第十二章 (拉普拉斯变换在电路分析中的应用)
拉普拉斯变换在电路分析中的应用)

目录
• 引言 • 拉普拉斯变换基本原理 • 电路元件拉普拉斯变换表示 • 线性时不变电路分析 • 非线性电路分析 • 复杂电路分析 • 总结与展望
01
引言
目的和背景
电路分析的重要性
电路分析是电气工程和电子工程领域 的基础,对于设计和分析各种电路系 统至关重要。
复杂电路的挑战
独立电流源的拉普拉斯变换表示为 $frac{I}{s}$,其中$I$为电源电流。 在拉普拉斯域中,独立电流源的阻 抗与频率成反比。
传输线元件
传输线
传输线的拉普拉斯变换表示为$frac{1}{sqrt{LC}s}$,其中$L$和$C$分别为传 输线的单位长度电感和电容。传输线的阻抗与频率的平方根成反比,随着频率 的增加而减小。
与傅里叶变换的关系
拉普拉斯变换可视为傅里叶变换的扩展,能够处理更广泛 的信号和系统,包括不稳定系统和具有初始条件的系统。
在电路分析中的应用
拉普拉斯变换在电路分析中的主要应用包括求解线性时不 变电路的响应、分析电路的稳定性和暂态行为,以及设计 滤波器、控制器等电路元件。
02
拉普拉斯变换基本原理
定义与性质
利用伏安特性曲线或负载线等方 法,通过图形直观分析非线性电 路的工作状态。
解析法
通过建立非线性电路的数学模型, 采用数值计算或符号计算等方法 求解电路方程,得到电路的响应。
仿真法
利用电路仿真软件对非线性电路 进行建模和仿真分析,可以得到 较为准确的电路响应和性能参数。
拉普拉斯变换在非线性电路中应用
逆拉普拉斯变换
定义
逆拉普拉斯变换是将复平面上的函数转换回时域的过程,它 是拉普拉斯变换的逆操作。通过逆拉普拉斯变换,可以得到 电路的时域响应。
拉普拉斯变换在电路中的应用

拉普拉斯变换在电路中的应用在电路中,拉普拉斯变换是一种非常重要的数学工具,它在分析电路的动态行为、求解电路的传递函数和时域响应等方面起着至关重要的作用。
拉普拉斯变换可以帮助我们将微分方程转化为代数方程,从而简化了电路分析的复杂性,使得我们能够更加方便地理解电路的工作原理和性能特性。
1. 拉普拉斯变换的基本概念和原理拉普拉斯变换是一种对函数进行积分变换的数学工具,它可以将一个时域函数转化为复频域函数,从而方便进行系统的动态分析和响应预测。
在电路分析中,我们经常会遇到包含电压、电流随时间变化的问题,通过应用拉普拉斯变换,我们可以将这些时域函数转化为复频域函数,更好地理解电路的行为和响应。
2. 拉普拉斯变换在电路分析中的应用通过拉普拉斯变换,我们可以方便地求解电路的传递函数,从而可以预测电路的动态响应和稳态性能。
这对于电路的设计和优化至关重要,因为我们可以通过分析传递函数,预测电路在不同频率下的响应特性,从而更好地进行电路参数选择和性能优化。
3. 拉普拉斯变换在滤波器设计中的应用滤波器是电子系统中常见的一个功能模块,它可以对信号进行滤波和频率选择,通过应用拉普拉斯变换,我们可以方便地分析滤波器的频率响应和频率特性。
这对于滤波器的设计和性能评估非常重要,因为我们可以通过分析频率响应,选择合适的滤波器类型和参数,从而满足系统对信号处理的要求。
4. 拉普拉斯变换在控制系统中的应用控制系统是现代工程技术中一个重要的方向,通过应用拉普拉斯变换,我们可以将控制系统的微分方程转化为代数方程,从而方便进行控制系统的分析和设计。
拉普拉斯变换在控制系统中的应用,可以帮助我们更好地理解控制系统的稳定性、性能和鲁棒性,从而更好地设计和优化控制系统。
5. 总结与展望通过对拉普拉斯变换在电路分析中的应用进行深入探讨,我们可以看到,在电路设计、滤波器设计和控制系统设计中,拉普拉斯变换都扮演着非常重要的角色。
它为我们提供了一种方便、高效的数学工具,帮助我们更好地理解电路的动态行为和系统的频率特性。
拉普拉斯变换在互感电路分析中的应用

第 7卷第 6期
2008年 6月
南 阳师 范 学 院 学报
J u n lo n a g No ma i e st o r a fNa y n r lUn v riy
Vo . . 17 No 6
J n. 2 08 u 0
微分 方 程 研 究 电路 , 电 路 的 网 络 结 构 复 杂 ( 路 和 节 点 当 支 较多 ) 时利 用微 分方 程 显 得 相 当 繁 琐 . 简 化 分 析 过 程 , 为 可
对 以上 两 式 两 边 进 行 拉 普 拉 斯 变 换 可 得 到 其 s 关 系 . 域
V ( )= 。s。s 一i( 一 ]+ [l( )一 o一 ] 。 s L [l( ) 。0 ) M s s i( ) , 2 ( )= s ()一i( 一 ]+ [l( )一 。0一 ] ( ) s L [l s 2 o ) M s s i( ) . 4 。 互感 元 件 s 模 型 如 图 4所 示 . 域
傅 立 叶变 换 都 是 积 分 变 换 , 它 比 傅 立 叶 变 换 有 更 广 泛 的 但 适应性 , 是求 解 高 阶 复 杂 动 态 电路 的 有 效 而 重 要 的方 法 之
一
s C
尺
9 I 。。 ‘。。— —I 。 。。 。
SV( c O)
— 卜 e .
