高二理科数学选修2223综合测试题
高中数学人教A版选修212223综合测试含问题详解高二数学理科

实用文档高二下学期数学期末考试试卷(理)一、选择题:本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合要求的.1.在某项测量中,测量结果X服从正态分布N(1,2)(0),假设X在(0,2)内取值的概率为,那么X在[0,)内取值的概率为A.B.C.D.曲线ysinx与x轴在区间[0,2]上所围成阴影局部的面积为A.4B.2C.2D.43 .假设复数z满足(1i)zi,那么z的虚部为i1C.i1 A.B.D.2 2224 .用反证法证明数学命题时首先应该做出与命题结论相矛盾的假设.否认“自然数a,b,c 中恰有一个偶数〞时正确的反设为A.自然数a,b,c都是奇数B.自然数a,b,cC.自然数a,b,c中至少有两个偶数D.自然数a,b,c都是偶数中至少有两个偶数或都是奇数5.在一次试验中,P(A),那么在4次独立重复试验中,事件A恰好在前两次发生的概率是A.B.C.D.6.某单位为了制定节能减排的目标,先调查了用电量y〔单位:度〕与气温x〔单位:c〕之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:x(单位:c)1714101y(单位:度)24343864由表中数据得线性回归方程:y2x a.当气温为20c时,预测用电量约为A.20B.16C.10D.57.从1,2,3,4,5,6这六个数字中,任取三个组成无重复数字的三位数,但当三个数字中有2和3时,2必须排在3前面(不一定相邻),这样的三位数有A.108个B.102个C.98个D.96个在吸烟与患肺病这两个事件的统计计算中,以下说法正确的选项是A.假设2的观测值为 6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;文案大全实用文档C.假设从统计量中求出有 95%的把握认为吸烟与患肺病有关系, 是指有5%的可能性使得推判出现错误;D.以上三种说法都不正确 .有6个座位连成一排,安排3个人就座,恰有两个空位相邻的不同坐法有A.36种B. 60种C.72种D.80种10.一个袋子里装有编号为 1,2,3, ,12的12个相同大小的小球, 其中1到6号球是红色球,其余为黑色球.假设从中任意摸出一个球,记录它的颜色和号码后再放回到袋子里,然 后再摸出一个球,记录它的颜色和号码,那么两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是3B .173A .4 C .D .16x 3 2cx 216411.假设函数f(x)x 有极值点,那么实数 c 的范围为A .[3,)B .(3,)C .(,3] [3,)D .( ,3) (3,)222222以下给出的命题中:①如果三个向量a,b,c 不共面,那么对空间任一向量 p ,存在一个唯一的有序数组x,y,z 使pxa yb zc .②O(0,0,0),A(1,0,0),B(0,1,0),C(1,1,1).那么与向量AB 和OC 都垂直的单位向量只有n( 6 , 6 ,6).6 6 3③向量OA,OB,OC 可以构成空间向量的一个基底,那么向量OA 可以与向量OAOB 和向量OA OB 构成不共面的三个向量.④正四面体OABC ,M,N 分别是棱OA,BC 的中点,那么MN 与OB 所成的角为.4是真命题的序号为A .①②④B .②③④C .①②③D .①④二、填空题:本大题共 4小题,每题5分,共20分.把答案填在答题卡中相应题的横线上.13.函数f ( ) x 4 2 x 2 5在[ 1,2]上的最小值为_____________________. x14.等差数列{a n }的前n 项和为S n ,S 14 0,S 15 0,那么n _____时此数列的前n 项和取得最小值.15.长方体ABCDA 1B 1C 1D 1中,AB AA 11,AD 2,E 为侧面AB 1的中心,F文案大全实用文档为A1D1的中点,那么EFFC1.16.在数列{a n}中,a11,a2 2且a n2a n 1 (1)n(n N),那么S50.三、解答题:本大题共6小题,共70分.把解答写在答题卡中.解容许写出文字说明,证明过程或演算步骤.〔本小题总分值10分〕(2 x3x2)n的展开式中,第5项的二项式系数与第3项的二项式系数之比是7:2.11〔Ⅰ〕求展开式中含x2项的系数;〔Ⅱ〕求展开式中系数最大的项.〔本小题总分值12分〕为培养高中生综合实践能力和团队合作意识,某市教育部门主办了全市高中生综合实践知识与技能竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的团队按照抽签方式决定出场顺序.通过预赛,共选拔出甲、乙等六个优秀团队参加决赛.〔Ⅰ〕求决赛出场的顺序中,甲不在第一位、乙不在第六位的概率;〔Ⅱ〕假设决赛中甲队和乙队之间间隔的团队数记为X,求X的分布列和数学期望.19.〔本小题总分值12分〕观察以下等式112 3 493 4 5 6 7254 5 6 7 8 9 1049第一个式子第二个式子第三个式子第四个式子照此规律下去〔Ⅰ〕写出第6个等式;〔Ⅱ〕你能做出什么一般性的猜想?请用数学归纳法证明猜想.文案大全实用文档20. 点B〔2,0〕,OA(0,22),O为坐标原点,动点P满足OP OA OP OA 4 3.〔Ⅰ〕求点P的轨迹C的方程;〔Ⅱ〕当m为何值时,直线l:y3x m与轨迹C相交于不同的两点M、N,且满足BM BN?〔Ⅲ〕是否存在直线l:ykxm(k0)与轨迹C相交于不同的两点M、N,且满足BMBN?假设存在,求出m的取值范围;假设不存在,请说明理由.21.〔本小题总分值12分〕如图,直四棱柱ABCD A1B1C1D1的底面ABCD是平行四边形,DAB45,AA1AB2,AD22,点E是C1D1的中点,D1E C1点F在B1C1上且B1F2FC1.AB1F1〔Ⅰ〕证明:AC1平面EFC;〔Ⅱ〕求锐二面角A FC E平面角的余弦值.D CA B〔本小题总分值14分〕函数f(x)e x(x2ax a1),其中a是常数.(Ⅰ)当a1时,求曲线y f(x)在点(1,f(1))处的切线方程;〔Ⅱ〕假设f(x)在定义域内是单调递增函数,求a的取值范围;〔Ⅲ〕假设关于x的方程f(x)e x k在[0,)上有两个不相等的实数根,求k的取值范围.文案大全实用文档高二下学期数学期末考试试卷 (理)参考答案一.:每小 5分共60分ADBDA,AACCA,DD二.