高中数学 第3章 空间向量与立体几何单元检测(A卷)新人教A版选修21

合集下载

高中数学(人教版A版选修2-1)配套课时作业:第三章 空间向量与立体几何 单元检测(A卷)

高中数学(人教版A版选修2-1)配套课时作业:第三章  空间向量与立体几何 单元检测(A卷)

第三章 空间向量与立体几何(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.以下命题中,不正确的个数为( )①|a |-|b |=|a +b |是a ,b 共线的充要条件;②若a ∥b ,则存在唯一的实数λ,使a =λb ;③若a·b =0,b·c =0,则a =c ;④若{a ,b ,c }为空间的一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ⑤|(a·b )·c |=|a |·|b |·|c |. A .2 B .3 C .4 D .52.直三棱柱ABC —A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B →等于( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c3.已知a =(2,4,5),b =(3,x ,y ),若a ∥b ,则( )A .x =6,y =15B .x =3,y =152C .x =3,y =15D .x =6,y =1524.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).若|a |=3,且a 分别与AB →,AC →垂直,则向量a 为( ) A .(1,1,1)B .(-1,-1,-1)C .(1,1,1)或(-1,-1,-1)D .(1,-1,1)或(-1,1,-1)5.已知A (-1,0,1),B (0,0,1),C (2,2,2),D (0,0,3),则sin 〈AB →,CD →〉等于( )A .-23 B.23 C.53 D .-536.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成角的大小为( ) A .60° B .90° C .105° D .75°7.若平面α的法向量为n ,直线l 的方向向量为a ,直线l 与平面α的夹角为θ,则下列关系式成立的是( )A .cos θ=n·a|n||a | B .cos θ=|n·a||n||a |C .sin θ=n·a|n||a | D .sin θ=|n·a||n||a |8.若三点A (1,-2,1),B (4,2,3),C (6,-1,4),则△ABC 的形状是( ) A .不等边的锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形9.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确10.若两点A (x,5-x,2x -1),B (1,x +2,2-x ),当|AB →|取最小值时,x 的值等于( )A .19B .-87 C.87 D.191411.如图所示,在四面体P —ABC 中,PC ⊥平面ABC ,AB =BC =CA =PC ,那么二面角B —AP —C 的余弦值为( )A.22B.33C.77D.57 12.如图所示,在直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,△AEB 是等腰直角三角形,其中∠AEB =90°,则点D 到平面ACE 的距离为( )A.33B.233C. 3 D .2 3题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案二、填空题(本大题共4小题,每小题5分,共20分)13.若a =(2,-3,5),b =(-3,1,-4),则|a -2b |=________. 14.如图所示,已知正四面体ABCD 中,AE =14AB ,CF =14CD ,则直线DE 和BF 所成角的余弦值为________.15.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为________. 16.如图所示,已知二面角α—l —β的平面角为θ ⎝⎛⎭⎫θ∈⎝⎛⎭⎫0,π2,AB ⊥BC ,BC ⊥CD ,AB 在平面β内,BC 在l 上,CD 在平面α内,若AB =BC =CD =1,则AD 的长为______.三、解答题(本大题共6小题,共70分)17.(10分)在直三棱柱ABC—A1B1C1中,AB1⊥BC1,CA1⊥BC1.求证:AB1=CA1. 18.(12分)已知四边形ABCD的顶点分别是A(3,-1,2),B(1,2,-1),C(-1,1,-3),D(3,-5,3).求证:四边形ABCD是一个梯形.19.(12分)如图所示,四边形ABCD,ABEF都是平行四边形且不共面,M、N分别是AC、BF的中点,判断CE与MN是否共线?20.(12分)如图所示,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD =∠BCD.求证:C1C⊥BD.21.(12分)如图,在空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB =60°,求OA与BC所成角的余弦值.22.(12分)如图,在长方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱BC ,CC 1上的点,CF =AB =2CE ,AB ∶AD ∶AA 1=1∶2∶4.(1)求异面直线EF 与A 1D 所成角的余弦值; (2)证明AF ⊥平面A 1ED ;(3)求二面角A 1—ED —F 的正弦值.第三章 空间向量与立体几何(A)1.C [只有命题④正确.] 2.D [如图,A 1B →=AB →-AA 1→=CB →-CA →-AA 1→=CB →-CA →-CC 1→=b -a -c .] 3.D [∵a ∥b ,∴存在实数λ, 使⎩⎪⎨⎪⎧3=2λx =4λy =5λ,∴⎩⎪⎨⎪⎧x =6y =152.]4.C [设a =(x ,y ,z ),∵AB →=(-2,-1,3), AC →=(1,-3,2),又|a |=3,a ⊥AB →,a ⊥AC →, ∴⎩⎪⎨⎪⎧ x 2+y 2+z 2=3,-2x -y +3z =0,x -3y +2z =0.∴⎩⎪⎨⎪⎧x =1,y =1,z =1或⎩⎪⎨⎪⎧x =-1,y =-1,z =-1.∴a =(1,1,1)或a =(-1,-1,-1).]5.C [∵AB →=(1,0,0),CD →=(-2,-2,1),∴cos 〈AB →,CD →〉=AB CD AB CD••=-23,∴sin 〈AB →,CD →〉=53.]6.B [建立如图所示的空间直角坐标系,设BB 1=1,则A (0,0,1),B 1⎝⎛⎭⎫62,22,0,C 1(0,2,0),B ⎝⎛⎭⎫62,22,1.∴AB 1→=⎝⎛⎭⎫62,22,-1,C 1B →=⎝⎛⎭⎫62,-22,1,∴AB 1→·C 1B →=64-24-1=0,即AB 1与C 1B 所成角的大小为90°.]7.D [若直线与平面所成的角为θ,直线的方向向量与该平面的法向量所成的角为β,则θ=β-90°或θ=90°-β,cos β=n·a|n||a |,∴sin θ=|cos β|=|n·a||n||a|.]8.A [AB →=(3,4,2),AC →=(5,1,3),BC →=(2,-3,1),AB →·AC →>0,得∠A 为锐角;CA →·CB →>0,得∠C 为锐角;BA →·BC →>0,得∠B 为锐角,所以△ABC 是锐角三角形且|AB →|=29,|AC →|=35,|BC →|=14.]9.A [∵v =-3u ,∴v ∥u .故α∥β.]10.C [AB →=(1-x,2x -3,-3x +3), 则|AB →|=(1-x )2+(2x -3)2+(-3x +3)2=14x 2-32x +19=14⎝⎛⎭⎫x -872+57. 故当x =87时,|AB →|取最小值.]11.C [如图所示,作BD ⊥AP 于D ,作CE ⊥AP 于E ,设AB =1,则易得CE =22,EP =22,P A =PB =2, 可以求得BD =144,ED =24.∵BC →=BD →+DE →+EC →, ∴BC →2=BD →2+DE →2+EC →2+2BD →·DE →+2DE →·EC →+2EC →·BD →.∴EC →·BD →=-14,∴cos 〈BD →,EC →〉=-77,即二面角B —AP —C 的余弦值为77.]12.B [建立如图所示的空间直角坐标系,则A (0,-1,0),E (1,0,0),D (0,-1,2),C (0,1,2). AD →=(0,0,2),AE →=(1,1,0),AC →=(0,2,2),设平面ACE 的法向量n =(x ,y ,z ),则即⎩⎪⎨⎪⎧x +y =0;2y +2z =0.令y =1,∴n =(-1,1,-1).故点D 到平面ACE 的距离d ==⎪⎪⎪⎪⎪⎪-23=233.]13.258解析 ∵a -2b =(8,-5,13),∴|a -2b |=82+(-5)2+132=258. 14.413解析 因四面体ABCD 是正四面体,顶点A 在底面BCD 内的射影为△BCD 的垂心,所以有BC ⊥DA ,AB ⊥CD .设正四面体的棱长为4, 则BF →·DE →=(BC →+CF →)·(DA →+AE →)=0+BC →·AE →+CF →·DA →+0 =4×1×cos 120°+1×4×cos 120°=-4, BF =DE =42+12-2×4×1×cos 60°=13, 所以异面直线DE 与BF 的夹角θ的余弦值为:cos θ==413. 15.π3或2π3解析 设n 1=(1,0,-1),n 2=(0,-1,1),则cos 〈n 1,n 2〉=1×0+0×(-1)+(-1)×12·2=-12,∴〈n 1,n 2〉=2π3.因平面α与平面β所成的角与〈n 1,n 2〉相等或互补,所以α与β所成的角为π3或2π3.16.3-2cos θ解析 因为AD →=AB →+BC →+CD →,所以AD →2=AB →2+BC →2+CD →2+2AB →·CD →+2AB →·BC →+2BC →·CD →=1+1+1+2cos(π-θ)=3-2cos θ.所以|AD →|=3-2cos θ, 即AD 的长为3-2cos θ.17.证明 以A 为原点,AC 为x 轴,AA 1为z 轴建立空间直角坐标系. 设B (a ,b,0),C (c,0,0),A 1(0,0,d ),则B 1(a ,b ,d ),C 1(c,0,d ),AB 1→=(a ,b ,d ), B C 1→=(c -a ,-b ,d ),CA 1→=(-c,0,d ),由已知AB 1→·B C 1→=ca -a 2-b 2+d 2=0, CA 1→·B C 1→=-c (c -a )+d 2=0,可得c 2=a 2+b 2. 再由两点间距离公式可得:|AB 1|2=a 2+b 2+d 2,|CA 1|2=c 2+d 2=a 2+b 2+d 2, ∴AB 1=CA 1.18.证明 因为AB →=(1,2,-1)-(3,-1,2)=(-2,3,-3),CD →=(3,-5,3)-(-1,1,-3)=(4,-6,6),因为-24=3-6=-36,所以AB →和CD →共线,即AB ∥CD .又因为AD →=(3,-5,3)-(3,-1,2)=(0,-4,1), BC →=(-1,1,-3)-(1,2,-1)=(-2,-1,-2),因为0-2≠-4-1≠1-2,所以AD →与BC →不平行,所以四边形ABCD 为梯形.19.解 ∵M 、N 分别是AC 、BF 的中点,四边形ABCD 、ABEF 都是平行四边形, ∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB .又∵MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB ,∴12CA →+AF →+12FB =-12CA →+CE →-AF →-12FB ,∴CE →=CA →+2AF →+FB=2(MA →+AF →+FN →)=2MN →. ∴CE →∥MN →,即CE →与MN →共线.20.证明 设CD →=a ,CB →=b ,CC 1→=c , 依题意,|a |=|b |,又设CD →,CB →,CC 1→中两两所成夹角为θ,于是BD →=CD →-CB →=a -b , CC 1→·BD →=c ·(a -b )=c·a -c·b =|c||a |cos θ-|c||b |cos θ=0, 所以C 1C ⊥BD .21.解 因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB → =|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉 =8×4×cos 135°-8×6×cos 120° =-162+24.所以cos 〈OA →,BC →〉==24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.22.(1)解如图所示,建立空间直角坐标系,点A 为坐标原点.设AB =1,依题意得D (0,2,0),F (1,2,1),A 1(0,0,4),E ⎝⎛⎭⎫1,32,0. 易得EF →=⎝⎛⎭⎫0,12,1, A 1D →=(0,2,-4),于是cos 〈EF →,A 1D →〉==-35. 所以异面直线EF 与A 1D 所成角的余弦值为35.(2)证明 易知AF →=(1,2,1),EA 1→=⎝⎛⎭⎫-1,-32,4,ED →=⎝⎛⎭⎫-1,12,0, 于是AF →·EA 1→=0,AF →·ED →=0. 因此,AF ⊥EA 1,AF ⊥ED .又EA 1∩ED =E ,所以AF ⊥平面A 1ED .(3)设平面EFD 的法向量u =(x ,y ,z ), 则即⎩⎨⎧ 12y +z =0,-x +12y =0. 不妨令x =1,可得u =(1,2,-1),由(2)可知,AF →为平面A 1ED 的一个法向量,于是cos 〈u ,AF →〉==23, 从而sin 〈u ,AF →〉=53. 所以二面角A 1—ED —F 的正弦值为53.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