( 一 S) 一 + ( 一
定 义 式 积分 收敛 .
J
I £ e t f £ -+)t ) d = ) (j d e e ̄w t
J
() 1
—— {=】 _= _ —一
一
厶—— —
厶 一 ( L I ) —一
÷JI , UJ
拉普拉斯变换及逆变换

第十二章拉普拉斯变换及逆变换拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。
我们经常应用拉普拉斯变换进行电路的复频域分析。
本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。
第一节拉普拉斯变换(3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换。
一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的。
例12.1求斜坡函数()f t at =(0t ≥,a 为常数)的拉氏变换。
解:0000[]()[]pt ptpt pt a a a L at ate dt td e e e dt p p p +∞+∞+∞---+∞-==-=-+⎰⎰⎰二、单位脉冲函数及其拉氏变换在研究线性电路在脉冲电动势作用后所产生的电流时,要涉及到我们要介绍的脉冲函数,在原来电流为零的电路中,某一瞬时(设为0t =)进入一单位电量的脉冲,现要确定电路上的电流()i t ,以()Q t 表示上述电路中的电量,则 由于电流强度是电量对时间的变化率,即t t Q t t Q dt t dQ t i t ∆∆∆)()(lim)()(0-+==→,所以,当0t ≠时,()0i t =;当0t =时,0000→→→→εεεε,即1)]([=t L δ。
例12.3现有一单位阶跃输入0,()1,t u t t <⎧=⎨≥⎩,求其拉氏变换。
解:00011[()]()1[]pt pt pt L u t u t e dt e dt e p p+∞+∞---+∞===-=⎰⎰,(0)p >。
例12.4求指数函数()at f t e =(a 为常数)的拉氏变换。
解:()001[]atat ptp a t L e e e dt e dt p a+∞+∞---===-⎰⎰,()p a >,即类似可得22[sin ](0)L t p p ωωω=>+;22[cos ](0)pL t p p ωω=>+。
拉普拉斯变换在电路中的应用

拉普拉斯变换在电路中的应用拉普拉斯变换是一种重要的数学工具,广泛应用于电路分析和信号处理领域。
它是一种将时间域中的函数转换为频域中的函数的方法,可以简化电路分析的计算过程,提高计算效率和精确度。
本文将探讨拉普拉斯变换在电路中的应用。
一、拉普拉斯变换的定义与性质首先,我们来对拉普拉斯变换进行简要介绍。
拉普拉斯变换可以将时域函数 f(t) 转换为频域函数 F(s),其定义如下:F(s) = L[f(t)] = ∫[0,∞] e^(-st) f(t) dt其中,s 是复数变量,表示频域中的频率。
拉普拉斯变换具有线性性质和位移性质等重要性质,使得它成为电路分析中的重要工具。
二、1. 电路响应的计算拉普拉斯变换可以方便地计算电路的时域响应。
通过将电路中的元件和信号源转换为拉普拉斯域中的等效函数,可以建立电路的等效电路方程。