填空:13.6 14.715.167516.2三:17解:〔Ⅰ〕解由意知C n 4 7 ,整理得 42 (n 2)(n 3),解得n9⋯2 分C n 2 227 r27 r11,解得r∴通公式T r1C 9r 29rx64 分令 6.6211∴展开式中含x 2的系数C 96296 672 .⋯⋯⋯⋯⋯6分 〔Ⅱ〕第r1 的系数最大,有C 9r 29r C 9r1210r ⋯⋯⋯⋯⋯8分C 9r 29rC 9r128r10r3,rN 且0r9r3.⋯⋯⋯⋯⋯10分7r3∴展开式中系数最大的 T 4 C 93 26x 55376x 5 .⋯⋯⋯⋯⋯12分18〔本小分12分〕解:〔Ⅰ〕“甲不在第一位、乙不在第六位〞事件A ,1分P(A)A 66 2A 55 A 447⋯⋯⋯⋯3分A 6610所以甲不在第一位、乙不在第六位的概率7.⋯⋯⋯⋯4分X 的可能取0,1,2,3,410⋯⋯⋯⋯⋯⋯⋯5分〔Ⅱ〕随机量P(X0)A 22A 55 1P(X1)C 41A 22A 444A 66 ,A 66153P(XC 42A 22A 22A 331P(X 3) C 43A 22A 22A 3322) A 66,A 66155P(X4)A 22A 44 1(每个式子1分)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分A 66,15文案大全实用文档随机量X 的分布列:X 01234P14 1 2 131551515因EX11 4 213 24 14,315515153所以随机量X 的数学期望4.⋯⋯⋯⋯⋯⋯⋯⋯12分3 11219.解:〔Ⅰ〕第6个等式6 7 816⋯⋯⋯⋯2分〔Ⅱ〕猜第n 个等式n(n 1) (n 2)(3n2)(2n1)2⋯⋯⋯⋯4分明:〔1〕当 n1然成立;〔2〕假n k(k 1,k N )也成立,即有k (k 1) (k 2) (3k2)(2k 1)2⋯⋯⋯⋯6分那么当n k 左(k 1) (k2)(3k2) (3k1) (3k)(3k1)1k (k 1) (k 2) (3k 2) (2k 1) 3k3k1(2k1)2 (2k1) (3k) (3k 1)4k 24k 1 8k (2k1)2[2(k1) 1]2而右[2(k1) 1]2就是n k 1等式也成立.⋯⋯⋯⋯10分根据〔1〕〔2〕知,等式任何n N 都成立.⋯⋯⋯⋯12分20解:〔Ⅰ〕点P(x,y) ,OP OA (x,y 2 2),OP OA(x,y22).由得x 2 (y 2 2)2x 2 (y 2 2)243.⋯⋯⋯〔3分〕即点P 到两定点〔0,22〕、〔0,-2 2〕的距离之和定 43,故迹C 是以〔0,22〕焦点,43的,其方程x 2 y 2 1.⋯⋯〔6分〕412(x 1 ,y 1)、N (x 2〔Ⅱ〕点 M,y 2),段MN 的中点M 0(x 0,y 0),由BMBN 得BM 0垂直平分MN .立y 3x m, 消去y 得6x 2 23mx m 2 120.3x 2 y 2 12.由(2 3)224( m 2 12) 0 得 26m 26.⋯⋯⋯〔10分〕m文案大全实用文档∴x 0x 1 x 2m3(m)mmm m22 ,y 02 3.即M 0( 2 3 ,).322m由BM 0⊥MN 得k BM 0kMN23 1.故m23所求.〔14分〕m 22 3〔Ⅲ〕假设存在直l 与C 相交于不同的两点M(x 1,y 1)、N (x 2 ,y 2),且足BMBN ,令段MN 的中点M 0(x 0,y 0),BM 0垂直平分MN .立3x 12 y 12 12,两式相减得3(x 1x 2)(x 1x 2)(y 1y 2)(y 1y 2).3x 22 y 2212.∴k MNy 1 y 23(x 1 x 2)3x 0k .x 1x 2 y 1 y 2y 0又由BM 0⊥MN 得k BM 0y 0 1 1,y 033 x 02.∴x 0 k .即M 0(1,).kk又点M 0在C 的内部,故3x 02y 02 12.即3 ( 1)2(3)212.3)在直l 上,∴3k解得k1.又点M 0(1, k m .kk∴mk 3 k3 23〔当且当k3取等号〕.kk故存在直l足条件,此m 的取范(, 2 3][23,〕.21〔本小分12分〕解:〔Ⅰ〕以A 坐原点,z D 1EC 1射AB x 的正半,建立如所示空直角坐F系Axyz .依意,可得以下各点的坐分A 1BA(0,0,0), C(4,2,0),C 1(4,2,2),E(3,2,2),y10 4 ⋯⋯⋯⋯⋯⋯3分DCF(,,2).3 3AxB(1,2,0),EC∴AC 1(4,2,2),EF (1,0, 2),3 3∴AC 1EF(4,2,2)(1, 2,0) 0.AC 1 EC(4,2,2) (1,0, 2) 03 3∴AC 1EF ,AC 1 EC .又EF,EC平面EFC∴AC 1平面EFC .⋯⋯⋯⋯⋯⋯6分文案大全实用文档〔Ⅱ〕向量n (x,y,z)是平面AFC 的法向量,n AC,n AF ,而AC(4,2,0),AF(10 , 4,2)∴4x2y 0, 10 x 4 y2z0,1) 3 33 3令 x1 得 (1,.⋯⋯⋯⋯⋯⋯9分n2,3又∵AC 1是平面EFC 的法向量,n AC 1 4 42∴cosn,AC 1369|n||AC 1|1.⋯11分16 441381 49所以二面角A FCE 平面角的余弦69.⋯⋯⋯⋯⋯⋯12分13822. 〔本小分14分〕解:(Ⅰ)由f ( x ) e x ( x 2axa 1)可得 f() e x [x 2(a 2)x 1].⋯2分x当a 1,f(1) 2e,f(1) 5e所以曲yf(x)在点(1,f(1))的切方程 y 2e 5e(x 1)即5exy 3e 0⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分〔Ⅱ〕由(Ⅰ)知f(x)e x [x 2(a 2)x1],假设f(x)是增函数,f(x)恒成立,⋯⋯⋯⋯⋯⋯⋯⋯5分即x 2(a 2)x 1 0恒成立,∴ (a 2)2 4 0,4a0,所以a 的取范[4,0].⋯⋯⋯⋯⋯⋯⋯⋯⋯7分〔Ⅲ〕令g(x)f(x) e x e x (x 2ax a),关于x 的方程g(x)k 在[0,)上有两个不相等的数根.令g(x)e x (x 2(2当 (a 2) 0,即a上的增函数.所以 方程g(x) k 在当 (a 2)0,即ax0 g(x) 0g(x)aa)x) 0,解得x(a2)或x 0 .⋯⋯⋯⋯⋯9分2,在区[0, )上,g(x) 0,所以g(x)是[0, )[0, )上不可能有两个不相等的数根 .⋯⋯⋯⋯10分2 ,g(x),g(x)随x 的化情况如下表(0, (a2)) (a 2) ((a2),)+↘a 4↗e a 2由上表可知函数g(x)在[0,)上的最小g((a2))a4a2.⋯⋯⋯⋯12分e因函数g(x)是(0,(a2))上的减函数,是((a2),)上的增函数,文案大全实用文档且当x,g(x)所以要使方程 g(x)k 即f(xe x k在[0,)上有两个不相等的数根,k 的取范)必是(a4,a].⋯⋯⋯⋯14分e a2文案大全。