高中数学 第三章 空间向量与立体几何章末评估验收 新人教A版选修21

高中数学 第三章 空间向量与立体几何章末评估验收 新人教A版选修21

【金版学案】2016-2017学年高中数学 第三章 空间向量与立体几何章末评估验收 新人教A 版选修2-1(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ,b ,c 是不共面的三个向量,则能构成一个基底的一组向量是( ) A .2a ,a -b ,a +2b B .2b ,b -a ,b +2a C .a ,2b ,b -c D .c ,a +c ,a -c答案:C2.空间直角坐标中A (1,2,3),B (-1,0,5),C (3,0,4),D (4,1,3),则直线AB 与CD 的位置关系是( )A .平行B .垂直C .相交但不垂直D .无法确定 解析:因为AB →=(-2,-2,2),CD →=(1,1,-1), 又因为AB →=-2CD →,所以AB →∥CD →,即AB ∥CD . 答案:A3.已知a =(2x ,1,3),b =(1,-2y ,9),如果a 与b 为共线向量,则( ) A .x =1,y =1 B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32答案:C4.已知a =3i +2j -k ,b =i -j +2k ,则5a 与3b 的数量积等于( ) A .-15 B .-5 C .-3D .-1解析:a =(3,2,-1),b =(1,-1,2),所以5a ·3b =15a ·b =-15. 答案:A5.已知a ·b =0,|a |=2,|b |=3,且(3a +2b )·(λa -b )=0,则λ等于( ) A.32 B .-32C .±32D .1答案:A6.(2014·广东卷)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)解析:利用向量数量积公式的变形公式cos 〈a ,b 〉=a ·b|a ||b |求向量的夹角,各项逐一验证.选项B 中cos 〈a ,b 〉=a ·b |a ||b |=1×12×2=12,所以〈a ,b 〉=60°.答案:B7.正方体ABCD ­A 1B 1C 1D 1的棱长为a ,AM →=13AC 1→,N 为B 1B 的中点,则|MN →|为( )A.216aB.66aC.156a D.153a 答案:A8.如图,在正方体ABCD ­A 1B 1C 1D 1中,以D 为原点建立空间直角坐标系,E 为BB 1的中点,F 为A 1D 1的中点,则下列向量中,能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4, 1,-2)C .(2,-2,1)D .(1,2,-2)答案:B9.在正三棱柱ABC ­A 1B 1C 1中,D 是AC 的中点,AB 1⊥BC 1,则平面DBC 1与平面CBC 1所成的角为( )A .30°B .45°C .60°D .90°答案:B10.已知正四棱柱ABCD ­A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23 D.13解析:以D 为原点建立如图所示的空间直角坐标系.设AA 1=2AB =2,则D (0,0,0),C 1(0,1,2),B (1,1,0),C (0,1,0),从而DB →=(1,1,0),DC 1→=(0,1,2),DC →=(0,1,0). 设平面BDC 1的法向量n =(x ,y ,z ),则⎩⎨⎧n ·DB →=0,n ·DC 1→=0,即⎩⎪⎨⎪⎧x +y =0,y +2z =0.令z =-1,得n =(-2,2,-1). 因为cos 〈DC →,n 〉=DC →·n |DC →||n |=23,所以CD 与平面BDC 1所成角的正弦值为23.答案:A11.如图,在正方体ABCD ­A 1B 1C 1D 1中,下面结论错误的是( )A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1 D .向量AD →与CB 1→的夹角为60°答案:D12.已知OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →·QB →取得最小值时,点Q 的坐标为( )A.⎝ ⎛⎭⎪⎫12,34,13B.⎝ ⎛⎭⎪⎫12,32,34C.⎝ ⎛⎭⎪⎫43,43,83 D.⎝ ⎛⎭⎪⎫43,43,73 答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知a =(2,-1,0),b =(k ,0, 1),若〈a ,b 〉=120°,则k =________.解析:因为cos 〈a ,b 〉=a ·b |a ||b |=2k 5×k 2+1=-12<0,所以k <0,且k 2=511.所以k =-5511. 答案:-551114.已知a =(x ,2,-4),b =(-1,y ,3),c =(1,-2,z ),且a ,b ,c 两两垂直,则(x ,y ,z )=________.答案:(-64,-26,-17)15.设a ,b 是直线,α,β是平面,a ⊥α,b ⊥β,向量a 1在a 上,向量b 1在b 上,a 1=(1,1,1),b 1=(-3,4,0),则α,β所成二面角中较小的一个的余弦值为________.解析:由题意,cos θ=|cos 〈a 1,b 1〉|=|a 1·b 1||a 1||b 1|=(1,1,1)×(-3,4,0)3×5=315. 答案:31516.已知四面体顶点A (2,3,1)、B (4,1,-2)、C (6,3,7)和D (-5,-4,8),则顶点D 到平面ABC 的距离为________.答案:11三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知四边形ABCD 的顶点分别是A (3,-1,2),B (1,2,-1),C (-1,1,-3),D (3,-5,3).求证:四边形ABCD 是一个梯形.证明:因为AB →=(1,2,-1)-(3,-1,2)=(-2,3,-3),CD →=(3,-5,3)-(-1,1,-3)=(4,-6,6),因为-24=3-6=-36,所以AB →和CD →共线,即AB ∥CD .又因为AD →=(3,-5,3)-(3,-1,2)=(0,-4,1),BC →=(-1,1,-3)-(1,2,-1)=(-2,-1,-2),因为0-2≠-4-1≠1-2,所以AD →与BC →不平行,所以四边形ABCD 为梯形.18.(本小题满分12分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 和b 的夹角θ的余弦值;(2)若向量ka +b 与ka -2b 互相垂直,求k 的值. 解:a =AB →=(-1,1,2)-(-2,0,2)=(1,1,0), b =AC →=(-3,0,4)-(-2,0,2)=(-1,0,2).(1)cos θ=a ·b |a ||b |=-1+0+02×5=-1010,所以a 与b 的夹角θ的余弦值为-1010. (2)ka +b =(k ,k ,0)+(-1,0,2)=(k -1,k ,2),ka -2b =(k ,k ,0)-(-2,0,4)=(k +2,k ,-4),所以(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0. 即2k 2+k -10=0,所以k =-52或k =2.19.(本小题满分12分)如图,在直三棱柱ABC ­A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)证明:AC ⊥BC 1;(2)求二面角C 1­AB ­C 的余弦值大小.解:直三棱柱ABC ­A 1B 1C 1中,AC =3,BC =4,AB =5,故AC ,BC ,CC 1两两垂直,建立空间直角坐标系(如图),则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4). (1)证明:AC →=(-3,0,0),BC 1→=(0,-4,4), 所以AC →·BC 1→=0.故AC ⊥BC 1.(2)解:平面ABC 的一个法向量为m =(0,0,1),设平面C 1AB 的一个法向量为n =(x ,y ,z ),AC 1→=(-3,0,4),AB →=(-3,4,0), 由⎩⎨⎧n ·AC 1→=0,n ·AB →=0.得⎩⎪⎨⎪⎧-3x +4z =0,-3x +4y =0,令x =4,则y =3,z =3,n =(4,3,3), 故cos 〈m ,n 〉=334=33434. 即二面角C 1­AB ­C 的余弦值为33434.20.(本小题满分12分)正方体ABCD ­A 1B 1C 1D 1的棱长为4,M 、N 、E 、F 分别为A 1D 1、A 1B 1、C 1D 1、B 1C 1的中点,求平面AMN 与平面EFBD 间的距离.解:如图所示,建立空间直角坐标系D ­xyz ,则A (4,0,0),M (2,0,4),D (0,0,0),B (4,4,0),E (0,2,4),F (2,4,4),N (4,2,4),从而EF →=(2,2,0),MN →=(2,2,0),AM →=(-2,0,4),BF →=(-2,0,4), 所以EF →=MN →,AM →=BF →,所以EF ∥MN ,AM ∥EF ,EF ∩BF =F ,MN ∩AM =M . 所以平面AMN ∥平面EFBD .设n =(x ,y ,z )是平面AMN 的法向量,从而⎩⎨⎧n ·MN →=2x +2y =0,n ·AM →=-2x +4z =0,解得⎩⎪⎨⎪⎧x =2z ,y =-2z .取z =1,得n =(2,-2,1),由于AB →=(0,4,0), 所以AB →在n 上的投影为n ·AB →|n |=-84+4+1=-83.所以两平行平面间的距离d =|n ·AB →||n |=83.21.(本小题满分12分)如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =60°.(1)求证:EF ⊥PB .(2)试问:当点E 在线段AB 上移动时,二面角P ­FC ­B 的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.(1)证明:在Rt △ABC 中,因为EF ∥BC ,所以EF ⊥AB ,所以EF ⊥EB ,EF ⊥EP , 又因为EB ∩EP =E ,EB ,EP ⊂平面PEB ,所以EF ⊥平面PEB . 又因为PB ⊂平面PEB ,所以EF ⊥PB .(2)解:在平面PEB 内,过点P 作PD ⊥BE 于点D , 由(1)知EF ⊥平面PEB ,所以EF ⊥PD ,又因为BE ∩EF =E ,BE ,EF ⊂平面BCFE ,所以PD ⊥平面BCFE . 在平面PEB 内过点B 作直线BH ∥PD ,则BH ⊥平面BCFE .如图所示,以B 为坐标原点,BC →,BE →,BH →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.设PE =x (0<x <4), 又因为AB =BC =4, 所以BE =4-x ,EF =x . 在Rt △PED 中,∠PED =60°, 所以PD =32x ,DE =12x ,所以BD =4-x -12x =4-32x , 所以C (4,0,0),F (x ,4-x ,0),P ⎝ ⎛⎭⎪⎫0,4-32x ,32x .从而CF →=(x -4,4-x ,0),CP →=⎝ ⎛⎭⎪⎫-4,4-32x ,32x .设n 1=(x 0,y 0,z 0)是平面PCF 的一个法向量,所以⎩⎨⎧n 1·CF →=0,n 1·CP →=0,即⎩⎪⎨⎪⎧x 0(x -4)+y 0(4-x )=0,-4x 0+⎝ ⎛⎭⎪⎫4-32x y 0+32xz 0=0,所以⎩⎨⎧x 0-y 0=0,3y 0-z 0=0,取y 0=1,得n 1=(1,1,3)是平面PFC 的一个法向量. 又平面BFC 的一个法向量为n 2=(0,0,1), 设二面角P ­FC ­B 的平面角为α, 则cos α=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=155.因此当点E 在线段AB 上移动时,二面角P ­FC ­B 的平面角的余弦值为定值,且定值为155. 22.(本小题满分12分)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F ­BE ­D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.(1)证明:因为DE ⊥平面ABCD ,所以DE ⊥AC , 因为四边形ABCD 是正方形,所以AC ⊥BD , 又DE ∩BD =D ,所以AC ⊥平面BDE . (2)解:因为DE ⊥平面ABCD ,所以∠EBD 就是BE 与平面ABCD 所成的角, 即∠EBD =60°, 所以ED BD= 3.由AD =3,得DE =36,AF = 6.如图,分别以DA ,DC ,DE 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (3,0,0),F (3,0,6),E (0,0,36),B (3,3,0),C (0,3,0),所以BF →=(0,-3,6),EF →=(3,0,-26).设平面BEF 的一个法向量为n =(x ,y ,z ), 则⎩⎨⎧n ·BF →=0,n ·EF →=0,即⎩⎨⎧-3y +6z =0,3x -26z =0.令z =6,则n =(4,2,6). 因为AC ⊥平面BDE ,所以CA →=(3,-3,0)为平面BDE 的一个法向量, 所以cos 〈n ,CA →〉=n ·CA →|n ||CA →|=626×32=1313.故二面角F ­BE ­D 的余弦值为1313. (3)解:依题意,设M (t ,t ,0)(t >0),则AM →=(t -3,t ,0), 因为AM ∥平面BEF , 所以AM →·n =0,即4(t -3)+2t =0,解得t =2.所以点M 的坐标为(2,2,0),此时DM →=23DB →,所以点M 是线段BD 上靠近点B 的三等分点.。