然后,对等效电路方程进行拉普拉斯变换,得到频域中的等效电路方程。
最后,通过求解频域方程,可以得到电路在不同频率下的响应。
2. 电路传递函数的求解电路传递函数是描述输入和输出关系的重要指标。
拉普拉斯变换可以方便地求解电路的传递函数。
通过将电路中的元件抽象为阻抗和导纳的拉普拉斯域表达式,并根据电路的串并联关系,可以得到电路的总阻抗和总导纳。
然后,将输入电压和输出电压的拉普拉斯域表达式相除,可以得到电路的传递函数。
3. 时域响应的计算得到电路的传递函数后,可以通过拉普拉斯逆变换将传递函数转换为时域响应。
通过对传递函数进行部分分式展开或使用拉普拉斯逆变换表格,可以获得电路的时域响应。
这在实际电路设计和故障诊断中非常有用,可以根据输入信号和电路响应来判断电路的性能和健康状况。
4. 稳定性分析拉普拉斯变换还可以用于电路的稳定性分析。
通过计算电路的传递函数,可以得到系统的极点和零点。
根据极点的位置,可以判断电路的稳定性。
拉普拉斯变换的极点在左半平面内时,电路是稳定的;而极点在右半平面内时,电路是不稳定的。
拉普拉斯变换及其在电路分析中的应用

拉普拉斯变换及其在电路分析中的应用拉普拉斯变换是一种重要的数学工具,它在电路分析中有着广泛的应用。
通过将电路中的各个元件抽象成数学模型,我们可以利用拉普拉斯变换来分析电路的性质和行为。
本文将介绍拉普拉斯变换的基本概念以及它在电路分析中的应用。
首先,我们来了解一下拉普拉斯变换的定义和性质。
拉普拉斯变换是一种从时域到复频域的变换,它将一个函数f(t)变换为另一个函数F(s),其中s是复变量。
拉普拉斯变换的定义如下:F(s) = L[f(t)] = ∫[0,∞] e^(-st) f(t) dt其中,e^(-st)是拉普拉斯变换的核函数,s是复变量,f(t)是待变换的函数。
拉普拉斯变换具有线性性质、时移性质、频移性质等基本性质,这些性质使得它在电路分析中具有很大的优势。
在电路分析中,我们常常需要求解电路中的电压和电流。
通过应用拉普拉斯变换,我们可以将电路中的微分方程转化为代数方程,从而简化求解过程。
例如,对于一个由电阻、电感和电容组成的RLC电路,我们可以利用拉普拉斯变换将电路的微分方程转化为代数方程,然后求解得到电路中的电流和电压。
另外,拉普拉斯变换还可以用来分析电路的稳态和暂态响应。
稳态响应是指电路在达到稳定状态后的响应,而暂态响应则是指电路在初始时刻的响应。
通过应用拉普拉斯变换,我们可以将电路中的微分方程转化为代数方程,并利用初始条件和边界条件求解得到电路的稳态和暂态响应。
此外,拉普拉斯变换还可以用来分析电路中的频率响应。
频率响应描述了电路对不同频率信号的响应程度。
通过将输入信号和输出信号都进行拉普拉斯变换,我们可以得到电路的传递函数,从而分析电路在不同频率下的增益和相位特性。
这对于设计滤波器、放大器等电路非常重要。
除了以上应用之外,拉普拉斯变换还可以用来分析电路的稳定性和控制系统的性能。
通过将电路的传递函数进行拉普拉斯变换,我们可以得到系统的极点和零点,从而判断系统的稳定性。
同时,拉普拉斯变换还可以用来分析控制系统的性能指标,如稳态误差、超调量和响应时间等。
拉普拉斯变换在电路分析中的应用

K1,K2¨¨Km的计算方法如下:
A( s) K k ( s sk ) B ( s ) s sk
则F(s)的拉氏反变换为:
L [ F ( s)] K k e
1 k 1
m
sk t
例1.