高二数学理科选修23第二章综合测试题.doc

高二数学修 2-3 第二章、第 (共 12,5 分,共 60 分) 1.在验得(x y)是A(1,2),B(2,3),C (3,4),D (4,5y 与的线 ( ) ^ ^ ^ ^=x +1 B. y = x +2 C. y =2x +1 D. y =x - 1 A. y2.现,视容易冷 漠,下表是查果: 冷漠 不计 视 7040 110 视 20 40 60 9080 170为视与人冷漠有关系的把为 ( ) A .90% B .97.5%C .95%D .99.9%3.有甲、乙两进行数,按照大于等于 85优秀, 85 分, 得到如下所示表: 计甲班 10 b 乙班 c301052 已知在全部 105 人中随机抽取1 人优秀的法正确的是 ( ) 7 A 表中 c 为30,b 为35 B 表中 c 为15,b 为50 C .根表中的数据,若按 95%的可靠性要求为有关系 ” D .根表中的数据,若按 95%的 可靠性要求,为有关系 ”2≥ k ) 0.10 0.05 0.025 0.01 0.005 0.001 P ( K k 2.706 3.841 5.024 6.635 7.879 10.828 4.有下列数据 x 1 2 3 y 3 5.99 12.01 下列四个函数中效果最( ) x A . y =3×2 1 2B .y =log 2xC .y =3xD .y =x 15.盒子里有25 个外形相同的球,其中10 个白的,5 个黄的,10 个黑的,从盒子中任意取出一球,已知它不是白球,则它是黑球的概率为()A. 15B.25C.13D.236.将一颗质地均匀的骰子先后抛掷 3 次,至少出现一次 6 点向上的概率是()A.5216B.25215C.31216D.912167.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有 4 台这种型号的自动机床各自独立工作,则在一小时内至多 2 台机床需要工人照看的概率是()A. 0.1536B. 0.1808C. 0.5632D. 0.97288.已知随机变量X 的分布为X -1 0 1则E( X ) 等于()P0.5 0.2 pA. 0B. -0.2C. -1D. -0.39.随机变量Y ~B( n, p) ,且E(Y) 3.6 , D(Y) 2.16 ,则此二项分布是()A. B(4,0.9)B. B (9,0.4)C. B(18,0.2)D. B(36,0.1)10.某市期末教学质量检测,甲、乙、丙三科考试成绩近似服从正态分布,如图1,则由曲线可得下列说法中正确的是()A.甲学科总体的方差最小B.丙学科总体的均值最小C.乙学科总体的方差及均值都居中D.甲、乙、丙的总体的均值不相同11.已知某批零件的长度误差(单位:毫米)服从正态分布 2N (0,3 ) ,从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布 2N(, ) ,P( ) 68.26% ,P( 2 2 ) 95.44% . )(A)4.56% (B)13.59% (C)27.18% (D)31.74%12. 在如图 2 所示的正方形中随机投掷10000 个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()A.2386B.2718C.3413D.4772高二数学修 2-3 第二章、第试卷卡) _______姓名___________学号_______间12分 150 分)1 2 34 5 6 7 8 9 10 11 12答案二、(共 4,5 分,共 20 分) 13.关于 x 与 y ,有如下数据 x 24 5 6 8 y 30 40605070有如下的两个模型:(1)y ?6.5x 17. 5 , (2)y ? 2 比第(2合效果好。
高二数学选修2-2与2-3综合试卷含答案

一选择题1:若()()22132i x x x -+++是纯虚数,则实数x 的值是 。
A. 1- B.1 C. 1± D. 以上都不对2:复数z =i1+i在复平面上对应的点位于 。
A .第一象限B .第二象限C .第三象限D .第四象限 3:若220(3)10,x k dx k +==⎰则 。
A.1B.2C.3D.4 4:函数f(x)=(x -3)e x 的单调递增区间是 。
A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)5:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 。
A.280种 B.240种 C.180种 D.96种6:有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有 。
A.88A 种 B.48A 种C.44A ·44A 种D.44A 种7:从甲袋中摸出1个红球的概率为13,从乙袋中摸出1个红球的概率为12,从两袋中各摸出一个球,则23等于 。
A. 2个球都不是红球的概率B.2个球都是红球的概率 C. 至少有1个红球的概率 D.2个球中恰有1个红球的概率 8:已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为 。
A. 1.234y x =+ B. 1.235y x =+ C. 1.230.08y x =+ D.0.08 1.23y x =+ 9:正态总体的概率密度函数为2()8()x x f x -∈=R ,则总体的平均数和标准差分别为 。
A.0,8 B .0,4 C.0,2 D.0,210:已知f(x)=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c 。
A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152二:填空题11:由直线21=x ,x=2,曲线xy 1=及x 轴所围图形的面积是 。
高二下学期理科数学综合测试题选修2-2,2-3(带详细答案)

第16题答案
或 (其他化简式不扣分)
第16题解析
由题意, 时,左边为 ; 时,左边为 ;从而增加两项为 ,且减少一项为 ,故填写
第17题答案
(I) ;(II) .
