2018年03月浙江省台州市学考选考温州市二模质检高中数学试题参考答案

合集下载

2018年03月浙江省台州市学考选考温州市二模质检高中英语高考试题参考答案

2018年03月浙江省台州市学考选考温州市二模质检高中英语高考试题参考答案

2018年3月份温州市普通高中高考适应性测试英语试题参考答案及评分标准第一部分听力(共20小题;每小题1.5分,满分30分)1—5 CBABA 6—10 ACABB 11—15 ABBCC 16—20 AACAB 第二部分阅读理解第一节(共10小题;每小题2.5分,满分25分)21—24 DBCA 25—27 BDD 28—30 BDA第二节(共5小题;每小题2分,满分10分)31—35 E C A G F第三部分语言运用第一节(共20小题;每小题1.5分,满分30分)36—40 ACDAB 41—45 CDABC 46—50 DADBC 51—55 AADBC三、One Possible Version:Dear Sir/Madam,The other day, I came across your Distance Learning Course when surfing the Internet. Interested in the English Writing Course, I’m writing to ask for more details.My first concern is when the course starts and how long it lasts. I also wonder what the course is actually about and how it is arranged. Besides, could you tell me what I should do if I decide to sign up?Looking forward to your earliest reply.Yours,Li Hua(80 words) 第二节概要写作(满分25分)一、评分原则1.本题总分为25分,按5个档次给分。

2.评分时,先根据所写概要的内容和语言初步确定其所属档次,然后以该档次的要求来衡量、确定或调整档次,最后给分。

温州市2018届高三3月适应性考试(二模)数学(扫描版含答案)(2018.03)

温州市2018届高三3月适应性考试(二模)数学(扫描版含答案)(2018.03)

3 ∴∠GFB=30°,BG= , 2
∵ ABC BCD 90 ,∴CD=1,∴ BH 2 3
∴ sin BHG
3 4
……………………15 分
2 2x × e - (4 x - 3) × 2e 2 x 20.解: (I) f ¢ ……3 分 ( x) = x (e 2 x ) 2 = 2 - 8x + 6 x e2 x × x 1 e2
第 3 页 共 5 页
∴当 k
625 14 时, | PR | | QR | 的最大值等于 ……………………15 分 144 6

3
……………………6 分
(Ⅱ)由(Ⅰ)知 f ( x) sin( ∴ B (0, ∵ C (
2 x ) 3 3
……………………8 分
1 3 ) 且 C ( , 0) ∴ BCO 60 2 2 1 , 0) 是 BD 的中点, 2 3 ) 2 3 19 4 2
D (1,
则: | PR | | QR | (1 k 2 )( x1 xR )( x2 xR )
2 (1 k 2 )[ x1 x2 xR ( x1 x2 ) xR ]
(1 k 2 )(4 2k 2
k2 ) ……………………………13 分 4
9 7 625 (k 2 ) 2 4 18 144
……………………10 分
AD 4
……………………11 分
19 AD 57 2 ∴ 2R sin ACD sin120 3
∴外接圆半径等于
57 6
…………………………14 分
19.解: (I)取 AD 中点 F,连 PF , BF ,

2018届浙江省温州市高三选考适应性测试(二模)数学试题(扫描版)

2018届浙江省温州市高三选考适应性测试(二模)数学试题(扫描版)

2018年3月份温州市普通高中高考适应性测试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号 1 2 3 4 5 6 7 8 9 10答案 C B B A D C A C C A二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.,1;12.1,1;13.,;14.,;15.;16.336种;17.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.解:(Ⅰ)∵是的重心,,∴,故函数的最小正周期为3,即,解得,……………………3分,∴……………………6分(Ⅱ)由(Ⅰ)知∴且∴……………………8分∵是的中点,……………………10分……………………11分∴∴外接圆半径等于…………………………14分19.解:(I)取中点F,连,∵是等边三角形,∴……………………2分又∵∴平面,∵平面,∴………………………4分∴…………………………6分(II)∵AD⊥平面PFB,ADÌ平面APD∴平面PFB⊥平面APD…………………………………8分作BG⊥PF交PF为G,则BG⊥平面APD,AD、BC交于H,∠BHG为直线与平面所成的角…………10分由题意得PF=BF=又∵BP=3∴∠GFB=30°,BG=,……………………12分∵,∴CD=1,∴∴……………………15分20.解:(I)……3分……………………4分切线方程为……………………………6分因为函数在处的切线与也相切…………………………7分(II)………………………………9分……………………………………………10分当,当,在上单调递增,在上单调递减……………13分∴……………………………………………………15分21.解:(I)∵,∴………………………………………………………………………2分联立:设,则…………………6分(II)设的方程为代入,得:∵,∴…………………………………9分由……………………………………………10分联立:,∴,……11分则:……………………………13分∴当时,的最大值等于……………………15分22.解:(I),两式相减得即,…………………………………………………2分得又由,得………………………………………………………………………4分(II)即为当时,,得且………………………6分下面证明当且时,对任意正整数都成立。

推荐-温州市高三第二次适应性测试数学(文科)试卷 精品

推荐-温州市高三第二次适应性测试数学(文科)试卷 精品

2018年温州市高三第二次适应性测试数学(文科)试卷 2018.4注意事项:本试卷分为第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共8页,满分为150分,考试时间为120分钟。

