北师版九年级数学上册期末复习(最新)

合集下载

北师大版九年级(上册)数学期末重点复习练习试题

北师大版九年级(上册)数学期末重点复习练习试题

北师大版九年级(上册)数学期末重点复习练习试题1.如图;在菱形ABCD中;AB=5;∠BCD=120°;则△ABC的周长等于( )A.20 B.15 C.10 D.52.如图;菱形ABCD的周长为20 cm;且tan∠ABD=43;则菱形ABCD的面积为________cm2.3.已知矩形ABCD;AB=3 cm;AD=4 cm;过对角线BD的中点O作BD的垂直平分线EF;分别交AD;BC于点E;F;则AE的长为___cm.5.如图;已知菱形ABCD的对角线相交于点O;延长AB至点E;使BE=AB;连接CE.(1)求证:BD=EC;(2)若∠E=50°;求∠BAO的大小.6.一元二次方程x(x-2)=2-x的根是( )A.-1 B.2 C.1和2 D.-1和27.如果关于x的一元二次方程x2-6x+c=0(c是常数)没有实根;那么c的取值范围是__________.8.解方程:(x-3)2+4x(x-3)=0.9.某制药厂两年前生产1吨某种药品的成本是100万元;随着生产技术的进步;现在生产1吨这种药品的成本为81万元.则这种药品的成本的年平均下降率为____.10.云南地震牵动全国人民的心;某单位开展了“一方有难;八方支援”赈灾捐款活动;第一天收到捐款10000元;第三天收到捐款12 100元.如果第二天、第三天收到捐款的增长率相同;捐款增长率为 ;11.某县政府2013年投资0.5亿元用于保障性住房建设;计划到2015年投资保障性住房建设的资金为0.98亿元;如果从2013年到2015年投资此项目资金的年增长率相同;那么年增长率是( )A .30%B .40%C .50%D .10%12.若x 1;x 2是方程x 2+x -1=0的两个实数根;则x 21+x 2=__________.13.山西特产专卖店销售核桃;其进价为每千克40元;按每千克60元出售;平均每天可售出100千克.后来经过市场调查发现;单价每降低2元;则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2 240元;请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下;为尽可能让利于顾客;赢得市场;该店应按原售价的几折出售?14.如图;某中学准备在校园里利用围墙的一段;再砌三面墙;围成一个矩形花园ABCD (围墙MN 最长可利用25 m);现在已备足可以砌50 m 长的墙的材料;试设计一种砌法;使矩形花园的面积为300 m 2.15.袋子里有4个球;标有2;3;4;5;先抽取一个并记住;放回;然后再抽取一个;问抽取的两个球数字之和大于6的概率是( )34D. 58C. 712B.12A.16.一水库里有鲤鱼、鲫鱼、草鱼共2 000尾;小明通过多次捕捞试验;发现鲤鱼、草鱼的概率是51%和26%;则水库里有____尾鲫鱼.17.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片;甲袋中的三张卡片上所标有的三个数值为-7;-1;3.乙袋中的三张卡片所标的数值为-2;1;6.先从甲袋中随机取出一张卡片;用x 表示取出的卡片上的数值;再从乙袋中随机取出一张卡片;用y 表示取出卡片上的数值;把x 、y 分别作为点A 的横坐标和纵坐标.(1)用适当的方法写出点A (x ;y )的所有情况;(2)求点A 落在第三象限的概率.18.如图;已知△ADE 与△ABC 的相似比为1∶2;则△ADE 与△ABC 的面积比为( )A .1∶2 B.1∶4 C.2∶1 D.4∶119.如图;在矩形ABCD 中;AB =6;BC =8;沿直线MN 对折;使A ;C 重合;直线MN 交AC 于点O .(1)求证:△COM ∽△CBA ;(2)求线段OM 的长度.20.如图;在平行四边形ABCD 中;过点A 作AE ⊥BC ;垂足为点E ;连接DE ;点F 为线段DE 上一点;且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;的长.AE ;求34=AF ;36=AD ;8=AB 若(2)21.下图中几何体的俯视图是( )22.小华同学想到利用树影测校园内的树高;他在某一时刻测得小树高为1.5米;其影长为1.2米;当他测量教学楼旁的一棵树影长时;因大树靠近教学楼;有一部分影子在墙上;经测量;地面部分影长为6.4米;墙上影长为1.4米;那么这棵大树高约 米.23.如图;△DEF 是由△ABC 经过位似变换得到的;点O 是位似中心;D ;E ;F 分别是OA ;OB ;OC 的中点;则△D EF 与△ABC 的面积比是( )A .1︰2B .1︰4C .1︰5D .1︰624.如图;花丛中有一路灯杆AB .在灯光下;小明在D 点处的影长DE =3米;沿BD 方向行走到达G 点;DG =5米;这时小明的影长GH =5米.如果小明的身高为1.7米;求路灯杆AB 的高度.(精确到0.1米)25.反比例函数y =k x 的图象经过点(-2;32);则它的图象位于( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限26.反比例函数y =k x的图象经过点(1;-2);则k 的值为____.27.如图;点A 在双曲线y =k x上;AB ⊥x 轴于点B ;△ABO 的面积是2;则k = .28.如图所示;已知直线y 1=x +m 与x 轴;y 轴分别交于A ;B 两点;与反比例函数y 2=kx(k ≠0;x <0)交于C ;D 两点;且C 点的坐标为(-1;2).(1)分别求出直线AB 及反比例函数的表达式;(2)求出点D 的坐标;.2y >1y 在什么范围内取值时;x 利用图象直接写出:当(3)29.如图;一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A (-2;1);B (1;n )两点.(1)求反比例函数与一次函数的表达式;(2)根据图象写出当一次函数的值大于反比例函数的值时;x 的取值范围.30.已知:如图;反比例函数y =kx的图象与一次函数y =x +b 的图象交于点A(1;4);点B(-4;n).(1)求一次函数和反比例函数的表达式;(2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.。