高二数学选修21第3章空间向量与立体几何单元测试题(含答案)

高二数学选修21第3章空间向量与立体几何单元测试题(含答案)

高二数学选修2-1第3章空间向量与立体几何单元测试题(含答案)空间向量是解立体几何的一种常用方法,以下是第3章空间向量与立体几何单元测试题,希望对大家有帮助。

一、填空题1.判断下列各命题的真假:①向量AB的长度与向量BA的长度相等;②向量a与b平行,则a与b的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤有向线段就是向量,向量就是有向线段.其中假命题的个数为________.2.已知向量AB,AC,BC满足|AB|=|AC|+|BC|,则下列叙述正确的是________.(写出所有正确的序号)①AB=AC+BC②AB=-AC-BC③AC与BC同向;④AC与CB同向.3.在正方体ABCD-A1B1C1D中,向量表达式DD1-AB+BC化简后的结果是________.4.在平行六面体ABCD-A1B1C1D中,用向量AB,AD,AA1来表示向量AC1的表达式为___________________________________________________ _____________________.5.四面体ABCD中,设M是CD的中点,则AB+12(BD+BC)化简的结果是________.6.平行六面体ABCDA1B1C1D1中,E,F,G,H,P,Q分别是A1A,AB,BC,CC1,C1D1,D1A1的中点,下列结论中正确的有________.(写出所有正确的序号)① +GH+PQ② -GH-PQ③ +GH-PQ④ -GH+PQ=0.7.如图所示,a,b是两个空间向量,则AC与AC是________向量,AB与BA是________向量.8.在正方体ABCD-A1B1C1D中,化简向量表达式AB+CD+BC+DA 的结果为________.二、解答题9.如图所示,已知空间四边形ABCD,连结AC,BD,E,F,G 分别是BC,CD,DB的中点,请化简(1)AB+BC+CD,(2)AB+GD+EC,并标出化简结果的向量.10.设A是△BCD所在平面外的一点,G是△BCD的重心.求证:AG=13(AB+AC+AD).能力提升11.在平行四边形ABCD中,AC与BD交于点O,E是线段OD 的中点,AE的延长线与CD交于点F.若AC=a,BD=b,则AF=______________________.12.证明:平行六面体的对角线交于一点,并且在交点处互相平分.解析①真命题;②假命题,若a与b中有一个为零向量时,其方向是不确定的;③真命题;④假命题,终点相同并不能说明这两个向量的方向相同或相反;⑤假命题,向量可用有向线段来表示,但并不是有向线段.2.④解析由|AB|=|AC|+|BC|=|AC|+|CB|,知C点在线段AB上,否则与三角形两边之和大于第三边矛盾,所以AC与CB同向.3.BD1解析如图所示,∵DD1=AA1,DD1-AB=AA1-AB=BA1,BA1+BC=BD1,DD1-AB+BC=BD1.4.AC1=AB+AD+AA1解析因为AB+AD=AC,AC+AA1=AC1,所以AC1=AB+AD+AA1.5.AM解析如图所示,因为12(BD+BC)=BM,所以AB+12(BD+BC)=AB+BM=AM.6.①解析观察平行六面体ABCDA1B1C1D1可知,向量EF,GH,PQ 平移后可以首尾相连,于是EF+GH+PQ=0.7.相等相反8.0解析在任何图形中,首尾相接的若干个向量和为零向量.9.解 (1)AB+BC+CD=AC+CD=AD.(2)∵E,F,G分别为BC,CD,DB的中点.BE=EC,EF=GD.AB+GD+EC=AB+BE+EF=AF.故所求向量AD,AF,如图所示.10.证明连结BG,延长后交CD于E,由G为△BCD的重心,知BG=23BE.∵E为CD的中点,BE=12BC+12BD.AG=AB+BG=AB+23BE=AB+13(BC+BD)=AB+13[(AC-AB)+(AD-AB)]=13(AB+AC+AD).11.23a+13b解析 AF=AC+CF=a+23CD=a+13(b-a)=23a+13b.12.证明如图所示,平行六面体ABCDABCD,设点O是AC的中点,则AO=12AC=12(AB+AD+AA).设P、M、N分别是BD、CA、DB的中点.则AP=AB+BP=AB+12BD=AB+12(BA+BC+BB)=AB+12(-AB+AD+AA)=12(AB+AD+AA).同理可证:AM=12(AB+AD+AA)AN=12(AB+AD+AA).由此可知O,P,M,N四点重合.故平行六面体的对角线相交于一点,且在交点处互相平分.第3章空间向量与立体几何单元测试题的全部内容就是这些,查字典数学网预祝大家新学期可以取得更好的成绩。

