半导体材料-硅锗晶体中的杂质

合集下载

半导体物理学-半导体中杂质和缺陷能级模板

半导体物理学-半导体中杂质和缺陷能级模板
称电子为多数载流子,简称多子,空穴为少 数载流子,简称少子。
2.1 硅、锗晶体中的杂质能级
n 2.1.3 受主杂质 受主能级
Si
+
Si
Si
Si
B-
Si
Si
Si
Si
受 主 掺 杂(掺硼)
硼原子接受一个电子后, 成为带负电的硼离子, 称为负电中心(B- ) 。 带负电的硼离子和带正 电的空穴间有静电引力 作用,这个空穴受到硼 离子的束缚,在硼离子 附近运动。
2.1 硅、锗晶体中的杂质能级
深能级杂质产生多次电离:
3)III族元素硼、铝、镓、铟、铊在锗和硅中各产生1个 浅受主能级,而铝在硅中,还能产生1个施主能级。
4)IV族元素碳在硅中产生1个施主能级,而锡和铅在硅 中产生1个施主能级和1个受主能级。
5)V族元素磷、砷、锑在硅和锗中各产生一个浅施主 能级。
2.1 硅、锗晶体中的杂质能级
n 2.1.2 施主杂质、施主能级 多余的电子束缚在正电中心,但这种束缚很弱
很小的能量就可使电子摆脱束缚,成为在晶格中导 电的自由电子,而Ⅴ族原子形成一个不能移动的 正电中心。
硅、锗中的Ⅴ族杂质,能够释放电子而产生导电 电子并形成正电中心,称为施主杂质或N型杂质, 掺有N型杂质的半导体叫N型半导体。施主杂质未 电离时是中性的,电离后成为正电中心。
mn* 0.12m0
2.1 硅、锗晶体中的杂质能级
n 晶体内杂质原子束缚的电子与类氢模型相比:
m0mn*, mp*; 0 r0
施主杂质的电离能: E D8m r2n *q 0 24 h2m m 0 n *E r2 01.6 3m m 0n *r2
Si: mn* 0.26m0 r 12 ED0.02e5V

半导体物理半导体中的杂质和缺陷能级

半导体物理半导体中的杂质和缺陷能级

3、杂质能级
1)类氢模型杂质电离能的简单计算
氢原子的电子能级
氢原子的电离能
E0
E
E1
m0 q 4
8 02 h 2
13.6
eV
杂质电离能
ED, A
mn*, pq4
8
2
2 0
h
2
mn*, p
m0 2
13.6
eV
锗、硅的介电常数ε分别为16和12,因此,杂质在锗、硅
晶体中的电离能分别为0.05 m*/ m0和0.1 m*/ m0。因为 m*/ m0一般小于l,所以,锗、硅中的杂质电离能一般小 于0.05eV和0.1eV。 (表1-3)
• 2、两性杂质及其能级
1)同位异性杂质 • 特点:同样环境下既可为施主,也可是受主,但施主
能级位于受主能级之下,因为对这种杂质而言,接受 一个电子是比释放一个电子更高的能量状态。
2)异位异性杂质 化合物半导体中特有的杂质行为。在这种情况下,杂质 的作用与III族和V族杂质原子在VI族元素半导体中的行 为相似,而与上述同位异性双性原子所受到的约束不同, 行为不同,其施主能级和受主能级一般都是浅能级.
• 异位异性双性杂质 SiGa与 SiAs自身的相互补偿
杂质浓度
3、等电子杂质及其能级
1)等电子杂质
与被替换的主体原子具有相同价电子数,但因原子序数 不同而具有不同共价半径和电负性,因而能俘获电子或 空穴,故常称之为等电子陷阱。
氮的共价半径和电负性分别为 0.07 nm 和 3.0 (Pauling),磷的 共价半径和电负性分别为 0.11 nm和 2.1;氮有较强的俘获电 子倾向,在GaP中取代磷后能 俘获电子成为负电中心。
EV
EV