北师大版九年级数学上册第一章:特殊的平行四边形期末复习课课件

北师大版九年级数学上册第一章:特殊的平行四边形期末复习课课件

(1)
(2)
3.如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E 处,点A落在点F处,折痕为MN,则线段CN的长度为______; MN= .
已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动 点(点D不与点B,C重合),以AD为边作正方形ADEF,连接CF. (1)如图①,当点D在线段BC上时.求证CF+CD=BC; (2)如图②,当点D在线段BC的延长线上时,其他条件不变,请直 接写出CF,BC,CD三条线段之间的关系; (3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在 直线BC的两侧,其他条件不变; ①请直接写出CF,BC,CD三条线段之间的关系; ②若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC.求 OC的长度.
总结:遇到直角和中点时,联想: 直角三角形斜边上的中线等于斜边的一半
D 12/5
总结:等腰三角形底边上任意一点到两腰距离之和等于腰上的高 直角三角形的斜边上的高等于 两直角边的积除以斜边 。
75 C 15°或75°
5
13.如图,△ABC是等腰直角三角形,∠BAC=90°,点P,Q分别是AB, AC上的动点,且满足BP=AQ,点D是BC的中点. (1)求证:△PDQ是等腰直角三角形; (2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.
特殊的平行四边形复习课
1.菱形具有而矩形不具有的性质是 ( B )
A.对角相等 B.四边相等 C.四角相等
D.对角线互相平分
2.矩形具有而一般平行四边形不具有的性质是( C )
A.对角相等
B.对边相等
C.对角线相等 D.对角线互相平分
3.(多选题)下列条件中,可以判定一个四边形是菱形的是(D, E )