高中数学 第三章 空间向量与立体几何章末综合检测 理 新人教A版选修21

高中数学 第三章 空间向量与立体几何章末综合检测 理 新人教A版选修21

【优化方案】2013-2014学年高中数学 第三章 空间向量与立体几何章末综合检测 理 新人教A 版选修2-1(时间:100分钟;满分:120分)一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a =(λ+1,0,2λ),b =(6,2μ-1,2),若a ∥b ,则λ与μ的值分别为( ) A.15,12B .5,2C .-15,-12D .-5,-2解析:选A.a ∥b ,则存在m ∈R ,使得a =m b ,又a =(λ+1,0,2λ),b =(6,2μ-1,2),则有⎩⎪⎨⎪⎧ λ+1=6m ,0=m (2μ-1),2λ=2m ,可得⎩⎨⎧λ=15,μ=12.2.已知A (1,-2,11),B (4,2,3),C (6,-1,4)三点,则△ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰三角形解析:选A.AB →=(3,4,-8),BC →=(2,-3,1),CA →=(-5,-1,7), ∴BC →·CA →=-10+3+7=0. ∴BC ⊥CA .∴△ABC 是直角三角形.3.已知在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN →等于( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -12cD.23a +23b -12c 解析:选B.因MN →=ON →-OM →=12(OB →+OC →)-23OA →=12b +12c -23a .4.已知a =(1,0,1),b =(-2,-1,1),c =(3,1,0),则|a -b +2c |等于( ) A .310 B .210 C.10 D .5解析:选A.|a -b +2c |=(a -b +2c )2,∵a -b +2c =(1,0,1)-(-2,-1,1)+2(3,1,0)=(9,3,0), ∴|a -b +2c |=92+32+0=310. 5.给出下列命题:①已知a ⊥b ,则a ·(b +c )+c ·(b -a )=b ·c ;②A 、B 、M 、N 为空间四点,若BA →、BM →、BN →不能构成空间的一个基底,则A 、B 、M 、N 四点共面;③已知a ⊥b ,则a ,b 与任何向量都不能构成空间的一个基底;④已知{a ,b ,c }是空间的一个基底,则基向量a ,b 可以与向量m =a +c 构成空间另一个基底.其中正确命题的个数是( ) A .1 B .2 C .3 D .4解析:选C.当a ⊥b 时,a ·b =0,a ·(b +c )+c ·(b -a )=a ·b +a ·c +c ·b -c ·a =c ·b =b ·c ,故①正确;当向量BA →、BM →、BN →不能构成空间的一个基底时,BA →、BM →、BN →共面,从而A 、B 、M 、N 四点共面,故②正确;当a ⊥b 时,a ,b 不共线,任意一个与a ,b 不共面的向量都可以与a ,b 构成空间的一个基底,故③错误;当{a ,b ,c }是空间的一个基底时,a ,b ,c 不共面,所以a ,b ,m 也不共面,故a ,b ,m 可构成空间的另一个基底,故④正确.6.在下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC →C.MA →+MB →+MC →=0D.OM →+OA →+OB →+OC →=0解析:选C.空间的四点M 、A 、B 、C 共面只需满足OM →=xOA →+yOB →+zOC →,且x +y +z=1,或存在实数x ,y 使得MC →=xMA →+yMB →.7.在空间直角坐标系Oxyz 中,i ,j ,k 分别是x 轴、y 轴、z 轴的方向向量,设a 为非零向量,且〈a ,i 〉=45°,〈a ,j 〉=60°,则〈a ,k 〉=( )A .30°B .45°C .60°D .90°解析:选C.如图所示,设|a |=m (m >0),a =OP →,P A ⊥平面xOy ,则在Rt △PBO 中,|PB |=|OP →|·cos 〈a ,i 〉=22m ,在Rt △PCO 中,|OC |=|OP →|·cos 〈a ,j 〉=m 2,∴|AB |=m2,在Rt △P AB 中, |P A |= |PB |2-|AB |2 =24m 2-m 24=m 2, ∴|OD |=m2,在Rt △PDO 中,cos 〈a ,k 〉=|OD ||OP |=12,又0°≤〈a ,k 〉≤180°,∴〈a ,k 〉=60°.8.已知点A (-3,4,3),O 为坐标原点,则OA 与坐标平面yOz 所成角的正切值为( ) A.34 B.35 C.53D .1 解析:选B.A 点在面yOz 上的射影为B (0,4,3)且|OB |=5,所以OA 与平面yOz 所成角θ满足tan θ=|AB ||OB |=35.9.如图所示,在正方体ABCD -A 1B 1C 1D 1中,以D 为原点建立空间直角坐标系,E 为BB 1的中点,F 为A 1D 1的中点,则下列向量中能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4,1,-2)C .(2,-2,1)D .(1,2,-2) 解析:选B.设平面AEF 的法向量为n =(x ,y ,z ),正方体ABCD -A 1B 1C 1D 1的棱长为1,则A (1,0,0),E (1,1,12),F (12,0,1).故AE →=(0,1,12),AF →=(-12,0,1).由⎩⎪⎨⎪⎧AE →·n =0,AF →·n =0,即⎩⎨⎧y +12z =0,-12x +z =0,所以⎩⎪⎨⎪⎧y =-12z ,x =2z .当z =-2时,n =(-4,1,-2),故选B.10.正方体ABCD -A 1B 1C 1D 1中,二面角A -BD 1-B 1的大小为( ) A .90° B .60° C .120° D .45° 解析:选C.如图,以C 为原点建立空间直角坐标系Cxyz ,设正方体的边长为a ,则A (a ,a,0),B (a,0,0),D 1(0,a ,a ),B 1(a,0,a ),于是BA →=(0,a,0),BD 1→=(-a ,a ,a ),BB 1→=(0,0,a ).设平面ABD 1的法向量为n =(x ,y ,z ),则n ·BA →=(x ,y ,z )·(0,a,0)=ay =0, n ·BD 1→=(x ,y ,z )·(-a ,a ,a )=-ax +ay +az =0. ∵a ≠0,∴y =0,x =z . 令x =z =1,则n =(1,0,1),同理,平面B 1BD 1的法向量m =(-1,-1,0).由于cos 〈n ,m 〉=n ·m |n ||m |=-12,而二面角A -BD 1-B 1为钝角,故为120°.二、填空题(本大题共5小题,把答案填在题中横线上) 11.已知a =(2,-1,0),b =(k,0,1),若〈a ,b 〉=120°,则k =________.解析:∵cos 〈a ,b 〉=a·b|a ||b |=2k 5·k 2+1=-12<0,∴k <0,且k 2=511.∴k =-5511.答案:-551112.若a =(2,3,-1),b =(-2,1,3),则以a ,b 为邻边的平行四边形的面积为________.解析:cos 〈a ,b 〉=a·b|a ||b |=-27,得sin 〈a ,b 〉=357,由公式S =|a ||b |sin 〈a ,b 〉可得结果.