第二章半导体中杂质和缺陷能级

第二章半导体中杂质和缺陷能级

n=时,氢原子电离: E=0 氢原子的电离能:
信息科学与工程技术学院
E0 E E1 13.6eV
* mn 0.12m0 半导体物理学
半导体中杂质和缺陷能级
2.1 硅、锗晶体中的杂质能级
• 晶体内杂质原子束缚的电子: m0mn*, mp*; 0 r0 * 4 * * mn E 0 mn 施主杂质的电离能:E mn q 13.6 D 2 2 2 2 m0 r 8 r 0 h m0 r2 Si:
信息科学与工程技术学院
半导体物理学
半导体中杂质和缺陷能级
间隙式杂质、替位式杂质
(a) 间隙式扩散(interstitial) (b) 替位式扩散(substitutional)
间隙式杂质: O, Fe, Ni, Zn, Mg
杂质原子比较小
信息科学与工程技术学院
替位式杂质 P,B,As, Al, Ga, Sb, Ge
• 2.1.2 施主杂质、施主能级
+
信息科学与工程技术学院
半导体物理学
半导体中杂质和缺陷能级
2.1 硅、锗晶体中的杂质能级
• 2.1.2 施主杂质、施主能级
多余的电子束缚在正电中心,但这种束缚很弱 很小的能量就可使电子摆脱束缚,成为在晶格中 导电的自由电子,而Ⅴ族原子形成一个不能移动 的正电中心。 硅、锗中的Ⅴ族杂质,能够施放电子而在导带 中产生电子并形成正电中心,称为施主杂质或N 型杂质,掺有N型杂质的半导体叫N型半导体。施 主杂质未电离时是中性的,电离后成为正电中心。
信息科学与工和缺陷能级
总结
受主杂质
信息科学与工程技术学院
施主杂质
半导体物理学
半导体中杂质和缺陷能级

掺杂方式及杂质能级

掺杂方式及杂质能级

EA
杂质作用
施主杂质
N补偿作用
当半导体中同时存在施主和受主杂质时,半 导体是n型还是p型呢?
施 主
受 主
能量角度的理解:能量越低系统越稳定
杂质补偿作用
当ND >NA时 受主能级低于施主能级,所以施主杂质的电子首先跃 迁到NA受主能级。
Ec ED
电离施主
电离受主
课后作业、任务
作业:练习题P55,第二、三题 自主练习,根据本节课内容学生自己
画出杂质电离过程和能级结构
16
EA
Ev
有效施主浓度n=ND-NA
此时半导体为n型半导体
杂质补偿作用
当ND <NA时 受主能级低于施主能级,所以施主杂质的电子首先跃 迁到NA受主能级。
Ec 电离施主
ED
电离受主
EA Ev
有效受主浓度p=NA- ND 此时半导体为p型半导体
杂质(能带)工程
课堂小结
1、间隙式杂质;替位式杂质 2、施主杂质电离—施主能级; 1、受主杂质电离—受主能级 3、杂质补偿---有效杂质浓度
受主杂质:杂质电离时提供一个自由空穴,
形成不能移动的带负电的离子。
杂质能级
∆ED Ec
施主能级
Ei 受主能级 ∆ EA Eg
Ev
ED Eg
杂质能级在禁带中的位置
浅能级杂质
EA Eg
杂质能级
Ec ∆ ED 施主能级 Ei Eg 受主能级
∆ EA
Ev
ED
杂质能级在禁带中的位置
深能级杂质
半导体材料---现代信息社会的基础
人们的生活离不开半导体材料
第二章半导体中的杂质和缺陷能级
•&2.1硅、锗晶 体中的杂质能级

