盐化工工艺学-
化工工艺学

以天然气为原料的大型氨厂——
美国凯洛格公司MEAP工艺:29.89GJ/t; 英国帝国化学工业公司AM-V工艺:28.81GJ/t;
美国布朗公司深冷净化工艺:29.08GJ/t。
以天然气为原料的中型氨厂—— 英国ICI公司的LCA工艺:29.31GJ/t。 以煤为原料的小型氨厂—— 42.28GJ/t。
肥料的需求;
¤ 能耗仅为氰化法的一半,30年代以后成为氨的主要生产方法。 随着世界人口的增长,氨产量不断增长, 1994年世界氨产量
113.46Mt,其中中国、美国、印度和俄罗斯占了一半以上。合
成氨工业已成为化学工业的重要支柱产业。
c
15
第一讲 引言
4、早期合成氨法
名称 哈伯-博施法(Haber-bosch) 克劳特法(Claude) 合成压力/MPa 20 100 年份 1913 1917 国家 德国 法国
(1) (2)
K P1
3 PCO PH 2
PCH 4 PH 2O
KP1=f(T) KP2=f(T)
KP2
PCO2 PH 2 PCO PH 2O
c
33
第二讲
平衡组成的计算
粗原料气制取
设原料气中: 水碳比为m;系统压力为P(Mpa);系统温度为t(℃)。 以1mol甲烷为计算基准,设无炭黑析出,(1)式转化甲烷 xmol,(2)式转 化一氧化碳ymol,则平衡时各组分mol量为:
c
18
第一讲 引言
3、低能耗新工艺
合成氨能耗约占世界能源消耗的3%。 中国的合成氨生产能耗约占全国能耗4%。 吨氨生产成本中能源费用占70%以上。因此能耗是衡量合成 氨技术水平和经济效益的重要标志。 一次能源:天然气、石油、煤炭 二次能源:电力、蒸汽
硝酸钾

《盐化工工艺学》课程论文论文题目:硝酸钾学生姓名:**学号: ************ 专业:化学工程与工艺班级:2012级盐气化工任课教师:***完成时间:2014年12月目录1生产简史 (1)2硝酸钾的物化性质及用途 (1)2.1物理化学性质 (1)2.2硝酸钾的应用 (1)2.3质量规格 (2)3硝酸钾的生产方法 (2)3.1合成法 (2)3.2硝酸铵转化法(复分解法) (3)3.3吸收法 (3)3.4离子交换法 (3)3.5转化法 (3)4新工艺 (4)4.1新工艺原理与流程[4] (4)4.2主要设备选型及特点 (5)4.2.1配料槽 (5)4.2.2空气冷却结晶塔 (5)4.2.3离心机 (6)4.2.4溶解槽 (6)4.2.5卧式冷却结晶器 (6)4.2.6硝酸钾洗涤机 (6)4.2.7干燥机组 (6)4.2.8蒸发设备 (6)4.3新工艺装置特点 (7)4.4生产中应注意问题 (7)结束语 (8)致谢 (9)参考文献 (10)硝酸钾【摘要】介绍了硝酸钾产品的生产简史及其主要物化性质、用途、国家标准、生产方法、典型生产方法的基本原理、工艺条件、工艺流程图以及相关的设备等。
本文重点介绍一种硝酸钠转化法制取硝酸钾新工艺。
该工艺根据传统硝酸钠生产硝酸钾经验,通过进一步试验与研究,对传统工艺与设备进行改造创新,实现连续工业化生产。
1生产简史世界硝酸钾70%用于农业,以色列和美国产量最大,约占世界总量的四分之三,智利居第三位。
1995年世界硝酸钾总能力约90万吨年,其中直接法的产量约占75%,中国硝酸钾现有生产能力约6万吨年,在建能力亦为6万吨年,其中约80%硝酸钾用于工业部门。
2硝酸钾的物化性质及用途2.1物理化学性质硝酸钾(钾硝石)是无水的白色粉末,在空气中不潮解。
有时因带有杂质而显浅灰色。
密度为2.11g/cm3334℃熔融,高于338℃,分解为亚硝酸钾和放出氧气。
硝酸钾有两种晶体,即低温时,生成斜方形结晶;高温时生成菱形结晶。
化工工艺学课程标准