答案:6 513.如图,空间四边形OABC ,点M ,N 分别为OA ,BC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示MN →,则MN →=________.解析:MN →=ON →-OM →=12(OB →+OC →)-12OA → =-12a +12b +12c .答案:-12a +12b +12c14.点P 是棱长为1的正方体ABCD -A 1B 1C 1D 1内一点,且满足AP →=34AB →+12AD →+23AA 1→,则点P 到棱AB 的距离为__________.解析:如图所示,过P 作PQ ⊥平面ABCD 于Q ,过Q 作QE ⊥AB 于E ,连接PE . ∵AP →=34AB →+12AD →+23AA 1→,∴PQ =23,EQ =12,∴点P 到棱AB 的距离为PE =PQ 2+EQ 2=56.答案:5615.如图所示,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,点E 是棱CC 1的中点,则异面直线D 1E 与AC 所成的角的余弦值是________.解析:如图,建立空间直角坐标系,则A (4,0,0),C (0,4,0),D 1(0,0,4),E (0,4,2),AC →=(-4,4,0),D 1E →=(0,4,-2).cos 〈AC →,D 1E →〉=1632×20=105. ∴异面直线D 1E 与AC 所成角的余弦值为105. 答案:105三、解答题(本题共5小题,解答写出文字说明、证明过程或演算步骤) 16.如图,在平行六面体ABCD -A 1B 1C 1D 1中,CM =2MA ,A 1N =2ND ,且AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示向量MN →.解:∵MN →=MA →+AA 1→+A 1N →=-13AC →+AA 1→+23A 1D →=-13(AB →+AD →)+AA 1→+23(A 1A →+A 1D 1→)=-13AB →-13AD →+13AA 1→+23AD →=-13a +13b +13c ,∴MN →=-13a +13b +13c .17.在正方体ABCD -A 1B 1C 1D 1中,P 为DD 1的中点,M 为四边形ABCD 的中心.求证:对A 1B 1上任一点N ,都有MN ⊥AP .证明:建立如图所示的空间直角坐标系Dxyz ,设正方体的棱长为1,则A (1,0,0),P ⎝⎛⎭⎫0,0,12, M ⎝⎛⎭⎫12,12,0,N (1,y,1).∴AP →=⎝⎛⎭⎫-1,0,12, MN →=⎝⎛⎭⎫12,y -12,1. ∴AP →·MN →=(-1)×12+0×⎝⎛⎭⎫y -12+12×1=0, ∴AP →⊥MN →,即A 1B 1上任意一点N 都有MN ⊥AP . 18.如图所示,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD =2,AB =1,BM ⊥PD 于点M .(1)求证:AM ⊥PD ;(2)求直线CD 与平面ACM 所成角的余弦值.解:(1)证明:∵P A ⊥平面ABCD ,AB ⊂平面ABCD , ∴P A ⊥AB .∵AB ⊥AD ,AD ∩P A =A , ∴AB ⊥平面P AD .∵PD ⊂平面P AD ,∴AB ⊥PD , 又∵BM ⊥PD ,AB ∩BM =B , ∴PD ⊥平面ABM .∵AM ⊂平面ABM ,∴AM ⊥PD . (2)如图所示,以点A 为坐标原点,建立空间直角坐标系Axyz , 则A (0,0,0),P (0,0,2),B (1,0,0),C (1,2,0),D (0,2,0). ∵AM ⊥PD ,P A =AD ,∴M 为PD 的中点,∴M 的坐标为(0,1,1). ∴AC →=(1,2,0),AM →=(0,1,1),CD →=(-1,0,0). 设平面ACM 的一个法向量为n =(x ,y ,z ),由n ⊥AC →,n ⊥AM →可得⎩⎪⎨⎪⎧x +2y =0y +z =0,令z =1,得x =2,y =-1.∴n =(2,-1,1).设直线CD 与平面ACM 所成的角为α,则sin α=|CD →·n ||CD →|·|n |=63.∴cos α=33,即直线CD 与平面ACM 所成角的余弦值为33.19.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:P A ⊥BD ;(2)若PD =AD ,求二面角A -PB -C 的余弦值.解:(1)证明:因为∠DAB =60°,AB =2AD , 由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又因为PD ⊥底面ABCD ,可得BD ⊥PD . 又因为AD ∩PD =D ,所以BD ⊥平面P AD ,故P A ⊥BD .(2)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系Dxyz ,则A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1), AB →=(-1,3,0),PB →=(0,3,-1), BC →=(-1,0,0).设平面P AB 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·PB →=0,即⎩⎪⎨⎪⎧-x +3y =0,3y -z =0,因此可取n =(3,1,3). 设平面PBC 的法向量为m ,则 ⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0, 可取m =(0,-1,-3),〈m ,n 〉等于二面角A -PB -C 的平面角,cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.20.如图,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC =2,O 为AD 中点.(1)求证:PO ⊥平面ABCD ;(2)求异面直线PB 与CD 所成角的余弦值; (3)求点A 到平面PCD 的距离. 解:(1)证明:如图所示,以O 为坐标原点,OC →、OD →、OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz .则A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1).所以OP →=(0,0,1),AD →=(0,2,0), OP →·AD →=0,所以,PO ⊥AD ,又侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD .(2)CD →=(-1,1,0),PB →=(1,-1,-1),所以cos 〈PB →,CD →〉=PB →·CD →|PB →||CD →|=-1-13×2=-63,所以异面直线PB 与CD 所成的角的余弦值为63. (3)设平面PCD 的法向量为n =(x 0,y 0,z 0),CP →=(-1,0,1),CD →=(-1,1,0),由⎩⎪⎨⎪⎧n ·CP →=0n ·CD →=0,得⎩⎪⎨⎪⎧-x 0+z 0=0-x 0+y 0=0,即x 0=y 0=z 0,取x 0=1,得平面PCD 的一个法向量为n =(1,1,1).又AC →=(1,1,0),从而点A 到平面PCD 的距离d =|AC →·n ||n |=23=233.。