固体与半导体物理-第九章 半导体中的杂质和缺陷能级

固体与半导体物理-第九章  半导体中的杂质和缺陷能级
贵州大学新型光电子材料与技术研究所
• 等电子陷阱俘获载流子后成为带电中心,这一带电中心又 能俘获另一种相反符号的载流子,形成束缚激子。这种束 缚激子在由间接带隙半导体材料制造的发光器件中起主要 作用。
• 填隙式杂质:杂质原子位于格点之间的间隙式位置。填隙 式杂质一般较小。
贵州大学新型光电子材料与技术研究所
贵州大学新型光电子材料与技术研究所
2. 施主杂质和施主能级(以Si、Ge为例) • V族元素(如P)进入到在Si、Ge晶体中时,与近邻原
子形成四个共价键,还有一个多余的电子,同时原子 所在处成为正电中心。 • V族元素取代Si、Ge后,其效果是形成一正电中心和一 多余的电子,多余的电子只需很小的能量即可跃迁至 导带成为自由电子。 • Si、Ge 晶体中的V族杂质能提供多余的电子,因此称 为施主杂质。存在施主杂质的半导体导电时以电子导 电为主,称n型半导体。
• 深能级测量:深能级瞬态谱仪。
贵州大学新型光电子材料与技术研究所
9.2 Ⅲ-Ⅴ族化合物中的杂质能级
• Ⅲ-Ⅴ族化合物也是典型的半导体,具有闪锌矿型结构,杂质进 入到半导体中,既可以占据正常格点位置成为替位式杂质,也 可以占据格点间的间隙位置成为填隙式杂质。
• 因为Ⅲ-Ⅴ族化合物中有两种不同的原子,因而杂质进入到ⅢⅤ族化合物中情况要复杂得多:杂质替位式杂质既可以取代Ⅲ 族元素的原子,也可以取代Ⅴ族元素的原子。同样,填隙式杂 质如果进入到四面体间隙位置,其周围既可以是四个Ⅲ族元素 原子,也可以是四个Ⅴ族元素原子。
• 只有当掺入原子与基质晶体原子在电负性、共价半径方面 具有较大差别时,才能形成等电子陷阱。
贵州大学新型光电子材料与技术研究所
• 同族元素原子序数越小,电负性越大,共价半径越小。

硅锗晶体中的杂质和缺陷

硅锗晶体中的杂质和缺陷
3
三、硅锗晶体的掺杂
半导体的电学参数通过掺杂来控制的,拉 单晶的过程时就掺入杂质。
杂质掺入的方法
不易挥发的材
共熔法:纯材料与杂质一起料放入坩锅熔化
投杂法:向已熔化的材料中加入杂质
易挥发的材料
4
单晶生长时, 杂质分布不均匀会造成横向和纵向电阻率不均匀 电阻率均匀性是半导体材料质量的一个指标
一、直拉法生长单晶的电阻率的控制
第四章 硅/锗晶体中的杂质和缺陷
1
一、杂质能级
对材料电阻
杂质的分类
率影响大
浅能级杂质
Ⅲ族杂质 起或Ⅴ复陷族合阱杂中作心用质
深能级杂质
2
二、杂质对材料性能的影响
1.杂质对材料导电类型的影响 掺杂一种杂质 掺杂两种杂质
2.杂质对材料电阻率的影响
3.杂质对非平衡载流子寿命的影响
降低了载流子的寿命
四、硅锗单晶中的位错
晶体中常见的缺陷种类
点缺陷 线缺陷
位错
面缺陷 体缺陷 微缺陷
11
点缺陷
杂质点缺陷
来源:制备过程中或环境中杂质沾污或掺杂, 间隙 替位
热点缺陷
弗伦克尔缺陷 肖特基缺陷 来源:与温度直接相关
12
线缺陷:位错的基本类型
1. 刃型位错(棱位错) 特点:位错线垂直滑移方向
快扩散杂质:H,Li, Na, Cu, Fe, K, Au, He, Ag, Si 慢扩散杂质:Al,P,B,Ca, Ti, Sb,As
➢ 根据杂质元素的蒸发常数选择
快蒸发杂质的掺杂不宜在真空而应在保护性气氛下进行
➢ 尽量选择与锗、硅原子半径近似的杂质元素作为 掺杂剂,以保证晶体生长的完整性
10
2.螺位错: 特点:位错线平行滑移方向

半导体第二章习题解析


等m效0玻尔半径
(Ge: ,Si:
)试,计基r 算质16G相e对r,S价i浅h电施q2常2r主rm数n*0的12束缚
2-2
硅中掺入某种施主杂质,设其电子有效质
量 mn* ,0计.2算6m电0 离能为多少?若
,其电
离能又m为n* 多 0少.4?m0这两种值中哪一种更接近实验值?
解答:利用类氢原子模型:
E Di
mn* m0
E0
2 r
E0 13.6eV , 对Si : r 12
mn*
0.26m0 , Eni
第二章
PowerPoint2003
《半导体物理》第二章
2-1 2-2 2-3 2-4 2-5 2-5(2)
2-6 2-6(2) 2-7 2-8 2-8(2)
2-1
掺入锗,硅晶体中的杂质通常有磷,铟,锑,硼, 砷,铝,镓,铋,
其中哪些是施主杂质? 哪些是受主杂质?
解答:
磷,砷,铋,锑为Ⅴ族元素,为施主杂质 硼,铝,镓,铟为Ⅲ族元素,为受主杂质。
解答: 施主能级和受主能级分别以D和A表示: 如下图:
硅晶体中(eV)
锗晶体中(eV)
类型
Au D A
Ag D A
Cu A Fe D Zn A Cd A Ni A
位置
类型
EV 0.35
D
EC 0.54
A
EV 0.32
A
EC 0.29
A EV 0.24, EV 0.37, EV 0.52
E1
a
Z
2 e ff
25 128
5 4
Z eff
E2
aZ
2 eff
将 E2 0.055 2.475 2 0.3365 eV EAi2