《化工工艺学》教学大纲一、课程属性1.课程的性质《化工工艺学》课程是化学工程与工艺专业的核心课程。
本课程从化工生产工艺角度出发,运用化工过程的基本原理,介绍典型化工产品的生产方法与原理、流程组织、关键设备、操作条件以及介绍生产中的设备材质安全技术、三废治理、节能降耗等问题。
2.课程定位本课程在第6学期开设,是一门专业核心课程,在基础课和专业课之间起着承前启后、由理及工的桥梁作用。
其前导课程是化工原理、物理化学、化工热力学等,与其平行学习的专业课为分离过程、化学反应工程等。
3.课程任务本课程的主要任务是使学生全面的掌握石油化工生产方面的知识以及各个生产工艺流程。
通过本课程的学习,培养学生分析和解决有关单元操作各种问题的能力,以便在石油化工生产、科研和设计工作中达到强化生产过程。
为使学生在今后的学习和工作中能正确而有效的联系石油化工生产实际打下坚实的基础。
二、课程目标知识目标1.掌握化工工程的基本原理。
2.掌握化工工艺的基本概念和基本理论。
3.掌握典型化工产品的生产方法与工艺原理、典型流程与关键设备、工艺条件与节能降耗分析。
4.了解化工生产中设备材质、安全生产、三废治理等问题。
能力目标培养学生应用已学过的基础理论解决实际工程问题的能力,使学生了解当今化学工业的概貌及发展方向,使学生在以后的生产与开发研究工作中能掌握基本的方法,做到触类旁通、灵活应用,不断开发应用新技术、新工艺、新产品和新设备,降低生产过程中的原料与能源消耗,提高经济效益,更好地满足社会需要。
素养目标1.培养具有良好的职业道德、精湛的专业技能、较强的竞争能力和可持续发展的学习与适应能力的德、智、体等方面全面发展的高端高级技能型专门人才。
2.具备从事本专业领域实际工作的基本能力和基本技能,并且熟悉某些石油化工生产流程、某些化工车间管理的高素质技能型专门人才。
3.养成认真细致、积极探索的科学态度和工作作风,形成理论联系实际、自主学习和探索创新的良好习惯。
盐化工工艺学-结晶离心干燥等设备技术

易短路,不能保证悬浮液的停留时间,影响澄清液高度;
长了,容易使底部积压料浆被浊混。
溢流圈
沉降器上部的水平环形槽,均匀收集澄清液。 要求:必须水平,确保澄清液上升后均匀地向 四周溢流,否则容易造成偏流,局部上升速度过大, 导致悬浮液沉降不清,影响沉降效果。其大小和深 度要适中,避免沉淀堆积、结晶析出或泡沫淤积造 成损失。
滤浆
滤液
滤叶的构造
叶滤机是由许多不同宽度的长方形滤叶装合而成。滤叶由
金属丝网制造,内部具有空间,外罩滤布。
一个循环操作:过滤、洗涤、卸渣、整理、重装五个阶段。
工作原理:离心机在高速旋转时,产生离心力场,被
分离的固液料浆进入离心机内时,在离心力的作用下, 由于固液的密度、颗粒大小、液体黏度的不同,所受
的离心力不同,从而实现分离。
离心力大小:
G 2 F gr
G r g
旋转物的重量(N) 旋转半径(m):
重力加速度(m2/s):
旋转圆周速度(m/s) 离心分离系数 转速(r/min)
设备参数的确定必须利用物料的沉降实验数据或生产 实践的经验数据进行设计沉降器。由于处理的物料性质和
生产工艺的差别,有些数据还必须由现场测定如:
颗粒的沉降速度:u0 悬浮液增浓时间:t
渣浆压缩到工艺要求的固液比所需时间:t2
1、沉降器沉降面积的计算
设:VF—悬浮液中液相的量(m3/s); V0—澄清液量(m3/s); Vu —沉淀中液相的量(m3/s); CF—沉降前悬浮液浓度(m3固相/ m3液相); Cu —沉降后沉淀的浓度(m3固相/ m3液相); F—沉降器截面积(m2); u0—颗粒沉降速度(ms)。
2 rn2G
根据分离系数大小,可将离心机分为:
工艺方法——高盐废水分盐结晶工艺