最新北师大版九年级数学上册期末考试题含答案

最新北师大版九年级数学上册期末考试题含答案

最新北师大版九年级数学上册期末考试题含答案一.选择题(每题3分;共30分)1.在△ABC 中;∠C =90°;sinA =45;则tanB =( ) A .43 B .34 C .35 D .452.二次函数y =x 2的图象向左平移2个单位;得到新的图象的二次函数表达式是( ).A .22y x =+B .2(2)y x =+C .2(2)y x =-D .22y x =- 3.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交;则当0x < 时;该交点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是2,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子 ( ) A.1颗 B.2颗 C.3颗 D.4颗 5.抛物线221y x x =++的顶点坐标是( )A. (0,-1)B. (-1,1)C. (-1,0)D.(1,0) 6.如图;⊙O 的直径AB 的长为10;弦AC 长为6; ∠ACB 的平分线交⊙O 于D ;则CD 长为( ) A. 7 B. 72 C. 82 D. 9第6题图7. 抛物线c bx ax y ++=2图像如图所示;则一次函数24b ac bx y +--=与反比例函数 a b c y x++=在同一坐标系内的图像大致为( ).x x x x x第7题图8.如图;⊙O 的半径为2;点A 的坐标为(2;32);直线AB 为⊙O 的切线;B 为切点.则B 点的坐标为( ).A . ⎪⎪⎭⎫ ⎝⎛-5823, B . ()13,- C . ⎪⎭⎫⎝⎛-5954, D . ()31,-第8题图9.如图;边长为1的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''';则它们的公共部分的面积等于( ). A .313- B .314- C .12 D .3310.如图;已知梯形ABCO 的底边AO 在x 轴上;BC∥AO ;AB ⊥AO ;过点C 的双曲线ky x= 交OB 于D ;且OD :DB=1 :2;若△OBC 的面积等于3;则k 的值 等于 ( )A . 2B . 34C . 245D .无法确定二、填空题(每题3分;共24分) 11.函数31x y x -=+的自变量x 的取值范围是___________. 12.已知实数y x y x x y x +=-++则满足,033,2的最大值为 .13.若一个圆锥的侧面积是18π;侧面展开图是半圆;则该圆锥的底面圆半径是___________.14.如图;ABC ∆内接于O ;90,B AB BC ∠==;D 是O 上与点B 关于圆心O 成中心对称的点;P 是 BC 边上一点;连结AD DC AP 、、.已知8AB =;2CP =;Q 是线段AP 上一动点;连结BQ 并延长交 四边形ABCD 的一边于点R ;且满足AP BR =;则BQQR的值为_______________. xy O1 1BAA BC DB 'D 'C '第9题图O ABCDxy第10题图第14题图15.有一个正十二面体;12个面上分别写有1~12这12个整数;投掷这个正十二面体一次;向上一面的数字是3的倍数或4的倍数的概率是 . 16.如图;矩形ABCD 中;3AB =cm ;6AD =cm ;点E 为AB 边上的任意一点;四边形EFGB 也是矩形;且2EF BE =;则AFC S =△ 2cm .17. 如图;直角梯形ABCD 中;AD ∥BC ;AB ⊥BC ;AD = 2;将腰CD 以D 为中心逆时针旋转90°至DE ;连接AE 、CE ;△ADE 的面积为3;则BC 的长为 .18. 如图;扇形OAB ;∠AOB=90︒;⊙P 与OA 、OB 分别相切于点F 、E ;并且与弧AB 切于点C ;则扇形OAB 的面积与⊙P 的面积比是 .三、解答题:(46分) 19.(1)计算(3分):.118122sin 60tan 602(2)解方程(3分):222(1)160x x x x +++-=.ADCEF GB第16题图第15题图第17题图第18题图20.(6分)西安市某中学数学兴趣小组在开展“保护环境;爱护树木”的活动中;利用课外时间测量一棵古树的高;由于树的周围有水池;同学们在低于树基3.3米的一平坝内(如图11).测得树顶A的仰角∠ACB=60°;沿直线BC后退6米到点D;又测得树顶A的仰角∠ADB=45°.若测角仪DE高1.3米;求这棵树的高AM.(结果保留两位小数;3≈1.732)21. (9分) 如图;已知△ABC中;AB=BC;以AB为直径的⊙O交AC于点D;过D作DE⊥BC;垂足为E;连结OE;CD=3;∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB;OE的长;D O CA B E第20题图第21题图2l DEDE =4的切线;∴∠CG =tan 30DG=DE 3DE =。

北师大版九年级上学期期末学业教学质量监测数学试题(含答案)

北师大版九年级上学期期末学业教学质量监测数学试题(含答案)

第1页(共23页)北师大新版九年级上册数学期末复习试卷说明:1.本试卷分为第Ⅰ卷和第Ⅰ卷,满分为120分,考试时间90分钟.2.用黑色或蓝色钢笔或圆珠笔在答卷上作答.第Ⅰ卷一.选择题(本大题10小题,每小题3分,共30分)1.下列方程属于一元二次方程的是( )A .x 2+y ﹣2=0B .x +y =3C .x 2+2x =3D .x +x 1=52.已知3a =2b (a ≠0,b ≠0),下列变形错误的是( )A .32b a= B .32a b= C .23a b= D .3b2a=3.关于菱形,下列说法错误的是( )A .对角线互相平分B .对角线互相垂直C .四条边相等D .对角线相等4.在中ABC R △t 中,ⅠC = 90,若ⅠABC 的三边都缩小5倍,则A sin 的值( )A . 放大5倍B . 缩小5倍C . 不变D .无法确定5.关于x 的一元二次方程9x 2﹣6x +k =0有两个不相等的实根,则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥16.如图,已知Ⅰ1=Ⅰ2,那么添加下列一个条件后,仍无法判定ⅠABC ~ⅠADE 的是()A .DE BCAD AB = B .AE ACAD AB = C .ⅠB =ⅠD D .ⅠC =ⅠAED第2页(共23页)7. 如图,已知ABC R △t 中,斜边BC 上的高AD =3,B cos =53,则AC 的长为( ) A . 3 B . 3.5 C . 4.8 D . 58.四张完全相同的卡片上,分别画有菱形、矩形、等边三角形、等腰梯形,现从中随机抽取一张卡片上画的恰好是中心对称图形的概率为( )A .41B .21C .43 D .1 9.如下表给出了二次函数y =x 2+2x ﹣10中x ,y 的一些对应值,则可以估计一元二次方程y =x 2+2x ﹣10的一个近似解(精确到0.1)为( )A .2.2B . 2.3C . 2.4D . 2.510. 如图,点A 在反比例函数y 1=x 20(x >0)的图象上,过点A 作AB Ⅰx 轴,垂足为B ,交反比例函数y 2=x8的图象于点C ,P 为轴上一点,连接P A ,PC ,则ⅠAPC 的面积为( )A . 6B . 8C . 12D . 20第6题图 第7题图 第10题图 第Ⅰ卷二.填空题(本大题7小题,每小题4分,共28分)第3页(共23页)11.方程x 2=4x 的解是.12.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知ⅠAOD =120°,AB =2.5则AC 的长为。