第17题解析
(I) 由已知,则 在 上恒成立,
即 在 上恒成立,设 ,则 ,
由 得 ,∴ 当 时 , 单调递减,
当 时 , 单调递增,则 最小值为 ,从而 ;
∴实数k的取值范围是(-1,1).
第11题答案
A
第11题解析
可分为两类,第一类:甲、乙两个盒子恰有一个被选中,有 种;第二类:甲、乙两个盒子都被选中,有 种,所以共有12+4=16种不同的情况.
第12题答案
D
第12题解析
因为 所以 故 在 上为单调递减函数,又 所以 解得 .
第13题答案
24
第13题解析
第7题答案
C
第7题解析
即 由 对任意的 恒成立,知 对任意的 恒成立,令 ,只需 即可.由 得 或 (不符合题意舍去), 在 上单调递增,在 上单调递减, 在 上的最大值为 .故应选C.
第8题答案
C
第8题解析
令 ,可得 ,所以 ,所以 ,则展开式中常数项为 .
第9题答案
D
第9题解析
因为随机变量 ,所以正态曲线关于 对称,又 ,则 ,所以 ,所以 正确;随机变量 ,且 所以 解得 ,所以 也正确.
B.在犯错误的概率不超过 的前提下,认为“爱好游泳运动与性别无关”
C.有 以上的把握认为“爱好游泳运动与性别有关”
D.有 以上的把握认为“爱好游泳运动与性别无关”
7、已知函数 若 的最小值为 ,且 对任意的 恒成立,则实数 的取值范围是( )
高二数学选修2-2,2-3综合检测习题解析

选修2-2,2-3综合检测一、选择题(共12小题,每小题5分,共60分) 1.设复数z =1+2i ,则z 2-2z 等于( )A .-3B .3C .-3iD .3i 答案.A z2-2z =z(z -2) =(1+2i)(2i -1) =-2-1=-3.2.已知曲线y =x 2+2x -2在点M 处的切线与x 轴平行,则点M 的坐标是( ) A .(-1,3) B .(-1,-3) C .(-2,-3) D .(-2,3)答案解析 B∵f ′(x)=2x +2=0,∴x =-1. f(-1)=(-1)2+2×(-1)-2=-3. ∴M(-1,-3).3.从1,2,3,4,5中任取2个不同的数,事件A=“取到的两个数之和为偶数”,事件B=“取到的两个数均为偶数”,则 P(B|A)等于( ) (A)18 (B)14(C)25 (D)12解析:P(B|A)=n(AB)n(A)=14,故选B.4.满足条件|z -1|=|5+12i|的复数z 在复平面上对应Z 点的轨迹是( ) A .一条直线 B .两条直线 C .圆 D .椭圆答案.C 本题中|z -1|表示点Z 到点(1,0)的距离,|5+12i|表示复数5+12i 的模长,所以|z -1|=13,表示以(1,0)为圆心,13为半径的圆.注意复数的模的定义及常见曲线的定义.5.函数f(x)=x 3+ax 2+3x -9,在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .5 答案 D解析 f ′(x)=3x 2+2ax +3.∵f(x)在x =-3时取得极值, 即f ′(-3)=0,∴27-6a +3=0,∴a =5.6.函数y=ln1|x+1|的大致图象为( )答案 D解析函数的图象关于x=-1对称,排除A、C,当x>-1时,y=-ln(x+1)为减函数,故选D.7.甲、乙、丙3位志愿者安排在周一至周五5天中参加某项志愿活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,则不同的安排方法共有()A.20种B.30种C.40种D.60种解析分类解决.甲排周一,乙、丙只能在周二至周五这4天中选两天进行安排,有A24=12(种)方法;甲排周二,乙、丙只能在周三至周五这3天中选两天安排,有A23=6(种)方法;甲排周三,乙、丙只能安排在周四和周五,有A22=2(种)方法.由分类加法计数原理,得共有12+6+2=20(种)方法.答案 A8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名学生至少一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序种数为()A.360B.520C.600D.720解析根据题意,分两种情况讨论:若只有甲、乙其中一人参加,有C12·C35·A44=480(种)情况;若甲、乙两人都参加,有C22·C25·A44=240(种)情况,其中甲、乙相邻的有C22·C25·A33·A22=120(种)情况.故不同的发言顺序种数为480+240-120=600.答案 C9.已知(1+x )10=a 0+a 1(x -1)+a 2(x -1)2+…+a 10(x -1)10,则a 8等于( ) A.-180B.180C.45D.-45解析 本题是关于二项展开式的系数问题,注意到展开式右边的特点,可将1+x 写成x -1+2,再展开(1+x )10=(2+x -1)10=C 010210+C 11029(x -1)+C 21028(x -1)2+…+C 81022(x -1)8+C 9102(x -1)9+C 1010(x -1)10,可得a 8=22C 810=180. 答案 B10.若(1-2x )2 020=a 0+a 1x +…+a 2 020x 2 020(x ∈R ),则a 12+a 222+…+a 2 02022 020的值为( ) A.2B.0C.-1D.-2解析 令x =0,则a 0=1,令x =12,则a 0+a 12+a 222+…+a 2 02022 020=0,∴a 12+a 222+…+a 2 02022 020=-1. 故选C.11.某次数学考试中,第一大题由12个选择题组成,每题选对得5分,不选或选错得0分.小王选对每题的概率为0.8,则其第一大题得分的方差为( ). (A )48 (B )9.6 (C )1.92 (D )24 解析:设小王选对个数为X,得分为η=5X, 则X ~B(12,0.8),D(X)=np(1-p)=12×0.8×0.2=1.92, D(η)=D(5X)=25D(X)=25×1.92=48. 答案:4812.若函数f(x)=x 2+ax +1x 在(12,+∞)是增函数,则a 的取值范围是 ( )A .(-1,0]B .[-1,+∞)C .(0,3]D .答案 D解析 把函数在某一区间上的单调递增转化为其导函数在该区间上大于或等于零恒成立,分离参数后求新函数的最值. 由题意知f ′(x)≥0对任意的x ∈[21,+∞)恒成立,又f ′(x)=2x +a -21x , 所以2x +a -21x ≥0对任意的x ∈[21,+∞)恒成立, 分离参数得a ≥21x -2x , 若满足题意,需a ≥(21x-2x)max. 令h(x)=21x -2x ,x ∈[21,+∞) 因为h ′(x)=-31x-2, 所以当x ∈[21,+∞)时,h ′(x)<0, 即h(x)在[21,+∞)上单调递减, 所以h(x)<h(21)=3,故a ≥3. 二、填空题(每小题5分,共20分)13.现有语文、数学、英语书各1本,把它们随机发给甲、乙、丙三个人,且每人都得到1本书,则甲得不到语文书的概率为________ .解析:语文、数学、英语书各1本,随机发给甲、乙、丙三个人,每人都得到1本书,共有A 33=6种分法,甲得不到语文书的分法有C 21A 22=4种,根据古典概型概率公式可得,甲得不到语文书的概率为46=23. 