第三章空间向量与立体几何综合测试题(含详解新人教A版选修2-1)

第三章空间向量与立体几何综合测试题(含详解新人教A版选修2-1)

第三章空间向量与立体几何综合测试题(含详解新人教A版选修2-1)x第三章空间向量与立体几何综合测试题(含详解新人教A版选修2-1)(时间:100分钟;满分:120分)一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a=(λ+1,0,2λ),b=(6,2μ-1,2),若a∥b,则λ与μ的值分别为()A.15,12B.5,2C.-15,-12D.-5,-2解析:选A.a∥b,则存在m∈R,使得a=mb,又a=(λ+1,0,2λ),b=(6,2μ-1,2),则有λ+1=6m,0=-,2λ=2m,可得λ=15,μ=12.2.已知A(1,-2,11),B(4,2,3),C(6,-1,4)三点,则△ABC是() A.直角三角形B.钝角三角形C.锐角三角形D.等腰三角形解析:选A.AB→=(3,4,-8),BC→=(2,-3,1),CA→=(-5,-1,7),∴BC→•CA→=-10+3+7=0.∴BC⊥CA.∴△ABC是直角三角形.3.已知在空间四边形OABC中,OA→=a,OB→=b,OC→=c,点M 在OA上,且OM=2MA,N为BC中点,则MN→等于()A.12a-23b+12cB.-23a+12b+12cC.12a+12b-12cD.23a+23b-12c解析:选B.因MN→=ON→-OM→=12(OB→+OC→)-23OA→=12b +12c-23a.4.已知a=(1,0,1),b=(-2,-1,1),c=(3,1,0),则|a-b+2c|等于() A.310B.210C.10D.5解析:选A.|a-b+2c|=-b+,∵a-b+2c=(1,0,1)-(-2,-1,1)+2(3,1,0)=(9,3,0),∴|a-b+2c|=92+32+0=310.5.给出下列命题:①已知a⊥b,则a•(b+c)+c•(b-a)=b•c;②A、B、M、N为空间四点,若BA→、BM→、BN→不能构成空间的一个基底,则A、B、M、N四点共面;③已知a⊥b,则a,b与任何向量都不能构成空间的一个基底;④已知{a,b,c}是空间的一个基底,则基向量a,b可以与向量m=a +c构成空间另一个基底.其中正确命题的个数是()A.1B.2C.3D.4解析:选C.当a⊥b时,a•b=0,a•(b+c)+c•(b-a)=a•b+a•c+c•b -c•a=c•b=b•c,故①正确;当向量BA→、BM→、BN→不能构成空间的一个基底时,BA→、BM→、BN→共面,从而A、B、M、N四点共面,故②正确;当a⊥b时,a,b不共线,任意一个与a,b不共面的向量都可以与a,b构成空间的一个基底,故③错误;当{a,b,c}是空间的一个基底时,a,b,c不共面,所以a,b,m也不共面,故a,b,m可构成空间的另一个基底,故④正确.6.在下列条件中,使M与A、B、C一定共面的是()A.OM→=2OA→-OB→-OC→B.OM→=15OA→+13OB→+12OC→C.MA→+MB→+MC→=0D.OM→+OA→+OB→+OC→=0解析:选C.空间的四点M、A、B、C共面只需满足OM→=xOA→+yOB→+zOC→,且x+y+z=1,或存在实数x,y使得MC→=xMA→+yMB→. 7.在空间直角坐标系Oxyz中,i,j,k分别是x轴、y轴、z轴的方向向量,设a为非零向量,且〈a,i〉=45°,〈a,j〉=60°,则〈a,k〉=()A.30°B.45°C.60°D.90°解析:选C.如图所示,设|a|=m(m>0),a=OP→,PA⊥平面xOy,则在Rt△PBO中,|PB|=|OP→|•cos〈a,i〉=22m,在Rt△PCO中,|OC|=|OP→|•cos〈a,j〉=m2,∴|AB|=m2,在Rt△PAB中,|PA|=|PB|2-|AB|2=24m2-m24=m2,∴|OD|=m2,在Rt△PDO中,cos〈a,k〉=|OD||OP|=12,又0°≤〈a,k〉≤180°,∴〈a,k〉=60°.8.已知点A(-3,4,3),O为坐标原点,则OA与坐标平面yOz所成角的正切值为()A.34B.35C.53D.1解析:选B.A点在面yOz上的射影为B(0,4,3)且|OB|=5,所以OA与平面yOz所成角θ满足tanθ=|AB||OB|=35.9.如图所示,在正方体ABCD-A1B1C1D1中,以D为原点建立空间直角坐标系,E为BB1的中点,F为A1D1的中点,则下列向量中能作为平面AEF的法向量的是()A.(1,-2,4)B.(-4,1,-2)C.(2,-2,1)D.(1,2,-2)解析:选B.设平面AEF的法向量为n=(x,y,z),正方体ABCD-A1B1C1D1的棱长为1,则A(1,0,0),E(1,1,12),F(12,0,1).故AE→=(0,1,12),AF→=(-12,0,1).由AE→•n=0,AF→•n=0,即y+12z=0,-12x+z=0,所以y=-12z,x=2z.当z=-2时,n=(-4,1,-2),故选B.10.正方体ABCD-A1B1C1D1中,二面角A-BD1-B1的大小为() A.90°B.60°C.120°D.45°解析:选C.如图,以C为原点建立空间直角坐标系Cxyz,设正方体的边长为a,则A(a,a,0),B(a,0,0),D1(0,a,a),B1(a,0,a),于是BA→=(0,a,0),BD1→=(-a,a,a),BB1→=(0,0,a).设平面ABD1的法向量为n=(x,y,z),则n•BA→=(x,y,z)•(0,a,0)=ay=0,n•BD1→=(x,y,z)•(-a,a,a)=-ax+ay+az=0.∵a≠0,∴y=0,x=z.令x=z=1,则n=(1,0,1),同理,平面B1BD1的法向量m=(-1,-1,0).由于cos〈n,m〉=n•m|n||m|=-12,而二面角A-BD1-B1为钝角,故为120°.二、填空题(本大题共5小题,把答案填在题中横线上)11.已知a=(2,-1,0),b=(k,0,1),若〈a,b〉=120°,则k=________. 解析:∵cos〈a,b〉=a•b|a||b|=2k5•k2+1=-12<0,∴k<0,且k2=511.∴k=-5511.答案:-551112.若a=(2,3,-1),b=(-2,1,3),则以a,b为邻边的平行四边形的面积为________.解析:cos〈a,b〉=a•b|a||b|=-27,得sin〈a,b〉=357,由公式S=|a||b|sin〈a,b〉可得结果.答案:6513.如图,空间四边形OABC,点M,N分别为OA,BC的中点,且OA→=a,OB→=b,OC→=c,用a,b,c表示MN→,则MN→=________. 解析:MN→=ON→-OM→=12(OB→+OC→)-12OA→=-12a+12b+12c.答案:-12a+12b+12c14.点P是棱长为1的正方体ABCD-A1B1C1D1内一点,且满足AP→=34AB→+12AD→+23AA1→,则点P到棱AB的距离为__________.解析:如图所示,过P作PQ⊥平面ABCD于Q,过Q作QE⊥AB于E,连接PE.∵AP→=34AB→+12AD→+23AA1→,∴PQ=23,EQ=12,∴点P到棱AB的距离为PE=PQ2+EQ2=56.答案:5615.如图所示,在棱长为4的正方体ABCD-A1B1C1D1中,点E是棱CC1的中点,则异面直线D1E与AC所成的角的余弦值是________.解析:如图,建立空间直角坐标系,则A(4,0,0),C(0,4,0),D1(0,0,4),E(0,4,2),AC→=(-4,4,0),D1E→=(0,4,-2).cos〈AC→,D1E→〉=1632×20=105.∴异面直线D1E与AC所成角的余弦值为105.