九年级上册数学(北师版)期末复习资料

九年级上册数学(北师版)期末复习资料

北师版九年级上册数学期末总复习资料总结第一章 证明(二)※等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。

※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半。

※有一个角等于60º的等腰三角形是等边三角形。

※如果知道一个三角形为直角三角形首先要想的定理有:①勾股定理:222a b c +=(注意区分斜边与直角边)②在直角三角形中,如有一个内角等于30º,那么它所对的直角边等于斜边的一半③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现) ※垂直平分线是垂直于一条线段并且平分这条线段的直线。

(注意着重号的意义) <直线与射线有垂线,但无垂直平分线>※线段垂直平分线上的点到这一条线段两个端点距离相等。

※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。

(如图1所示,AO=BO=CO )※角平分线上的点到角两边的距离相等。

※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

角平分线是到角的两边距离相等的所有点的集合。

※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。

(如图2所示,OD=OE=OF)第二章 一元二次方程※只含有一个未知数的整式方程,且都可以化为20ax bx c ++=(a 、b 、c 为常数,a ≠0)的形式,这样的方程叫一元二次方程。

※把20ax bx c ++=(a 、b 、c 为常数,a ≠0)称为一元二次方程的一般形式,a 为二次项系数;b 为一次项系数;c 为常数项。

※解一元二次方程的方法:①配方法 <即将其变为2()0x m +=的形式>②公式法x = (注意在找abc 时须先把方程化为一般形式)③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。

北师大版2023-2024学年版数学九年级上册期末综合复习试题

北师大版2023-2024学年版数学九年级上册期末综合复习试题

2023—2024学年北师大版数学九年级上册 期末综合复习试题一、单选题1.如图的几何体是由四个大小相同的正方体组成的,它的俯视图是( )A .B .C .D .2.利用求根公式求5x 2+ =6x 的根时,其中a=5,则b 、c 的值分别是( )A . ,6B .6,C .﹣6,D .﹣6,﹣3.如图,的三个顶点分别为,,.若函数在第二象限内的图象与有交点,则的取值范围是( )A .B .C .D .4.如图,在矩形ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD的中点,连接GH ,若AB =6,BC =10,则GH 的长度为( )A .B .C .D .25.对于双曲线y= ,当x>0时,y随x的增大而减小,则m的取值范围为( )A.m>0B.m>1C.m<0D.m<16.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是( )A.108°B.72°C.90°D.100°7.若ad=bc,则下列不成立的是( )A.B.C.D.8.主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.如图,若舞台AB长20米,主持人从舞台一侧进人,设他至少走x米时恰好站在舞台的黄金分割点上(BP长为x),则x满足的方程是( )A.B.C.D.以上都不对9.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠1=25°,则∠2等于( )A.25°B.30°C.50°D.60°10.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为( )A.20B.24C.D.二、填空题11.若反比例函数y=的图象经过点(-1,2),则k的值是 .12.如图,边长为1的正方形ABCD的对角线AC、BD相交于点O,有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是 .⑴EF= OE;⑵S四边形OEBF:S正方形ABCD=1:4;⑶BE+BF= OA;⑷在旋转过程中,当△BEF与△COF的面积之和最大时,AE= .13.如图,为了测量一栋楼的高度,王青同学在她脚下放了一面镜子,然后向后退,直到她刚好在镜子里看到楼的顶部,如果王青身高1.55m,她估计自己眼睛距地面1.50m.同时量得LM=30cm,MS=2m,则这栋楼高 m.14.如图,在平面直角坐标系中,△ABC和△A1B1C1是以坐标原点O为位似中心的位似图形,且点B(5,1),B1(10,2),若△ABC的面积为m,则△A1B1C1的面积为 .15.如图,正方形ABCD的对角线上的两个动点M、N,满足,点P是BC的中点,连接AN、PM,若,则当的值最小时,线段AN的长度为 .三、计算题16.解下列方程:(1)x2+3x﹣2=0;(2)2(x﹣3)2=x2﹣9四、解答题17.一个容积为的正方体容器中装满水,现要将其中的水全部倒入到另一个长方体容器中,若长方体容器的长与宽相等且高是,则这个长方体容器的长与宽至少是多少?(结果精确到)18.小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图.小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在地上的影子高度,,(点A、E、C在同一直线上).已知小明的身高是1.7m.请你帮小明求出楼高.19.如图,在中,平分,.若,,,求的长.20.如图,以直角三角形的三边为边分别向外作三个正方形,其中的两个正方形面积为A=25平方厘米,C=169平方厘米,求B面积.21.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场每天要获得利润1200元,请计算出每件衬衫应降价多少元?22.一个箱子里有2个白球,1个红球,它们除颜色外其它都一样.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.(请画出树状图或列出表分析)23.如图,菱形ABCD中,E是对角线BD上的一点,连接EA、EC,求证:∠BAE=∠BCE.24.已知:如图,在中,,,垂足为,是外角的平分线,,垂足为,连接交于.(1)求证:四边形为矩形.(2)线段与有怎样的位置关系和数量关系,并说明理由.(3)当满足什么条件时,四边形是一个正方形?简述你的理由.。