答案:2314.在平面直角坐标系xoy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________ 答案 (-2,15)解析 y ′=3x 2-10=2⇒x =±2,又点P 在第二象限内,∴x =-2,得点P 的坐标为(-2,15)15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________. 【答案】0.18 ;【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是0.63⨯0.5⨯0.5⨯2=0.108,前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是0.4⨯0.62⨯0.52⨯2=0.072综上所述,甲队以4:1获胜的概率是q=0.108+0.072=0.1816.函数f(x)=x 3+ax 2+bx +a 2,在x =1时有极值10,那么a ,b 的值分别为________. 答案 4,-11解析 f ′(x)=3x 2+2ax +b ,f ′(1)=2a +b +3=0,f(1)=a 2+a +b +1=10, 联立方程组,解得⎩⎨⎧a =-3b =3,或⎩⎨⎧a =4b =-11,当a =-3时,x =1不是极值点,a ,b 的值分别为4,-11.三、解答题(本大题共70分)17(10分).某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X,求X 的分布列和期望. 解:(1)设“当天小王的该银行卡被锁定”的事件为A, 则P(A)=56×45×34=12. (2)X 的可能取值是1,2,3,则P(X=1)=16, P(X=2)=56×15=16, P(X=3)=56×45=23, 所以X 的分布列为E (X )=16 +26 +2=5218(12分).已知函数d cx bx x x f +++=23)(的图象过点P (0,2),且在点M))1(,1(--f 处的切线方程为076=+-y x .(Ⅰ)求函数)(x f y =的解析式;(Ⅱ)求函数)(x f y =的单调区间.解:(Ⅰ)由)(x f 的图象经过P (0,2),知d=2,所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++='由在))1(,1(--f M 处的切线方程是076=+-y x 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即.3,0,32.121,623-==⎩⎨⎧=-=-⎩⎨⎧=+-+-=+-∴c b c b c b c b c b 解得即 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ).012,0363.363)(222=--=----='x x x x x x x f 即令解得 .21,2121+=-=x x 当;0)(,21,21>'+>-<x f x x 时或当.0)(,2121<'+<<-x f x 时故)21,(233)(23--∞+--=在x x x x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数.19.(本小题满分12分)为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此种元素的含量不小于18毫克时,该产品为优等品.(1)试用样品数据估计甲、乙两种产品的优等品率;(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数ξ的分布列及其数学期望E(ξ);(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件C,求事件C 的概率.解:(1)从甲产品抽取的10件样品中优等品有4件,优等品率为410 = 25, 从乙产品抽取的10件样品中优等品有5件,优等品率为510 = 12,故甲、乙两种产品的优等品率分别为25,12. (2)ξ的所有可能取值为0,1,2,3. P(ξ=0)=C 53C 103 = 112, P(ξ=1)=C 51C 52C 103 = 512,P(ξ=2)=C 52C 51C 103 = 512, P(ξ=3)=C 53C 103 = 112.E(ξ)=0×112+1×512+2×512+3×112= 32.(3)抽到的优等品中,甲产品恰比乙产品多2件包括两种情况:“抽到的优等品数甲产品2件且乙产品0件”“抽到的优等品数甲产品3件且乙产品1件”,分别记为事件A,B,P(A)=C 32(25)2(1-25)×C 30(12)0(1-12)3=9250, P(B)=C 33(25)3×C 31×12×(1-12)2=3125,故抽到的优等品中,甲产品恰比乙产品多2件的概率为P(C)=P(A)+ P(B)=9250+3125 =350.20、(12分)已知函数32()23 3.f x x x =-+ (1)求曲线()y f x =在点2x =处的切线方程;(2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围.解:(1)2()66,(2)12,(2)7,f x x x f f ''=-== ∴曲线()y f x =在2x =处的切线方程为712(2)y x -=-,即12170x y --=;(2)记322()233,()666(1)g x x x m g x x x x x '=-++=-=-令()0,0g x x '==或1. 则,(),()x g x g x '的变化情况如下表当0,()x g x =有极大值3;1,()m x g x +=有极小值2m +. ………………………10分由()g x 的简图知,当且仅当(0)0,(1)0g g >⎧⎨<⎩即30,3220m m m +>⎧-<<-⎨+<⎩时,函数()g x 有三个不同零点,m 的范围是(3,2)--.21(12分).近两年双11网购受到广大市民的热捧.某网站为了答谢老顾客,在双11当天零点整,每个金冠买家都可以免费抽取200元或者500元代金券一张,中奖率分别是23和13.每人限抽一次,100%中奖.小张、小王、小李、小赵四个金冠买家约定零点整抽奖.(1)试求这4人中恰有1人抽到500元代金券的概率;(2)这4人中抽到200元,500元代金券的人数分别用X,Y 表示,记ξ=XY,求随机变量ξ的分布列与数学期望.解:(1)设“这4人中恰有i 人抽到500元代金券”为事件Ai,P(A1)=C 41(13)1(23)3=3281.(2)易知ξ可取0,3,4.P(ξ=0)=P(A0)+P(A4)=C 40(13)0(23)4+C 44(13)4(23)0=1681+181=1781, P(ξ=3)=P(A1)+P(A3)=C 41(13)1(23)3+C 43(13)3(23)1=3281+881=4081, P(ξ=4)=P(A2)=C 42(13)2(23)2=2481=827.E(ξ)=0×1781+3×4081+4×827=83. 22(12分).设,.(1)令,求在内的极值;(2)求证:当时,恒有.(1)解:根据求导法则有,故,于是,列表如下:极小值所以,在处取得极小值.(2)证明:由知,的极小值.于是由上表知,对一切,恒有.从而当时,恒有,故在内单调增加.所以当时,,即.故当时,恒有.。