答案:105三、解答题(本题共5小题,解答写出文字说明、证明过程或演算步骤)16.如图,在平行六面体ABCD-A1B1C1D1中,CM=2MA,A1N=2ND,且AB→=a,AD→=b,AA1→=c,试用a,b,c表示向量MN→.解:∵MN→=MA→+AA1→+A1N→=-13AC→+AA1→+23A1D→=-13(AB→+AD→)+AA1→+23(A1A→+A1D1→)=-13AB→-13AD→+13AA1→+23AD→=-13a+13b+13c,∴MN→=-13a+13b+13c.17.在正方体ABCD-A1B1C1D1中,P为DD1的中点,M为四边形ABCD 的中心.求证:对A1B1上任一点N,都有MN⊥AP.证明:建立如图所示的空间直角坐标系Dxyz,设正方体的棱长为1,则A(1,0,0),P0,0,12,M12,12,0,N(1,y,1).∴AP→=-1,0,12,MN→=12,y-12,1.∴AP→•MN→=(-1)×12+0×y-12+12×1=0,∴AP→⊥MN→,即A1B1上任意一点N都有MN⊥AP.18.如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD于点M.(1)求证:AM⊥PD;(2)求直线CD与平面ACM所成角的余弦值.解:(1)证明:∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB.∵AB⊥AD,AD∩PA=A,∴AB⊥平面PAD.∵PD⊂平面PAD,∴AB⊥PD,又∵BM⊥PD,AB∩BM=B,∴PD⊥平面ABM.∵AM⊂平面ABM,∴AM⊥PD.(2)如图所示,以点A为坐标原点,建立空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),B(1,0,0),C(1,2,0),D(0,2,0).∵AM⊥PD,PA=AD,∴M为PD的中点,∴M的坐标为(0,1,1).∴AC→=(1,2,0),AM→=(0,1,1),CD→=(-1,0,0).设平面ACM的一个法向量为n=(x,y,z),由n⊥AC→,n⊥AM→可得x+2y=0y+z=0,令z=1,得x=2,y=-1.∴n=(2,-1,1).设直线CD与平面ACM所成的角为α,则sinα=|CD→•n||CD→|•|n|=63.∴cosα=33,即直线CD与平面ACM所成角的余弦值为33.19.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值.解:(1)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=3AD,从而BD2+AD2=AB2,故BD⊥AD.又因为PD⊥底面ABCD,可得BD⊥PD.又因为AD∩PD=D,所以BD⊥平面PAD,故PA⊥BD.(2)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系Dxyz,则A(1,0,0),B(0,3,0),C(-1,3,0),P(0,0,1),AB→=(-1,3,0),PB→=(0,3,-1),BC→=(-1,0,0).设平面PAB的法向量为n=(x,y,z),则n•AB→=0,n•PB→=0,即-x+3y=0,3y-z=0,因此可取n=(3,1,3).设平面PBC的法向量为m,则m•PB→=0,m•BC→=0,可取m=(0,-1,-3),〈m,n〉等于二面角A-PB-C的平面角,cos 〈m,n〉=-427=-277.故二面角A-PB-C的余弦值为-277.20.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的余弦值;(3)求点A到平面PCD的距离.解:(1)证明:如图所示,以O为坐标原点,OC→、OD→、OP→的方向分别为x轴,y轴,z轴的正方向,建立空间直角坐标系Oxyz.则A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1).所以OP→=(0,0,1),AD→=(0,2,0),OP→•AD→=0,所以,PO⊥AD,又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD.(2)CD→=(-1,1,0),PB→=(1,-1,-1),所以cos〈PB→,CD→〉=PB→•CD→|PB→||CD→|=-1-13×2=-63,所以异面直线PB与CD 所成的角的余弦值为63.(3)设平面PCD的法向量为n=(x0,y0,z0),CP→=(-1,0,1),CD→=(-1,1,0),由n•CP→=0n•CD→=0,得-x0+z0=0-x0+y0=0,即x0=y0=z0,取x0=1,得平面PCD的一个法向量为n=(1,1,1).又AC→=(1,1,0),从而点A到平面PCD的距离d=|AC→•n||n|=23=233.。

高中数学人教A版选修2-1第三章空间向量与立体几何单元综合测试

高中数学人教A版选修2-1第三章空间向量与立体几何单元综合测试

金太阳新课标资源网 wx.jtyjy.com 第 1 页 共 21 页 金太阳新课标资源网wx.jtyjy.com 第三章空间向量与立体几何单元综合测试 时间:120分钟 分值:150分 第Ⅰ卷(选择题,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 一、选择题(每小题5分,共60分)

1.直三棱柱ABC-A1B1C1,若CA→=a,CB→=b,CC1→=c,则A1B→

=( ) A.a+b-c B.a-b+c C.-a+b+c D.-a+b-c

解析:结合图形,得A1B→=A1A→+AC→+CB→=-c-a+b=-a+b

-c,故选D. 答案:D 2.已知a=(-5,6,1),b=(6,5,0),则a与b( ) A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向 答案:A 3.已知a=(2,-1,3),b=(-4,2,x),c=(1,-x,2),若(a+b)⊥c,则x等于( ) A.4 B.-4

C.12 D.-6 解析:a+b=(-2,1,3+x),由(a+b)⊥c, 金太阳新课标资源网 wx.jtyjy.com 第 2 页 共 21 页 金太阳新课标资源网wx.jtyjy.com ∴(a+b)·c=0.∴-2-x+2(3+x)=0,得x=-4.

答案:B 4.若a=(1,λ,2),b=(2,-1,2),且a,b的夹角的余弦值为89,则λ等于( )

A.2 B.-2 C.-2或255 D.2或-255 解析:a·b=2-λ+4=6-λ=5+λ2×3×89.解得λ=-2或255. 答案:C 5.已知空间四边形ABCD每条边和对角线长都等于a,点E、F、G分别是AB、AD、DC的中点,则a2是下列哪个选项的计算结果( )

A.2BC→·CA→ B.2AD→·DB→ C.2FG→·AC→ D.2EF→·CB→ 解析:2BC→·CA→=-a2,A错;2AD→·DB→=-a2,B错;2EF→·CB→=

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 第三章 空间向量与立体几何(A) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.以下命题中,不正确的个数为( ) ①|a|-|b|=|a+b|是a,b共线的充要条件;②若a∥b,则存在唯一的实数λ,使a=λb;③若a·b=0,b·c=0,则a=c;④若{a,b,c}为空间的一个基底,则{a+b,b+c,c+a}构成空间的另一个基底; ⑤|(a·b)·c|=|a|·|b|·|c|.