北师大版初三数学九年级上册期末复习题及答案

北师大版初三数学九年级上册期末复习题及答案

北师大版初三数学九年级上册期末复习题及答案一、选择题1.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( ) A .30πcm 2B .15πcm 2C .152πcm 2 D .10πcm 22.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .123.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=4.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C .2D .22 5.函数y=(x+1)2-2的最小值是( )A .1B .-1C .2D .-26.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80°B .40°C .50°D .20°7.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .158.如图,在Rt ABC ∆中,90C CD AB ∠=︒⊥,,垂足为点D ,一直角三角板的直角顶点与点D 重合,这块三角板饶点D 旋转,两条直角边始终与AC BC 、边分别相交于G H 、,则在运动过程中,ADG ∆与CDH ∆的关系是( )A .一定相似B .一定全等C .不一定相似D .无法判断9.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70° 10.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2B .3C .4D .511.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .223312.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >> B .312y y y >=C .123y y y >>D .123y y y =>13.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个14.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1215.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.18.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.19.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.20.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____. 21.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.22.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.23.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).24.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.25.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m . 26.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____.27.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.28.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)29.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.30.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.三、解答题31.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.32.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率: (1)两辆车中恰有一辆车向左转; (2)两辆车行驶方向相同.33.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?34.已知关于x 的方程x 2-(m+3)x+m+1=0.(1)求证:不论m 为何值,方程都有两个不相等的实数根;(2)若方程一根为4,以此时方程两根为等腰三角形两边长,求此三角形的周长. 35.(问题呈现)阿基米德折弦定理:如图1,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,点M 是ABC 的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =DB +BA .下面是运用“截长法”证明CD =DB +BA 的部分证明过程.证明:如图2,在CD 上截取CG =AB ,连接MA 、MB 、MC 和MG . ∵M 是ABC 的中点, ∴MA =MC ① 又∵∠A =∠C ② ∴△MAB ≌△MCG ③ ∴MB =MG 又∵MD ⊥BC ∴BD =DG∴AB +BD =CG +DG 即CD =DB +BA根据证明过程,分别写出下列步骤的理由: ① , ② , ③ ;(理解运用)如图1,AB 、BC 是⊙O 的两条弦,AB =4,BC =6,点M 是ABC 的中点,MD ⊥BC 于点D ,则BD = ;(变式探究)如图3,若点M 是AC 的中点,(问题呈现)中的其他条件不变,判断CD 、DB 、BA 之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC 是⊙O 的直径,点A 圆上一定点,点D 圆上一动点,且满足∠DAC =45°,若AB =6,⊙O 的半径为5,求AD 长.四、压轴题36.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 37.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上;①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.38.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.39.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.40.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题解析:∵底面半径为3cm , ∴底面周长6πcm ∴圆锥的侧面积是12×6π×5=15π(cm 2), 故选B .2.B解析:B 【解析】试题解析:可能出现的结果的结果有1种, 则所求概率1.4P = 故选B.点睛:求概率可以用列表法或者画树状图的方法.3.D解析:D 【解析】 【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案. 【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=. 故选:D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.4.C解析:C【解析】【分析】如图,连接BD,根据圆周角定理可得BD为⊙O的直径,利用勾股定理求出BD的长,进而可得⊙O的半径的长.【详解】如图,连接BD,∵四边形ABCD是正方形,边长为2,∴BC=CD=2,∠BCD=90°,∴BD=2222+=22,∵正方形ABCD是⊙O的内接四边形,∴BD是⊙O的直径,∴⊙O的半径是1222⨯=2,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD是直径是解题关键.5.D解析:D【解析】【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.6.C解析:C【解析】∵∠BOC=2∠BAC ,∠BAC=40° ∴∠BOC=80°, ∵OB=OC ,∴∠OBC=∠OCB=(180°-80°)÷2=50° 故选C .7.D解析:D 【解析】 【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D . 【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.8.A解析:A 【解析】 【分析】根据已知条件可得出A DCB ∠∠=,ADG CDH ∠∠=,再结合三角形的内角和定理可得出AGD CHD ∠∠=,从而可判定两三角形一定相似. 【详解】解:由已知条件可得,ADC EDF CDB C 90∠∠∠∠====︒, ∵A ACD ACD DCH 90∠∠∠∠+=+=︒, ∴A DCH ∠∠=,∵ADG EDC EDC CDH 90∠∠∠∠+=+=︒, ∴ADG CDH ∠∠=, 继而可得出AGD CHD ∠∠=, ∴ADG ~CDH . 故选:A . 【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.9.A解析:A【解析】【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD的度数.【详解】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A.【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.10.