高二理科数学选修2-2综合试题(三)(含答案)

高二理科数学选修2—2综合检测题(三)一、选择题1.若c bx ax x f ++=24)(满足2)1(='f ,则=-')1(f ( ) A .4- B .2- C .2 D .42.已知曲线2212-=x y 上一点)23,1(-P ,则过点P 的切线的倾斜角为( )A .300B .450C .1350D .1650 3.函数23)(23+-=x x x f 在区间][1,1-上的最大值是( )A .2-B . 0C . 2D .44.复数z 满足i z i 34)43(+=-,则z 的虚部位( )A .i 4B .4C .i 54D .545.函数x x x y sin cos -=的导数为( )A .x x sinB .x x sin -C .x x cosD .x x cos -6.三角形的面积为S =12(a +b +c )r ,a 、b 、c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r ,(S 1、S 2、S 3、S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h ,(h 为四面体的高)7.函数()x x x f ln 22-=的递增区间是( )A.)21,0( B. ),21(),21,0(+∞ C. ),21(+∞ D.)21,0(),21,(-∞8.下列推理中属于归纳推理且结论正确的是( )A .由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +> B .由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =9.已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( )10.已知复数ii a z 2)1(++=(,a R i ∈为虚数单位)为实数,则0)a x dx ⎰的值为( )A .π+2B .22π+C .π24+D .π44+11.若函数1)(23+-=ax x x f 在)2,0(上单调递减,则实数a 的取值范围为( )A .3≥aB .3=aC .3≤aD .30<<a 12.若函数c bx ax x x f +++=23)(有极值点21,x x ,且11)(x x f =,若关于x 的方程[]0)(2)(32=++b x af x f 的不同实数根的个数是( )A .3B .4C .5D .6 二、填空题(共5个小题,25分) 13.已知函数1)2(33)(23++++=x a ax x x f 既有极大值又有极小值,则实数a 的取值范围是14.已知函数()f x 的导函数为()f x ',且满足关系式()()332ln f x xf x '=-,则()2f '的值等 于 15.函数2x y =)0(x >的图像在点2,(kk a a )处的切线与x 轴的交点的横坐标为1+k a (*∈N k )若161=a ,则321a a a ++=16.设函数f (x ) = xx +2 (x >0)观察:f 1(x )= f (x ) =xx +2, f 2(x ) =f ( f 1(x )) = x3x +4 , f 3(x ) =f ( f 2(x )) = x7x +8, f 4(x ) =f ( f 3(x )) =x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x ) = f ( f n -1(x )) =___________________________ 三、解答题:(共6个小题,75分)17.已知复数)()32()1(2R m i m m m m z ∈-++-= (1)若z 是实数,求m 的值;(2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围。
高二数学选修2-2、2-3综合测试题二

7 .高二数学选修2-2、2-3测试题本试卷分第I 卷(选择题)和第U 卷(非选择题)两部分,满分 150分.考试用时120分钟.第I 卷(选择题,共50 分)(本大题共10小题,每小题5分,共50分)C . y x 1D . y xA . 256i 2 1也^卫。
在证明第二步归纳递推的过程中,用到f(k 1) f(k) +D k(k 1)2甲、乙速度v 与时间t 的关系如下图,a(b)是t b 时的加速度,S(b)是从t 0到第1页共12页过函数 y si nx 图象上点 O (0, 0),作切线,则切线方程为 ().选择题2.x 3 4 a 。
2a 〔x a ?x12a^x ,贝Ua 。
3. 定义运算ad bc ,则2(i 是虚数单位)为( i4. 任何进制数均可转换为十进制数 ,如八进制 507413 8转换成十进制数,是这样转 换的:507413 8 5 85 0 847 834 82 1 8 3 167691 ,十六进制数432(2,3,4,5,6)162 163 164 165 16144470 ,那么将二进制数1101 2转换成十进制数,这个十进制数是()A . 12B . 13C . 14D . 155 .用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为f(n)部分,则f(n) 16.记函数 y f (2)(x)表示对函数 y f (x)连续两次求导,即先对y f (x)求导得f (x),再对y f (x)求导得y f (2)(x),下列函数中满足f (2)(x) f (x)的是A. f (x) xB. f (x) sin xC. f (x) e xD. f (x) In xt b 的路程,则a 甲(b)与a 乙 (b) , S 甲(b)与S 乙(b)的大小关系是 ()10.设M1,2,3,4,5,6,7,8,9,10,由M 到M 上的一一映射中,有 7个数字和自身对应的映射个数是()A . a 甲(b) a 乙 (b) , S 甲(b) S 乙 (b)C . a 甲 (b) a 乙 (b) , S 甲(b)B . a 甲(b) a 乙(b) , S 甲(b) S 乙(b) D . a 甲 (b) a 乙(b) , S 甲 (b)S 乙 (b)的方向行走至B ,不同的行走路线有()A . 6条B . 7条C . 8条D . 9条A.120B.240C. 107D.360第U卷(非选择题共100分)二.填空题(本大题4个小题,每小题5分,共20分)11. _____________________________ 公式揭示了微积分学中导数和定积分之间的内在联系;提供了求定积分的一种有效方法。
高二数学选修2-2,2-3综合检测习题