工艺方法——高盐废水分盐结晶工艺工艺简介煤化工等高盐废水中分盐结晶过程的分离对象主要是氯化钠和硫酸钠。
这是因为废水中的阴离子通常以氯离子和硫酸根离子占绝大多数,一价阳离子则以钠离子为主,二价阳离子经过一系列处理后,也已经在化学软化或离子交换等过程置换成了钠离子。
分盐结晶工艺主要有2种思路:一是直接利用废水中不同无机盐的浓度差异和溶解度差异,通过在结晶过程中控制合适的运行温度和浓缩倍数等来实现盐的分离,即通常所说的热法分盐结晶工艺;二是利用氯离子和硫酸根离子的离子半径或电荷特性等的差异,通过膜分离过程在结晶之前实现不同盐之间的分离或富集,再用热法结晶过程得到固体,即膜法分盐结晶工艺。
一、热法分盐结晶工艺高盐废水的热法分盐结晶工艺主要包括直接蒸发结晶工艺、盐硝联产分盐结晶工艺和低温结晶工艺。
(1)直接蒸发结晶工艺当高盐废水中某一种盐含量占比具有较大优势时,可以考虑采用直接蒸发结晶的方式,分离回收该优势盐组分,而其余成分最终以混盐形式结晶析出。
经过预处理的高盐废水首先通过蒸发器进一步浓缩减量,使优势盐组分接近饱和,之后进入纯盐结晶器(结晶器Ⅰ),提取大部分的氯化钠或硫酸钠。
纯盐结晶器的浓缩倍率控制在次优势盐组分接近饱和,纯盐结晶器排出的母液进入混盐结晶器(结晶器Ⅱ)获取杂盐。
直接蒸发结晶工艺流程简单,系统控制难度小,但无机盐回收率和杂盐产量对原水无机盐组分特征依赖度高。
此外,在蒸发浓缩过程中,废水中的有机物和杂质盐组分被浓缩并残留在母液中,可能导致粗盐产品纯度低、白度差。
通过洗盐等方式,可以在一定程度上提高产品盐的纯度和白度。
(2)盐硝联产分盐结晶工艺当废水中不存在占比较大的优势盐组分时,采用直接蒸发结晶工艺最终得到的纯盐回收率较低,杂盐产量大,固废处置费用高。
为了解决这一问题,可采用硫酸钠和氯化钠分步结晶的方式,分别在较高温度下结晶得到硫酸钠,在较低温度下结晶得到氯化钠,此工艺称为盐硝联产工艺。
盐硝联产分盐结晶工艺主要利用了氯化钠和硫酸钠的溶解度对温度依赖性的差异。
MVR工艺技术在盐化工生产中的应用

MVR工艺技术在盐化工生产中的应用【摘要】摘要:本文主要介绍了MVR工艺技术在盐化工生产中的应用。
首先从MVR工艺技术的原理及特点入手,具体介绍了其在盐化工中的应用案例,展示了其在提高生产效率和质量方面的优势。
其次详细分析了MVR工艺技术在盐化工生产中的节能环保性能,揭示了其对环境的积极影响。
最后展望了MVR工艺技术在盐化工生产中的未来发展趋势,强调了其在行业中的重要性。
通过本文的介绍和分析,可以看出MVR 工艺技术在盐化工生产中的应用前景广阔,对提升行业竞争力具有重要意义。
【关键词】MVR工艺技术、盐化工生产、应用案例、优势、节能环保、发展展望、重要性、总结。
1. 引言1.1 MVR工艺技术在盐化工生产中的应用概述MVR工艺技术利用蒸发器内的压缩蒸汽回收热量,将部分热量再次利用,实现能量循环利用,从而大大减少了能源消耗。
MVR技术在盐化工生产过程中可以最大限度地减少废水排放,减少对环境的污染,符合现代工业发展的环保要求。
在盐化工生产中,MVR工艺技术不仅提高了产品质量和生产效率,也降低了生产成本,并且对环境具有良好的保护作用。
MVR工艺技术在盐化工生产中的应用前景广阔,将对盐化工行业的发展起到积极推动作用。
2. 正文2.1 MVR工艺技术原理及特点MVR工艺技术(Mechanical Vapor Recompression)是一种利用机械压缩再利用蒸汽的技术,通过增加蒸汽的压缩和加热,使得蒸汽的温度和压力达到重新蒸馏的要求。
MVR工艺技术的主要特点包括高效节能、操作稳定、易维护、无需化学品、无二次污染等。
MVR工艺技术采用了封闭循环系统,能够实现能量的循环利用,有效地提高了能源利用率。
由于MVR工艺技术无需外界供热,可以避免能源浪费,降低生产成本。
MVR工艺技术的操作稳定性强,可以有效保证生产过程的稳定性和连续性,提高生产效率。
MVR工艺技术在盐化工生产中的应用案例较多,例如在氯化钠生产中,可以利用MVR工艺技术实现蒸汽的再利用,减少能源消耗,提高了生产效率。
MVR工艺技术在盐化工生产中的应用