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x=4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B.【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数. 11.C解析:C【解析】【分析】由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =23⨯=∴点H 的横坐标b =3,∴a +b =33=; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12.D解析:D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.13.C解析:C【解析】【分析】①③,根据已知把∠ABD ,∠CBD ,∠A 角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得BC=12AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得BC=12AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 14.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n =360°÷30°=12;故选:D .【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.15.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 二、填空题16.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C (2,-3),∴BC∥x 轴,而点A (1,-3)与C 、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.18.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.19.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴==−1±2,∵1x<0,∴1x=−1-2<0,∵-4≤-3,∴3222 -≤-≤-,∴-≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.20.720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019解析:720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=845.故答案为:720(1+x)2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).21.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴ 解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72= 故答案为:72. 【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.22.6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.23.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab <0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0), ∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.24.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案. 【详解】解:∵AD AB =AEAC ,AE =2,EC =6,AB =12, ∴12AD =226 , 解得:AD =3, 故答案为:3. 【点睛】本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.25.5 【解析】 【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题. 【详解】解:设举起手臂之后的身高为x 由题可得:1.7:0.85=x :1.1,解得x=2.2,解析:5 【解析】 【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题. 【详解】解:设举起手臂之后的身高为x 由题可得:1.7:0.85=x :1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m 【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.26.216°. 【解析】 【分析】 【详解】圆锥的底面周长为2π×3=6π(cm), 设圆锥侧面展开图的圆心角是n°,则=6π, 解得n=216. 故答案为216°. 【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5 180n⨯=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.27.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数解析:3k<【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,3k∴<.故答案为:3k<.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.28.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.29.16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A为上面小正方形边的中点,点B为小正方形与圆的交点,D为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD为等腰直角三角形,∵⊙O半径为,根据垂径定理得:∴OD=CD=522=5, 设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中, OA 2+AB 2=OB 2,即()()22215=522x x ⎛⎫++ ⎪⎝⎭,解得x=2,∴四个小正方形的面积和=242=16⨯. 故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.30.2+ 【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点解析:5【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD 35AB ,BC 35AB ,再根据CD=AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC =32x -,则CD =AB ﹣AD ﹣BC =x ﹣x =1,解得:x =故答案为:【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.三、解答题31.(1)6;(2)1m =. 【解析】 【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可.(2)根据一元二次方程根的判别式与根个数的关系,可得出b 2-4ac=0,列方程求解. 【详解】解:(1)()2012cos6020202π-⎛⎫++- ⎪⎝⎭︒12412=⨯++6=;(2)∵22210x x m ++-=有两个相等的实数根, ∴b 2-4ac=22-4(2m-1)=0, ∴m=1. 【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键. 32.(1)49;(2)13【解析】 【分析】此题可以采用列表法求解.可以得到一共有9种情况,两辆车中恰有一辆车向左转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可. 【详解】解:列表得:相同有3种情况(1)P (两辆车中恰有一辆车向左转)=49; (2)P (两辆车行驶方向相同)=3193=. 【点睛】列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.解题时注意看清题目的要求,要按要求解题.概率=所求情况数与总情况数之比.33.(1)该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)售价应降低3元 【解析】 【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意列出关于x 的一元二次方程,求解方程即可;(2)设售价应降低y 元,则每天售出(200+50y )千克,根据题意列出关于y 的一元二次方程,求解方程即可. 【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意得2100(1)196x +=解得10.440%x ==,2 2.4x =-(不合题意,舍去) 答:该基地这两年“早黑宝”种植面积的平均增长率为40%. (2)设售价应降低y 元,则每天可售出(20050)y +千克 根据题意,得(2012)(20050)1750y y --+=整理得,2430y y -+=,解得11y =,23y =∵要减少库存∴11y =不合题意,舍去,∴3y = 答:售价应降低3元. 【点睛】本题考查一元二次方程与销售的实际应用,明确售价、成本、销量和利润之间的关系,正确用一个量表示另外的量然后找到等量关系是列出方程的关键. 34.(1)见解析;(2)263。