选修2-2,2-3综合检测一、选择题(共12小题,每小题5分,共60分)1.设复数z=1+2i,则z2-2z等于( )A.-3 B.3 C.-3i D.3i2.已知曲线y=x2+2x-2在点M处的切线与x轴平行,则点M的坐标是( ) A.(-1,3) B.(-1,-3)C.(-2,-3) D.(-2,3)3.从1,2,3,4,5中任取2个不同的数,事件A=“取到的两个数之和为偶数”,事件B=“取到的两个数均为偶数”,则P(B|A)等于()(A)18 (B)14(C)25(D)124.满足条件|z-1|=|5+12i|的复数z在复平面上对应Z点的轨迹是( ) A.一条直线 B.两条直线 C.圆 D.椭圆5.函数f(x)=x3+ax2+3x-9,在x=-3时取得极值,则a等于( ) A.2 B.3 C.4 D.56.函数y=ln1|x+1|的大致图象为( )7.甲、乙、丙3位志愿者安排在周一至周五5天中参加某项志愿活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,则不同的安排方法共有()A.20种B.30种C.40种D.60种8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名学生至少一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序种数为()A.360B.520C.600D.7209.已知(1+x)10=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10,则a8等于()A.-180B.180C.45D.-4510.若(1-2x)2 020=a0+a1x+…+a2 020x2 020(x∈R),则a12+a222+…+a2 02022 020的值为()A.2B.0C.-1D.-211.某次数学考试中,第一大题由12个选择题组成,每题选对得5分,不选或选错得0分.小王选对每题的概率为0.8,则其第一大题得分的方差为().(A)48 (B)9.6 (C)1.92 (D)2412.若函数f(x)=x2+ax+1x在(12,+∞)是增函数,则a的取值范围是 ( )A.(-1,0] B.[-1,+∞)C.(0,3] D.二、填空题(每小题5分,共20分)13.现有语文、数学、英语书各1本,把它们随机发给甲、乙、丙三个人,且每人都得到1本书,则甲得不到语文书的概率为________ .14.在平面直角坐标系xoy中,点P在曲线C:y=x3-10x+3上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为________15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.16.函数f(x)=x3+ax2+bx+a2,在x=1时有极值10,那么a,b的值分别为________.三、解答题(本大题共70分)17(10分).某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X,求X 的分布列和期望.18(12分).已知函数d cx bx x x f +++=23)(的图象过点P (0,2),且在点M))1(,1(--f 处的切线方程为076=+-y x .(Ⅰ)求函数)(x f y =的解析式;(Ⅱ)求函数)(x f y =的单调区间.19.(本小题满分12分)为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此种元素的含量不小于18毫克时,该产品为优等品.(1)试用样品数据估计甲、乙两种产品的优等品率;(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数ξ的分布列及其数学期望E(ξ);(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件C,求事件C 的概率.20、(12分)已知函数32()23 3.f x x x =-+(1)求曲线()y f x =在点2x =处的切线方程; (2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围. 21(12分).近两年双11网购受到广大市民的热捧.某网站为了答谢老顾客,在双11当天零点整,每个金冠买家都可以免费抽取200元或者500元代金券一张,中奖率分别是23和13.每人限抽一次,100%中奖.小张、小王、小李、小赵四个金冠买家约定零点整抽奖.(1)试求这4人中恰有1人抽到500元代金券的概率;(2)这4人中抽到200元,500元代金券的人数分别用X,Y 表示,记ξ=XY,求随机变量ξ的分布列与数学期望.22(12分).设,. (1)令,求在内的极值; (2)求证:当时,恒有.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二理科数学(选修2-2、2-3)综合测试题一、选择题(本大题共12小题,每小题5分,共60分) 1.复数i i4321-+的共轭复数为 A. i 5251+- , B. i 5251--, C. i 5251+ D.i 5251-2.在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为A .23397C C B.2332397397C C +C C C.514100397C -C C D.5510097C -C3.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为A.72B.48C.24D.604.若0()2f x '=,则0lim→k 00()()2f x k f x k+-=A .2 B.1 C. 12D. 无法确定5.101x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为(A )第5项 (B )第6项 (C )第5项或第6项 (D )不存在6.袋中有5个红球,3个白球,不放回地抽取2次,每次抽1个.已知第一次抽出的是红球,则第2次抽出的是白球的概率为(A )37 (B )38 (C )47 (D )127.曲线3sin (0)2y x x π=≤≤与两坐标轴所围成图形的面积为A . 1B . 2C . 52D. 38. 4名学生被中大、华工、华师录取,若每所大学至少要录取1名,则共有不同的录取方法 A .72种 B .24种 C .36种 D .12种 9.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )12 (B)512 (C)14 (D)1610.已知随机量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.6826,则P(X >4)= 。