求 F ( s)
30( s 1)(s 2) s( s 3)(s 2 9s 20)
电感元件的VCR(积分形式)
1 t iL (t ) iL (0 ) u ( ) d L 0
, t 0
1 t [iL (t )] [iL (0 ) u ( ) d ] L 0 1 t [iL (0 )] [ u ( ) d ] L 0 iL (0 ) U ( s ) I (s) s sL
S域的零状态分析
零状态分析时的初始状态为零,所以电路的s域模型 就简化了: sL R I(s) 1/sC I(s)
I(s)
+ U(s) -
+ U(s) -
+
U(s) -
U (s) Z (s) I (s) I (s) Y (s) U ( s)
Z(S)称为广义阻抗(拉普拉斯阻抗)
Y(S)称为广义导纳
积分性质用于电容元件和电感元件VCR的S域形式 电容元件的VCR(积分形式)
1 t uc (t ) uc (0 ) i ( ) d , t 0 C 0 1 t L[uc (t )] L[uc (0 ) i ( ) d ] C 0 1 t L[uc (0 )] L[ i( ) d ] C 0 u c (0 ) I ( s ) U c (s) s sC
3. S域分析法的步骤 (1)建立电路的S域模型 求给定电源的拉氏变换,求C和L的初始值, 画出电路的S域模型。 (2)通过电路的S域模型,利用电阻电路的各种方 法,定理求解电路的响应。 (3)对在S域模型中求得的响应进行拉氏反变换, 即可得到电路的时域响应。
拉普拉斯变换在电路分析中的应用

拉普拉斯变换在电路分析中的应用
1.电路元件参数的拉普拉斯变换
在电路分析中,拉普拉斯变换可以用于将电路中的元件参数转化为复
频域的表达式。
例如,电阻、电感和电容的电压和电流之间的关系可以通
过拉普拉斯变换来表示。
这种方法可以简化电路的计算和分析过程。
2.电路的传递函数
3.零极点分析
利用拉普拉斯变换,可以计算电路的传递函数的零点和极点。
零点和
极点决定了电路的频率响应和稳定性。
通过分析电路的零极点分布,可以
优化电路的性能和稳定性。
4.阻抗和导纳分析
5.信号处理和滤波器设计
总结:
拉普拉斯变换在电路分析中有广泛的应用。
通过将电路中的元件和信
号转化为复频域的表达式,拉普拉斯变换可以简化电路的计算和分析过程。
具体而言,它可以用来分析电路的传递函数、频率响应、零极点分布、阻
抗和导纳等。
此外,拉普拉斯变换还可以用于信号处理和滤波器设计。
因此,掌握和应用拉普拉斯变换对于电路工程师和电子技术人员来说是非常
重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (t) (2.5et 10e2t 7.5e3t ) (t)
(b) B(s)=0 含有重根情况
12-15
例题 解
F(s) → f(t),已知 F(s) s 1 。
s2 4s 4
F(s) s 1 K11 K12 (s 2)2 s 2 (s 2)2
cos t
1 s A s 1
(s )
s
s2 2
§2 s 域模型
12-5
使用相量法,可不必从列电路微分方程做起, 根据两类约束的相量形式,利用相量模型,仿照 电阻电路的解法,即可解决问题,关键在于引入Z、 Y。拉氏变换法也可根据两类约束的s域形式,利用 s域模型,仿照电阻电路的解法,即可解决问题, 关键在于引入广义(generalized)阻抗Z(s) 、导纳 Y(s)。
§1 基本概念
12-2
(1) 变换方法的基本步骤
(a) 变换 如相量法中,正弦的t函数→相量(复数)
(b) 在变换域运算 如相量法中对相量进行复数运算 (c) 反变换 回归到时域
(2) 拉氏变换方法的三个步骤
(a)变换 把函数f(t)→F(s) (拉氏变换)
(b)在s域中运算(利用s域模型)
(c)反变换 回归到时域(方法的难点所在)
第十二章 拉普拉斯变换在电路分析中的应用
重提基本结构
一个假设→集总模型(电阻电路和动态电路) 两类约束→VCR + KCL、KVL 三大基本方法
1.叠加方法 2.分解方法
模型的化简
3.变换域方法 ---模型的类比(第三篇)
变换与类比
变换
动态电路的时域模型 变 换为
①1 相量模型 →适用于正弦稳态分析
类似地,KVL的s域形式为 U(s) 0
提问:u(t) Ri(t)的s域形式?
(b)拉氏变换的积分性质 若
L[f (t)] F(s),则
L
t 0
f
(
)d
1 s
F(s)
12-7
由此可得电容、电感VCR的s域形式。
➢电容VCR的s域形式
提问 :
u(t)
u (0
L[iL
(0
)]
2 s
(b)作s域模型,得
I(s)
40 10 s
2(s 4)
5s 10 s(s 2)
10Ω
+
10Ω
- us=40V 5H
10
+ 40
10
-s 2
s
5S
I(s)
10
+ 40
5s
-s
-
10
I(s) +
i(t)
注意:本例为非零初始状态!易犯的错误:
s域模型中未考虑初始电流源!
)
1 C
t
i( )d
0
△若 u(0 ) 0 ,s域模型如何? △与相量模型区别何在?