(完整word)北师大版九年级数学上期期末复习试题

(完整word)北师大版九年级数学上期期末复习试题

九年级上册第一章《证明二》期末复习练习题一、选择题1. 如图1, 在Rt ΔABC 中, ∠ACB =90°BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E, 则CE 的长为( )A. B. C. D. 2图1 图2 图3 2. (2009年广西钦州)如图2, AC =AD, BC =BD, 则有( )A. AB 垂直平分CDB. CD 垂直平分ABC. AB 与CD 互相垂直平分D. CD 平分∠ACB3.(2009年济宁市)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图3, 是一“赵爽弦图”飞镖板, 其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是A. B. C. D.5.(2009恩施市)如图4, 长方体的长为15, 宽为10, 高为20, 点 离点 的距离为5, 一只蚂蚁如果要沿着长方体的表面从点 爬到点 , 需要爬行的最短距离是( )A. B. 25 C. D.6. (2009年宁波市)等腰直角三角形的一个底角的度数是( )A. 30°B. 45°C. 60°D. 90°7. (2009重庆綦江)如图5, 点A 的坐标是(2,2), 若点P 在x 轴上, 且△APO 是等腰三角形,则点P 的坐标不可能是( )A .(4, 0)B .(1.0)C .(-2 , 0)D .(2, 0) 图7图5图88. (2009威海)如图6, AB =AC,BD =BC, 若∠A =40°, 则∠ABD 的度数是( )A. B. C. D.9.(2009年温州)如图7, △ABC 中, AB =AC =6, BC =8, AE 平分∠BAC 交BC 于点E, 点D为AB 的中点, 连结DE, 则△BDE 的周长是( )A. 7+B. 10C. 4+2D. 1210.(2009年云南省)如图11, 等腰△ABC 的周长为21, 底边BC = 5, AB 的垂直平分线DE 交AB 于点D, 交AC 于点E, 则△BEC 的周长为( )A. 13B. 14C. 15D. 1611.(2009呼和浩特)在等腰 中, , 一边上的中线 将这个三角形的周长分为15和12两个部分, 则这个等腰三角形的底边长为( )A. 7B. 11C. 7或11D. 7或10ADB E C12.已知在 中, , 则 的值为( )A. B. C. D.13.观察下列图形, 则第 个图形中三角形的个数是( )A. B. C. D. 二、填空题1. (2009年重庆市江津区)等腰三角形一腰上的高与另一腰的夹角为30º,腰长为4 cm, 则其腰上的高为 cm.2. (2009年滨州)某楼梯的侧面视图如图2所示, 其中 米, , , 因某种活动要求铺设红色地毯, 则在AB 段楼梯所铺地毯的长度应为 .3. (2009年漳州)如图, 在菱形 中, , 、 分别是 、 的中点, 若 , 则菱形 的边长是_____________.4.如图, OP 平分 , , , 垂足分别为A, B .下列结论中不一定成立的是( )A. B. 平分 C. D. 垂直平分5. (2009年广州市)已知命题“如果一个平行四边形的两条对角线互相垂直, 那么这个平行四边形是菱形”, 写出它的逆命题: ________________________________三、解答题1. (2009年崇左)如图, 在等腰梯形ABCD 中, 已知AD//BC, AB =DC,AD =2,BC =4, 延长BC 到E, 使CE =AD.(1)证明: ΔBAD ≌ΔDCE ;(2)如果AC ⊥BD, 求等腰梯形ABCD 的高DF 的值.2. (2009年浙江省绍兴市)如图, 在 中, , 分别以 为边作两个等腰直角三角形 和 , 使.(1)求DBC 的度数;……第1个第2个 第3个 D AB EC F(2)求证: .3. 如图, 已知△ABC 为等边三角形, 点D.E 分别在BC.AC 边上, 且AE=CD,AD 与BE 相交于点F.(1)求证: ≌△CAD ;(2)求∠BFD 的度数.4.(2009年衡阳市)如图, △ABC 中, AB =AC, AD.AE 分别是∠BAC 和∠BAC 和外角的平分线, BE ⊥AE. (1)求证: DA ⊥AE ;(2)试判断AB 与DE 是否相等?并证明你的结论.5. 在△ABC 中, AB=AC, D 是BC 的中点, 连结AD, 在AD 的延长线上取一点E, 连结BE, CE.(1)求证: △ABE ≌△ACE(2)当AE 与AD 满足什么数量关系时, 四边形ABEC 是菱形? 并说明理由.A BC D E F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、养鸡场问题