A.0.1588B.0.1587C.0.1586D.0.1585 11.定积分120(2)x x x dx -⎰等于( )A24π- B12π- C14π- D 12π- 12.在曲线()02≥=x x y 上某一点A 处作一切线使之与曲线以及x 轴所围的面积为121,则这个切线方程是.A.y=-2x-1B.y=-2x+1C.y=2x-1D.y=2x+1二、填空题(本大题共4小题,每小题5分,共20分) 13.同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是__________14.某班从6名班干部中(其中男生4人,女生2人)选3人参加学校的义务劳动,在男生甲被选中的情况下,女生乙也被选中的概率是___________ 15.若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是16、如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有 种(用数字作答).三、解答题:(17题10分,18~22每题12分) 17.命题p :i i m +->-22(i 是虚数单位); 命题q :“函数3223f x x mx 2m x 32=-+-()()在(-∞,+∞)上单调递增”. 若p ∧q 是假命题,p ∨q 是真命题,求m 的范围。
18.一个碗中放有10个筹码,其中8个都标有数字2,2个都标有数字5,某人从此碗中随机不放回地抽取3个筹码,若他获得的奖金等于所抽3个筹码所标的数字之和,求他获得奖金数额的数学期望。
19. 已知a 为实数,函数2()(1)()f x x x a =++.(1) 若(1)0f '-=,求函数y =()f x 在[-32,1]上的极大值和极小值; (2)若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范围. 20.数列{}n a 满足)(*2N n a n S n n ∈-=。
(Ⅰ)计算4321a a a a ,,,;(Ⅱ)猜想通项公式n a ,并用数学归纳法证明。
21.在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个。
现从盒子中每次任意取出一个球,若取出的是蓝球则结束,若取出的不是蓝球则将其放回箱中,并继续从箱中任意取出一个球,但取球次数最多不超过3次。
求: (1)取两次就结束的概率; (2)正好取到2个白球的概率;22. 设曲线cx bx ax y ++=23213在点A(x,y )处的切线斜率为k(x),且k(-1)=0.对一切实数x,不等式x ≤k(x)≤)1(212+x 恒成立(a ≠0).(1) 求k (1)的值;(2) 求函数k(x)的表达式; (3) 求证:)(1)2(1)1(1n k k k +++ >22+n n答案一.选择题: BBCBB ADCBB AC 二.填空题:13.25 14.2515. 1b ≤- 16.630三.计算题:17.解:命题p :m >1或m<-1, 命题q :1≤m ≤3,------------4分由题意p 真q 假或p 假q 真 当p 真q 假时:m<-1或m >3当p 假q 真时:m=1 ------------8分 综上:m<-1或m >3或 m =1 ------------10分18.E ξ=7.819.解:(Ⅰ)∵(1)0f '-=,∴3210a -+=,即2a =.∴21()3413()(1)3f x x x x x '=++=++.… 2分由()0f x '>,得1x <-或13x >-;由()0f x '<,得113x -<<-. … 4分因此,函数()f x 的单调增区间为3(1)2--,,1(1)3-,;单调减区间为1(1)3--,.()f x 在1x =-取得极大值为(1)2f -=;()f x 在13x =-取得极小值为150()327f -=. … 8分 (Ⅱ) ∵32()f x x ax x a =+++,∴2()321f x x ax '=++.∵函数()f x 的图象上有与x 轴平行的切线,∴()0f x '=有实数解. … 10分∴244310a =-⨯⨯≥,∴23a ≥,即 a a ≤≥或.因此,所求实数a 的取值范围是([3)-∞-+∞,,. … 12分 20解:(Ⅰ)815472314321====a a a a ,,,…………………4分(Ⅱ)猜想1212--=n n n a ,…………………6分证明:① 当n=1 时,a 1=1猜想显然成立;………………………7分 ② 假设当n=k *)1(N n n ∈≥且)时,猜想成立,即k k k k k k a k a a a S a -=+++=-=-2...,212211,那么,)(时,k k k k k a k a k S S a k n ---+=-=+=+++2)1(21111,,2122212222111kk k k k k a a -=-+=+=∴+-+ 时猜想成立;当1+=∴k n ………………………11分综合①②,当*N n ∈时猜想成立。
………………………12分21. 解:(1)取两次的概率()118211101041425525C C P C C ξ==⨯=⨯=……5分答: 取两次的概率为425………………..6分(2)由题意知可以如下取球:红白白、白红白、白白红、白白蓝四种情况,….7分所以恰有两次取到白球的概率为53333215331010101010101000P =⨯⨯⨯+⨯⨯=答: 恰有两次取到白球的概率为1531000………………….12分22.(本小题满分14分)解:(1)由1)1(1)1(21)(2≤≤+≤≤k x x k x 得,所以1)1(=k ……………2分(2))0()(2≠++='=a c bx ax y x k ,由1)1(=k ,0)1(=-k 得…………3分 21,2101==+⇒⎩⎨⎧=+-=++b c a c b a c b a …………………………………………4分 又)1(21)(2+≤≤x x k x 恒成立,则由)0(0212≠≥+-a c x ax 恒成立得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+≤-=∆>2104410c a ac a 41==⇒c a ,…………………………6分同理由02121)21(2≥-++-c x x a 恒成立也可得: 41==c a ……………7分 综上41==c a ,21=b ,所以412141)(2++=x x x k ………………8分(3)222)1(4)(14)1(412)(+=⇒+=++=n n k n n n n k 要证原不等式式,即证42)1(13121222+>++++n nn 因为2111)2)(1(1)1(12+-+=++>+n n n n n所以211141313121)1(13121222+-+++-+->++++n n n 2121+-=n =42+n n 所以)(1)2(1)1(1n k k k +++ >22+n n ……………………………………………12分本小问也可用数学归纳法求证。
证明如下:由222)1(4)(14)1(412)(+=⇒+=++=n n k n n n n k 1. 当1=n 时,左边=1,右边=32,左边>右边,所以1=n ,不等式成立2. 假设当m n =时,不等式成立,即22)(1)2(1)1(1+>++m m m k k k 当1+=m n 时,左边=2)2(422)1(1)(1)2(1)1(1+++>+++++m m m m k m k k k 22)2(442+++=m m m 由0)3()2(43)1(2)2(442222>++=++-+++m m m m m m m 所以3)1()1(2)1(1)(1)2(1)1(1+++>+++++m m m k m k k k 即当1+=m n 时,不等式也成立综上得 22)(1)2(1)1(1+>+++n n n k k k。