第二章-半导体中的杂质和缺陷分解

(2) 缺陷
由于Ⅱ-ⅥA族化合物半导体是负电性差别较大的元素结合成 的晶体,主要是离子键起作用,正、负离子相间排列组成了非常 稳定的结构,所以外界杂质对其性能的影响不显著,半导体的导 电类型更主要的是由其自身结构的缺陷(间隙离子或空格点)所 决定,这类缺陷在半导体中常起施主或受主作用。
a. 负离子空位
>>本征载流子浓度
掺施主的半导体的导带电子数主要由施主决定,半导体 导电的载流子主要是电子(电子数>>空穴数),对应的半导 体称为N型半导体。称电子为多数载流子,简称多子,空穴 为少数载流子,简称少子。
掺受主的半导体的价带空穴数由受主决定,半导体导电的 载流子主要是空穴(空穴数>>电子数),对应的半导体称为P型 半导体。空穴为多子,电子为少子。
位错:一种线缺陷。位错线上的原子有一个不成对的电子, 失去该电子成为正电中心,起施主作用;俘获一个电子,成为负 电中心,起受主作用。棱位错周围,晶格畸变,禁带发生变化。
负离子空位 正离子填隙 正离子空位 负离子填隙
— 产生正电中心,起施主作用 — 产生负电中心,起受主作用
§2-2 半导体中的深能级杂质(自学)
深能级杂质:其杂质电离能较大。其特点: 杂质能级深; 主要以替位式存在;
Ⅳ族元素起两性杂质作用。双性杂质:既可起施主作用,又能起 受主杂质作用。如GaAs中的Si,但Si总效果为施主杂质。
(2)晶格中的点缺陷
空位 VAs、VGa
间隙原子Gal、Asl
反结构缺陷——Ga原子占据As空位,或As原子占据Ga
空位,记为GaAs和AsGa
化合物晶体中的各类点缺陷可以电离,释放出电子或空 穴,从而影响材料的电学性质。
杂质向导带和价带提供电子和空穴的过程:(电子从 施主能级向导带的跃迁或空穴从受主能级向价带的跃迁) 称为杂质电离或杂质激发。所需要的能量称为杂质的电离 能。

第二章半导体中杂质和缺陷能级解析

§2. 半导体中杂质和缺陷能级
• 杂质、缺陷破坏了晶体原有的周期性势场, 引入新的能级。通常在禁带中分布的能级就是 这样产生的。 • 禁带中的能级对半导体的性能有显著影响, 影响的程度由能级的密度和位置决定。
沈阳工业大学电子科学与技术系
§2.1 硅、锗晶体中的杂质能级
学习重点:
• 浅能级杂质、深能级杂质 • 杂质补偿
EC
EV
• 受主电离能 △EA = EA - EV EC
受主 能级
• Si、Ge中Ⅲ族杂质的电离能

体 锗 Ge 0.01 0.01
杂 质
硼B 铝Al 镓Ga
硅 Si 0.045 0.057 0.065 0.160
Eg EA EV
△EA = EA - EV
0.011
0.011
铟In
• 受主电离过程示意图
正、负电荷所处介质的介电常数为: 0 r
电势能:
U (r ) q2 4 0 r r
* 4 mn q
施主电离能:
受主电离能:
* mn E0 ED 2 2 2 8 0 r h 2 m0 r
(3)
m* E0 p E A 2 2 2 2 m0 r 8 0 r h
施主 能级
• Si、Ge中V族杂质的电离能
EC
晶 杂 质 硅 Si 磷P 砷As
0.044
0.049 0.039
体 锗 Ge
0.0126
0.0127 0.0096
ED
Eg
EV
锑Sb
• 施主电离过程示意图
施主杂质电离的结果:
导带中的电子数增加了, 这就是掺施主杂质的意义 所在。
3、受主能级