如图7,衡水中学要在教学楼后面的空地上用40 米长的竹篱笆围出一个矩形地块作生物园, 矩形 的一边用教学楼的外墙,其余三边用竹篱笆. 设垂 直于墙的篱笆长为x,矩形的面积为y. (1) 求y与x的函数关系式,并求自变量x的取值范围; (2) 生物园的面积能否达到208平方米?说明理由.
位置.规则是:石头胜剪子,剪子胜布,布胜石
头,手势相同再决胜负.请你说明裁判员的这种
作法对甲、乙双方是否公平,为什么?(用列表
法解答)
七、相似三角形的证明题 1.如图,点P在平行四边形ABCD的CD边上,连结 BP并延长与AD的延长线交于点O. (1)求证:△DQP∽△CBP; (2)当△DQP≌△CBP,且AB=8时,求DP的长.
图5
2.如图 8,在四边形ABCD中,AB∥CD,点F在 BC上,连DF与AB的延长线交于点G. (1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交 AD于点E,若AB=6cm,EF=4cm,求CD的长. D C
E A B
F
G
图8
3.如图10所示,E是正方形ABCD的边AB上的动 点, EF⊥DE交BC于点F. (1)求证: △ADE∽△BEF; (2) 设正方形的边长为4, AE=x,BF=y.当x 取什么值时, y有最大值?并求出这个最大值.
八、特殊四边形的证明题
1.如图,在▱ABCD中,O为对角线BD的中点, 过点O的直线EF分别交AD,BC于E,F两点, 连结BE,DF. (1)求证:△DOE≌△BOF. (2)当∠DOE等于多少度时,四边形BFED为 菱形?请说明理由.
2.如图,在四边形ABFC中,∠ACB=90°, BC的垂直平分线EF交BC于点D,交AB与点 E,且CF=AE, (1)求证:四边形BECF是菱形; (2)若四边形BECF为正方形,求∠A的度 数.
3.如图9,中,点P是边上的一个动点,过P作直 线MN∥BC,设MN交∠BCA的平分线于点E, 交∠BCA的外角平分线于点F. (1)求证:PE=PF; (2)当点P在边上运动时,四边形BCFE可能 是菱形吗?说明理由;
4.如图,在Rt△ABC中,∠B=90°,AC=60, AB=30.D是AC上的动点,过D作DF⊥BC于F, 过F作FE∥AC,交AB于E.设CD=x,DF=y. (1)求y与x的函数关系式; (2)当四边形AEFD为菱形时,求x的值; (3)当△DEF是直角三角形时,求x的值.
中段复习(九年级上册)
一、反比例函数的定义
二、自变量的取值范围
三、根的判别式 以及
根与系数的关系
1.(2014•梅州)已知关于x的方程x2+ax+a-2=0. (1)若该方程的一个根为1,求a的值及该方程的 另一根; (2)求证:不论a取何实数,该方程都有两个不 相等的实数根.
2.已知关于x的一元二次方程x2-mx-2=0. (1)若x=-1是该方程的一个根,求m的值和方程的 另一根; (2)对于任意实数m,判断该方程的根的情况,并 说明理由. 3.已知关于x的一元二次方程x2-2x-a=0. (1)如果此方程有两个不相等的实数根,求a的 取值范围; (2)如果此方程的两个实数根为x1,x2,且满
1 1 2 ,求a的值. 足 x1 x2 3
4.已知关于x的方程x2+(m+2)x+2m-1=0. (1)求证:方程有两个不相等的实数根. (2)当m为何值时,方程的两根互为相反数? 并求出此时方程的解.
5.已知关于 x 的一元二次方程 x2-4x+m-1=0 有两
个相等的实数根,求m的值及方程的根.

人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
五、销售规律问题
某商场销售一批名牌衬衫,平均每天可售出20件, 每件盈利45元,为了扩大销售、增加盈利,尽快
减少库存,商场决定采取适当的降价措施,经调
查发现,如果每件衬衫每降价1元,商场平均每
天可多售出4件,若商场平均每天盈利2 100元,
每件衬衫应降价多少元?
六、游戏公平性问题
1.甲、乙两队进行拔河比赛,裁判员让两队队 长用“石头、剪子、布”的手势方式选择场地
相关文档
最新文档