个顶点上的三条棱长分别为,且它的八个顶
点在同一个球面上,这个球的表面积为( B ).A.B.C.D.
4、对于一组数据(=1,2,3,,),如果将它们改变为(=1,2,3,,),其中,则下列结论中正确的是(C )
A.平均数与方差均不变B.平均数不变,而方差变了C.平均数变了,而方差保持不变D.平均数与方差均发生了变化
5、100个个体分成10组,编号后分别为第1组:00,01,02,,09;第2组:10,11,12,,19;;第10组:90,91,92,,99.现在从第组中抽取其号码的个位数与的个位数相同的个体,其中是第1组随机抽取的号码的个位数,则当时,从第7组中抽取的号码是( D )
A.B.C.D.
6.已知两个不同的平面和两条不重合的直线,则下列命题不正确的是( D )
A.若则
B. 若则
C.若,,则
D.若,,则
7、如图,平行四边形ABCD中,ABBD,沿BD将△ABD 折起,使面ABD面BCD,连接AC,则在四面体ABCD的四个面中,互相垂直的平面的对数为(C)
A.1 B.2
C.3 D.4
8、执行如图所示的程序框图,输出的S值为(D )
A.4
B.8
C.16
D.64
9.如图,在三棱柱中,侧棱垂直于底面,底面是边长为2的正三角形侧棱长为3,则与平面所成的角为( A )
A. B. C. D.
10、三棱柱中,点的中点以及的中点所决定的平面把三棱柱切割成体积不同的两部分,那么小部分的体积与大部分的体积比是(B)
A、B.
语文课本中的文章都是精选的比较优秀的文章,还有不少名
家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强
语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作
中自觉不自觉地加以运用、创造和发展。

C.D.以上都不正确
要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

通过阅读高二数学试题:成都七中高二数学月考试题一这篇文章,小编相信大家对高中数学的学习又有了更进一步的了解,希望大家学习轻松愉快!
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文
水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因
就是腹中无物。

特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。

知道“是这样”,就是讲不出“为什么”。

根本原因还是无“米”下“锅”。

于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。

所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。

要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。

相关文档
最新文档