半导体物理半导体中的杂质和缺陷

CdTe以外的II-VI族化合物大多是单极性半导体。这些材 料有一些共同的特点,即熔点都比较高,其组成元素又 往往具有较高而不相等的蒸气压,因此制备符合化学计 量比的完美单晶体十分困难,而空位等晶格微缺陷的形 成却比较容易。
§1-5 典型半导体的能带结构
一、能带结构的基本内容及其表征
1、能带结构的基本内容 • 1)导带极小值和价带极大值的位置,特别是导带
3、碲化汞的能带结构 碲化汞的导带极小值与价带极大值基本重叠,禁 带宽度在室温下约为-0.15eV,因而是半金属。
五、宽禁带化合物半导体的能带结构
1、SiC的能带结构 SiC各同质异型体间禁带宽度不相同,完全六方型的2HSiC最宽,为3.3eV;随着立方结构成分的增加,禁带逐 渐变窄,4H-SiC为3.28eV,15R-SiC为3.02eV,6H-SiC 为2.86 eV,完全立方结构的3C-SiC为2.33eV。 •皆为间接禁带
2)等电子络合物的陷阱效应




4、深能级的补偿作用
浅能级杂质间的补偿
深能级杂质的补偿
导带
• • •• • • • • • • • • ED
导带
• •• •• • •• •• •• ••
•• •
EDEA
• • • • • EA
价带
价带
同样有补偿作用,但效果弱一点。
三、缺陷的施、受主作用及其能级
1)价带 中心略偏,轻重空穴带二度简并
2)导带底的位置 随着平均原子序数的变化而变化,以GaAs为界,…
3)禁带宽度
随着平均原子序数的变化而变化,…
4)电子有效质量 随着平均原子序数的变化而变化,…
5)空穴有效质量 重空穴在各III-V族化合物间差别不大
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ρ
1 eμKC0(1 g)( 1k )
• 如果要拉电阻率ρ为w克锗,所需要加入的杂质 量m为:
wA 1 wA m C0 dN0 euK(1 g ) (1k ) dN0
思考: 为什么会是 m=C0wA/dN0这一公式? 而不是 m=wC0
C0:杂质浓度,每立方厘米晶体中所含的杂质数目 单位: 个· cm-3 w :单晶质量 A: 单晶的摩尔质量 d: 单晶的密度, N0: 阿佛加德罗常数, 单位:g 单位: g ·mol-1 单位:g ·cm-3 单位 : 个·mol-1
M(母合金质Βιβλιοθήκη ) W锗质量 C0(单晶中杂质浓度 ) Cm(母合金中杂质浓度 )
• 母合金可以是单晶(或多晶),通常在单晶炉内掺杂拉制, 测量单晶电阻率后,将电阻率曲线较平直部分依次切成 0.35~0.40mm厚的片,再测其电阻率,清洗后编组包装顺 次使用。 • 母合金中杂质的含量用母合金浓度(cm-3)来表示,其大小可
霍尔电压,即l、2两点间的电位差为
UH bB
工作电流I与载流子电荷e、n型载流 子浓度n、迁移速率v及霍尔元件的 截面积bd之间的关系为I=nevbd,
UH IB KIB end
式中K=1/(end),称该霍尔元件的灵敏度。如果霍尔元件是P型(即载流子是 空穴)半导体材料制成的,则K=l/(epd),其中p为空穴浓度。
载流子浓度为:
n(或p) 工作电流 磁场强度 IB 霍尔电压 电荷 器件厚度 U Hed
室温下(300K)硅、锗的电阻率值随施主或受主浓度的变化关系。在半导 体材料和器件生产中,常用这些曲线进行电阻率与杂质浓度(ρ-N)换算。
4-2硅、锗晶体的掺杂
• • 通过掺杂的方法来控制半导体材料的电学参数。 掺杂方式:在拉晶过程中掺杂,是将杂质与纯材料一 起在坩埚里熔化或是向已熔化的材料中加入杂质,然后 拉单晶。
• 又因为: d(母合金密度)≈d(锗密度), • M合金的质量一般很小 • W锗+M合金≈W锗
M(母合金质量) W锗质量 M母合金质量 Cm(母合金中杂质浓度 ) C0(单晶中杂质浓度 ) d(母合金密度 ) d锗密度
M(母合金质量) W锗质量 Cm(母合金中杂质浓度 ) C0(单晶中杂质浓度 ) d(锗密度) d锗密度
wA m C0 dN0
杂质质量
杂质浓度 单晶质量 摩尔质量 密度 阿佛加德罗常数
个cm-3 g gmol-1 g -3 -1 gcm 个mol