MVR工艺技术在盐化工生产中的应用1. 引言1.1 MVR工艺技术的概念MVR工艺技术,即机械蒸发重复利用技术,是一种利用机械压缩蒸汽驱动的蒸发系统。
该技术通过循环利用蒸汽的热量,实现对盐化工生产中的液体蒸发浓缩和分离,节约能源,降低生产成本。
MVR工艺技术相对于传统蒸发技术具有更高的能效,更低的运行成本和更小的占地面积,被广泛应用于盐化工生产中。
MVR工艺技术通过高效的热能循环系统,实现了蒸汽和液体之间的热量传递和物质分离,有效地提高了生产效率和产品质量。
MVR工艺技术还具有可控性强、操作简单、环保节能等优点,使其在盐化工生产中得到了广泛的应用。
通过MVR工艺技术,盐化工生产企业可以实现生产成本的降低,产品质量的提高,生产效率的提升,同时节约能源资源,减少对环境的影响。
MVR工艺技术在盐化工生产中具有重要意义,对于行业的发展和提升具有重要作用。
1.2 盐化工生产的重要性盐化工是指以盐类和盐类化合物为原料,通过化学反应制备出各种有机化工产品的一类工业。
盐类在化工生产中占据着非常重要的地位,是许多有机合成反应的原料、溶剂和催化剂。
盐类的原料来源广泛,价格低廉,因此在化工生产中应用广泛。
1. 原料丰富:盐类是一种天然资源,且分布广泛。
世界各地都有盐矿资源,可以为盐化工提供充足的原料保障。
2. 工艺成熟:盐化工生产经过长期发展,工艺技术相对成熟,生产效率高,产品质量稳定。
3. 产品多样:盐化工可以制备出各种有机化合物,涵盖了农药、医药、染料、塑料等多个行业,对人类生活和工业生产有着重要的影响。
4. 经济效益:盐化工产品的需求量大,市场潜力巨大,可以带动相关产业的发展,创造就业机会,促进经济增长。
盐化工生产在化工行业中具有重要的地位和作用,发展前景广阔,对推动经济发展具有重要意义。
2. 正文2.1 MVR工艺技术在盐化工生产中的原理MVR工艺技术在盐化工生产中的原理主要是利用机械能传递热量的原理。
MVR技术通过利用机械压缩作用将蒸汽压缩至更高的温度和压力,并将高温高压的蒸汽传递给盐化工生产中需要加热的设备或物料。
盐的采集与化工过程

市场需求:随着人口增长和生活水平提高,对盐化工产品的需求不断增加 技术进步:新技术和新工艺的不断发展,提高了盐化工产品的质量和生产效率
竞争格局:全球盐化工市场竞争激烈,大型企业通过兼并重组等方式扩大市场份额
挑战与机遇:面对市场变化和竞争格局,盐化工企业需要不断创新,提高竞争力,抓住发展机遇
盐化工的发展趋势:绿色、环保、高效 资源保护:合理开采,减少浪费,保护生态环境 合理利用:提高盐化工产品的附加值,降低生产成本 挑战:技术创新,提高生产效率,应对环保压力
应用领域:纯碱和烧碱在 工业生产中具有广泛的应
用,是重要的化工原料
硫酸钠:主要用于玻璃、陶瓷、 造纸、纺织、皮革、医药、染 料等工业
硫酸钾:主要用于玻璃、陶瓷、 造纸、纺织、皮革、医药、染 料等工业
生产方法:主要通过电解氯化 钠和氯化钾得到
应用领域:广泛应用于化学、 化工、食品、医药、农业等领 域
食品加工:盐在食品 加工中常用作调味剂 和防腐剂,可以增加 食品的口感和风味。
医药行业:盐在医药 行业中常用作药物的 合成和提取,可以制 造出各种药物。
盐化工的发展趋势 和挑战
技术创新:研发新型 盐化工技术,提高生
产效率和产品质量
环保要求:满足日益严 格的环保法规,降低生 产过程中的污染物排放
燥等
预处理:去除杂 质、浓缩、结晶
等 产品质量控制: 检测杂质含量、
纯度等指标
原料:氯化钠(NaCl)和 氢氧化钠(NaOH)
反应条件:高温高压
反应方程式:NaCl + NaOH -> NaClO + H2O
产物:次氯酸钠(NaClO) 和水(H2O)
应用:次氯酸钠广泛应用 于漂白、消毒、水处理等 领域。