A.2 B.3 C.4 D.5

2.直三棱柱ABC—A1B1C1中,若CA→=a,CB→=b,CC1→=c,则A1B→等于( ) A.a+b-c B.a-b+c C.-a+b+c D.-a+b-c 3.已知a=(2,4,5),b=(3,x,y),若a∥b,则( )

A.x=6,y=15 B.x=3,y=152

C.x=3,y=15 D.x=6,y=152 4.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).若|a|=3,且a分别与AB→,AC→垂直,则向量a为( )

A.(1,1,1) B.(-1,-1,-1) C.(1,1,1)或(-1,-1,-1) D.(1,-1,1)或(-1,1,-1)

5.已知A(-1,0,1),B(0,0,1),C(2,2,2),D(0,0,3),则sin〈AB→,CD→〉等于( ) A.-23 B.23 C.53 D.-53 6.在正三棱柱ABC—A1B1C1中,若AB=2BB1,则AB1与C1B所成角的大小为( ) A.60° B.90° C.105° D.75° 7.若平面α的法向量为n,直线l的方向向量为a,直线l与平面α的夹角为θ,则下列关系式成立的是( )

A.cos θ=n·a|n||a| B.cos θ=|n·a||n||a|

C.sin θ=n·a|n||a| D.sin θ=|n·a||n||a| 8.若三点A(1,-2,1),B(4,2,3),C(6,-1,4),则△ABC的形状是( ) A.不等边的锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形 9.若两个不同平面α,β的法向量分别为u=(1,2,-1),v=(-3,-6,3),则( ) A.α∥β B.α⊥β C.α,β相交但不垂直 D.以上均不正确

10.若两点A(x,5-x,2x-1),B(1,x+2,2-x),当|AB→|取最小值时,x的值等于( ) A.19 B.-87 C.87 D.1914 11. 2

如图所示,在四面体P—ABC中,PC⊥平面ABC,AB=BC=CA=PC,那么二面角B—AP—C的余弦值为( )

A.22 B.33

C.77 D.57 12.

如图所示,在直二面角D—AB—E中,四边形ABCD是边长为2的正方形,△AEB是等腰直角三角形,其中∠AEB=90°,则点D到平面ACE的距离为( )

A.33 B.233 C.3 D.23 题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案

二、填空题(本大题共4小题,每小题5分,共20分) 13.若a=(2,-3,5),b=(-3,1,-4),则|a-2b|=________. 14.如图所示, 3

已知正四面体ABCD中,AE=14AB,CF=14CD,则直线DE和BF所成角的余弦值为________. 15.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为________. 16.

如图所示,已知二面角α—l—β的平面角为θ θ∈0,π2,AB⊥BC,BC⊥CD,AB在平面β内,BC在l上,CD在平面α内,若AB=BC=CD=1,则AD的长为______. 三、解答题(本大题共6小题,共70分) 17.(10分)在直三棱柱ABC—A1B1C1中,AB1⊥BC1,CA1⊥BC1.求证:AB1=CA1. 4

18.(12分)已知四边形ABCD的顶点分别是A(3,-1,2),B(1,2,-1),C(-1,1,-3),D(3,-5,3). 求证:四边形ABCD是一个梯形.

19.(12分) 如图所示,四边形ABCD,ABEF都是平行四边形且不共面,M、N分别是AC、BF的中点,判断CEuuur与MNuuuur是否共线? 5

20.(12分) 6

如图所示,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD.

求证:C1C⊥BD.

21.(12分) 7 如图,在空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,求OA与BC所成角的余弦值. 8

22.(12分)

如图,在长方体ABCD—A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB∶AD∶AA1=1∶2∶4.

(1)求异面直线EF与A1D所成角的余弦值; (2)证明AF⊥平面A1ED; (3)求二面角A1—ED—F的正弦值.

第三章 空间向量与立体几何(A) 1.C [只有命题④正确.] 2. 9

D [如图,A1B→=AB→-AA1→=CB→-CA→-AA1→=CB→-CA→-CC1→=b-a-c.] 3.D [∵a∥b,∴存在实数λ,

使 3=2λx=4λy=5λ,∴ x=6y=152.] 4.C [设a=(x,y,z),∵AB→=(-2,-1,3), AC→=(1,-3,2),

又|a|=3,a⊥AB→,a⊥AC→,

∴ x2+y2+z2=3,-2x-y+3z=0,x-3y+2z=0.∴ x=1,y=1,z=1或 x=-1,y=-1,z=-1. ∴a=(1,1,1)或a=(-1,-1,-1).] 5.C [∵AB→=(1,0,0),CD→=(-2,-2,1),

∴cos〈AB→,CD→〉=ABCDABCD••uuuruuuruuuruuur=-23,

∴sin〈AB→,CD→〉=53.] 6.B [ 10

建立如图所示的空间直角坐标系,设BB1=1,则A(0,0,1),B162,22,0,C1(0,2,0), B

62,2

2,1.

∴AB1→=62,22,-1,C1B→=62,-22,1, ∴AB1→·C1B→=64-24-1=0, 即AB1与C1B所成角的大小为90°.] 7.D [若直线与平面所成的角为θ,直线的方向向量与该平面的法向量所成的角为β,

则θ=β-90°或θ=90°-β,cos β=n·a|n||a|,∴sin θ=|cos β|=|n·a||n||a|.]

8.A [AB→=(3,4,2),AC→=(5,1,3),BC→=(2,-3,1),AB→·AC→>0,得∠A为锐角;CA→·CB→>0,得∠C为锐角;BA→·BC→>0,得∠B为锐角,所以△ABC是锐角三角形且|AB→|=29,|AC→|=35,|BC→|=14.] 9.A [∵v=-3u,∴v∥u.故α∥β.]

10.C [AB→=(1-x,2x-3,-3x+3), 则|AB→|=1-x2+2x-32+-3x+32

=14x2-32x+19=14x-872+57.

故当x=87时,|AB→|取最小值.] 11.C [如图所示, 11

作BD⊥AP于D,作CE⊥AP于E,设AB=1,则易得CE=22,EP=22,PA=PB=2, 可以求得BD=144, ED=24.∵BC→=BD→+DE→+EC→,

∴BC→2=BD→2+DE→2+EC→2+2BD→·DE→+2DE→·EC→+2EC→·BD→. ∴EC→·BD→=-14,∴cos〈BD→,EC→〉=-77,

即二面角B—AP—C的余弦值为77.] 12.B [

建立如图所示的空间直角坐标系,则A(0,-1,0),E(1,0,0),D(0,-1,2),C(0,1,2). AD→=(0,0,2),AE→=(1,1,0),AC→=(0,2,2),设平面ACE的法向量n=(x,y,z), 12

则 即 x+y=0;2y+2z=0. 令y=1,∴n=(-1,1,-1). 故点D到平面ACE的距离

d==-23=233.]

13.258 解析 ∵a-2b=(8,-5,13), ∴|a-2b|=82+-52+132=258.

14.413 解析 因四面体ABCD是正四面体,顶点A在底面BCD内的射影为△BCD的垂心,所以有BC⊥DA,AB⊥CD.设正四面体的棱长为4,

则BF→·DE→=(BC→+CF→)·(DA→+AE→) =0+BC→·AE→+CF→·DA→+0 =4×1×cos 120°+1×4×cos 120°=-4, BF=DE=42+12-2×4×1×cos 60°=13,

所以异面直线DE与BF的夹角θ的余弦值为:

相关文档
最新文档