L[u(t)]
L[u(0-)]
L[
1 C
t i( )d ] u(0 )
0
s
I (s) u(0 ) s
I (s)
ZC
(s)
1 sC
电容的广义阻抗
i +u(0--) C
u(0-)
0
0
s
0
s
s
即 (t) 1
s
如同 Im cos(t ) Im
(4) 数学家已表明拉氏变换可用来简化
线性常系数常微分方程的求解。
12-4
数学家已对各类的f(t)求得相应的F(s),制成手册, 供查阅,如同查对数表。如
f (t) t 0
F (s)
(t)
A
e t
单一激励下定义。与叠加方法相结合。
(2) s域模型的网络函数 H(s)
单一激励下,网络函数的定义
H (s)
L[
零状态响 应]
L[激 励]
Y (s) X (s)
即
L[零状态响应] H (s) L[激励]
12-18
①
(3) 三个例题
12-19
(a) 求图所示电路的网络函数 U(s) I (s) 。 +
L1[
1 C
t
]
1
e RC
(t)
s
1 RC
C
② 网络函数的极点是网络的固有频率 ③
另外,由本例可知:t=0时,冲激电流通过C,
引起电容电压由零到
1 C
V的跃变。
(c)求图所示电路 i(t)、t 0 。已知u(t) 40sin( 3t)V。12-21
t=0
+
u(t)
- i(t)
0
△若 i(0 ) 0 ,s 域模型如何?
L[i(t)] i(0 )
U (s) i(0 )
U (s)
s
s
ZL (s) sL 电感的广义阻抗
iL
I(s) sL i(0 )
i(0 )
s
-
-
-
-
+u
时域模型
+ U(s) s域模型
练
习 求所示时域电路的相量模型和零初始状态的s域模型。 12-9
解
作零初始状态s域模型。
i(t) c = R u(t)
R 1 H (s) U (s) I (s) Z (s) sC
RHale Waihona Puke -R 1 sRC 1
+
sC
求网络函数,必须明确:
I(s) 1 = R U(s)
何者为响应,何者为激励。
sc
-
(b) 接续上题,若 i(t) (t) ,试求u(t)、即冲激响应h(t)。12-20
| | K1
(s
1)I (s)
s 1
(s
5s 2)(s
3)
s 1
2.5
| K2 (s 2)I (s) s2 10 | K3 (s 3)I (s) s3 7.5
f (t) F (s)
e t
1
s
I (s) 2.5 10 7.5 s 1 s 2 s 3
(3) 拉氏变换
12-3
定义式 L[ f (t)] f (t)estdt F(s) 0
其中s为复变数(复频率) s j
例题
| L[ (t)] (t)est dt est dt 1 est 1 (0 1) 1
(1) 两类约束的s域表达式
12-6
(a)拉氏变换的线性性质
L[1 f1 (t) 2 f2 (t)] 1F1(s) 2 F2 (s)
由此可推广运用得KCL、KVL的s域形式:
若 L[i(t)] I (s) 则 i(t) 0
其s域形式为 L[i(t)] I(s) 0
s(s 2) s s 2
求K1:
s I(s) 2s 8
s2
K1
sK 2 s2
| | 2s 8
s2
s0
K1
sK 2 s2
s0
K1 4
求K
:
2
(s
2) I (s)
2s 8 s
K1(s s
2)
K2
| | 2s 8
s
s2
K1(s s
8Ω 2H
8
+
U(s)
2s
- I(s)
解 作s域模型
U (s)
L
[40sin( 3t)]
40( s2
3 32
)
120 s2 32
I (s) U (s)H (s) H(s) Y(s) 1
8 2s
I (s) 120 1
60
s 2 32 8 2s (s 4)(s j3)(s j3)
②2 s域模型 →适用于线性时不变电路的一般分析
模型变换的数学理论基础: 1 欧拉恒等式 2 拉普拉斯变换
类比 1 、2 两种模型均与电阻模型作类比,从而
得以充分利用熟知的电阻电路分析方法。这 是一种手段,较简便地得到客观存在的动态 电路时域响应。
本章分为
12-1
§1 基本概念 §2 s 域模型 §3 反变换—赫维赛德展开定理 §4 网络函数与叠加方法
2)
s2
K2
K2 2
与比较系数法所得结果相同。此处系根据
赫维赛德定理所提供的方法求解。
(2)对线性时不变电路情况
12-13
对线性时不变电路,在如教材表12-1所示各类 f(t)激励下,所得F(s)为s的有理函数,可表为
F (s) A(s) B(s)
即两s多项式之比。如同上例,可将F(s)表为 部分分式之和,以便运用赫维赛德定理得出所需 结果。为此需对B(s)进行因式分解。
f (t)
sin t e t
F (s)
s2 2
1
s
I(s)
120 s2 32
1 8 2s
(s
4)(s
60 j3)(s
j3)
12-22
解得
i(t) L1[I (s)] L1[ K1
K2
K
* 2
]
s 4 s j3 s j3
K1 2.4