因为掺杂量一般较少,如用天平称量会有较大误差,所 以除非拉制重掺杂的单晶,一般都不采用直接加入杂质的 办法,而是把杂质与锗(硅)先做成合金,(称之为母合金), 拉单晶时再掺入,这样可以比较准确的控制掺杂量。
影响单晶内杂质数量及分布的主要因素是: 原料中的杂质种类和含量 杂质的分凝效应 杂质的蒸发效应 生长过程中坩埚或系统内杂质的沾污 加入杂质量 这些因素的大小随材料和拉晶工艺而变动,应针对问题具 体分析。
• 1. 2. 3. 4. 5.
• • • •
直拉硅单晶中杂质的掺入 一、掺杂量的计算 1、只考虑杂质分凝时的掺杂 直拉法生长晶体的过程,实际上是一个正常凝固的过程。如 果材料很纯,材料的电阻率ρ 与杂质浓度CS有如下关系: • ρ =1/CSeμ (4-3)μ 为电子(或空穴)迁移率 • 正常凝固的杂质分布为 • CS=kC0(1-g)k-1 (4-4) • 将4-4代入4-3式可算出在拉单晶时,拉出的单晶的某一位 置g处的电阻率与原来杂质浓度的关系:
• 课本例2 有锗W(g),拉制g处电阻率为ρ的单晶,应加入 杂质浓度为Cm的母合金量为多少? • (设原料锗中杂质量远小于合金中杂质的量) • 解:因为杂质在母合金中的总数和在熔体中的总数相等。
M母合金质量 W锗质量 M母合金质量 Cm母合金中杂质浓度 C0单晶中杂质浓度 d母合金密度 d锗密度
2.杂质对材料电阻率的影响
• 半导体材料的电阻率一方面与载流子密度有关,另一方面又 与载流子的迁移率有关。 • 同样的掺杂浓度,载流子的迁移率越大,材料的电阻率越 低。如果半导体中存在多种杂质,在通常情况下,会发生杂质 补偿,其电阻率与杂质浓度的关系可近似表示为:
电 阻 率 1 有效杂质浓度 所带电量 迁移率
如果施主杂质占优势,则有:
电阻率 1 1 (施主杂质浓度 受主杂质浓度) 所带电量 迁移率 (Nd o n o r N a c c e p t o)e r μn
如果受主杂质占优势,则有:
电阻率 1 1 (受主杂质浓度 施主杂质浓度) 所带电量 迁移率 (Na c c e p t o r Nd o n o r )e μ p
第4章 硅、锗晶体中的杂质和缺陷
• 半导体材料中的杂质和缺陷对其性质具有重要 的影响。半导体硅、锗器件的制做不仅要求硅、 锗材料是具有一定晶向的单晶,而且还要求单晶 具有一定的电学参数和晶体的完整性。 • 单晶的电学参数通常是采用掺杂的方法,即在 单晶生长过程中加入一定量的杂质,并控制它们 在晶体中的分布来解决。
4.1.2 杂质对材料性能的影响
在实际制备的半导体材料中,常共存着多种杂质,材 料最终显现的电学性质则是它们共同作用的结果。
• • 1.杂质对材料导电类型的影响 当材料中共存施主和受主杂质时,它们将相互发生补偿, 材料的导电类型取决于占优势的杂质。例如,在锗、硅材 料中,当Ⅲ族杂质元素在数量上占优势时,材料呈现P型, 反之当V族元素占优势时则呈现N型。如材料中N型杂质 和P型杂质的数量接近,它们相互补偿,结果材料将呈现 弱N型或弱P型。 • 值得提出的是,一些离子半导体材料,如大多数Ⅱ一Ⅵ 族化合物,晶体中的缺陷能级对半导体的导电类型可起支 配作用。

上两式表明,在有杂质补偿的情况下,电阻率 主要由有效杂质浓度决定。但是总的杂质浓度 NI=NA+ND也会对材料的电阻率产生影响,因为 当杂质浓度很大时,杂质对载流子的散射作用会 大大降低其迁移率。 例如,在硅中Ⅲ、V族杂质,当N>1016cm-3时, 对室温迁移率就有显著的影响.

• Hall法来测定材料的电阻率与载流子浓度。
相关文档
最新文档