参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2 如果事件A 、B 相互独立,那么其中R 表示球的半径P (A •B )=P (A )•P (B )球的体积公式如果事件A 在一次试验中发生的概率是P , 那么n 次独立重复试验中恰好发生k 次的概率334R V π=k n k kn n P P C k P --⋅⋅=)1()(其中R 表示球的半径一、选择题:(本大题共10小题, 每小题5分, 共50分. 在每小题给出的四个选项中, 有且只有一项是符合题目要求的,请将答案填写在答卷纸上)1.0>x 是02>x 成立的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 2.已知3log 2=x ,则4x-= ( )3.抛物线x y 82=的焦点也是椭圆2221(0)4x y a a +=>的一个焦点,则=a ( ) A .22 B .32 C .4 D .524.已知{1,2,3},{1}A B A B ⋃=⋂=,则满足条件的集合A 的个数为 ( )A .2B .3C .4D .75.点O 是ΔABC 所在平面内一点,且满足OC OB OB OA ⋅=⋅,则点O 必在 ( )A .边AC 的垂直平分线上B .边AC 的中线所在的直线上 C .边AC 的高所在直线上D .ABC ∠的内角平分线所在的直线上A.3B .19C .9 D6.2018年底,某地区经济调查队对本地区居民收入情况进行抽样调查,抽取1000户,按 sin ,y =θθ|),-y x y x 内的动点,则动点(,)Q a b a b +-形成的平面区域的面积为 ▲ 。

浙江普通高中2018_2019学年度高三数学学考模拟卷(二)与参考答案

浙江普通高中2018_2019学年度高三数学学考模拟卷(二)与参考答案

浙江省普通高中数学学考模拟试卷(二) 2018-10班级: 姓名: 考生须知:1.本试题卷分选择题和非选择题两部分.共4页.满分100分.考试时间80分钟。

2.考生答题前.务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

3.选择题的答案须用2B 铅笔将答题纸上对应题目的答案标号涂黑.如要改动.须将原填涂处用橡皮擦净。

4.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上相应区域内.作图时可先使用2B 铅笔.确定后须用黑色字迹的签字笔或钢笔描黑.答案写在本试题卷上无效。

选择题部分一、选择题(本大题共18小题.每小题3分.共54分.每小题列出的四个选项中只有一个是符合题目要求的.不选、多选、错选均不得分)1.已知集合..那么集合中元素的个数是 A .2B .3C .4D .52.已知向量..则 A .5B .C .D .3.若..则 A .B .C .D . 4. A .B .C .D .5.下列函数中.最小正周期为的是 {3,2,1,0}P =---{|22}Q x x =∈-<<N P Q a )1,1(-=b =)2,3(-a b =5-2-2π),2π(∈α54)sin(π=-α=αcos 5353-54-51=-2)1001lg(4-41010-2πA .B .C .D .6.函数的定义域为A .B .C .D .7.直线与直线的距离为A .2B .C .D .8.设...则、、的大小关系为A .B .C .D .9.的内角、、的对边分别为、、...的面积为 A .BC . D10.实数、满足.则整点的个数为A .2B .3C .4D .511.函数的图象大致是A .B .C .D .x y sin 2018=x y 2018sin =x y 2cos -=)4π4sin(+=x y xx x f x242)(-+=]2,2[-]2,0()0,2[ -),2[]2,(+∞--∞ )2,0()0,2( -x y =02=+-y x 232224log 9a =13log 2b =41()2c -=a b c a c b <<c a b <<b a c <<b c a <<ABC △A B C a b c 1cos sin 2A B ==b =ABC △42x y ⎪⎩⎪⎨⎧<>+>+-2002x y x y x ),(y x 2||2()ex x f x -=12.如图.网格纸上小正方形的边长为1.粗线画出的是某多面体的三视图.则该几何体的体积为A.B .C .D .13.已知动直线过点.若圆上的点到直线的距离最大.则直线在轴上的截距是 A .2B .C .D .14.已知数列{}n a 的前n 项和为n S .且满足11a =.12n n n a a +=.则20S =A .1024B .1086C .2048D .306915.已知ABC Rt ∆的斜边AB 的长为4.设P 是以C 为圆心1为半径的圆上的任意一点.则⋅的取值范围是( )A. ]25,23[-B. ]25,25[- C. ]5,3[- D. ]321,321[+- 16.已知、.且.若恒成立.则实数的取值范围为A .B .C .D .17.已知平面截一球面得圆.过圆的圆心的平面与平面所成二面角的大小为83816316l )2,2(-A 04:22=-+y y x C l l y 21-3-30>x 0>y 211x y+=m m y x 822+>+m )91(,-)1,9(-]1,9[-),9()1(+∞--∞ αM M βα60°.平面截该球面得圆.若该球的表面积为.圆的面积为.则圆的半径为 A .2B .4CD18.已知、为椭圆的左、右焦点.过左焦点的直线交椭圆于、两点.若轴.且.则椭圆的离心率为A .B .CD非选择题部分二、填空题(本大题共4小题.每空3分.共15分)19.数列是各项为正且单调递增的等比数列.前项和为.是与的等差中项..则公比 ; .20.设函数.若.不等式的解集为 . 21.已知双曲线.过右焦点作倾斜角为的直线与双曲线的右支交于、两点.线段的中点为.若.则点的纵坐标为 .22.在三棱锥中.平面..若三棱锥外接球的半径是3..则的最大值是 .三、解答题(本大题共3小题.共31分.写出必要的解答步骤)23.(本小题满分10分)已知的内角、、所对的边分别为、、.βN 64πM 4πN 1F 2F 2222:1(0)x y C a b a b+=>>1F M N 2MF x ⊥14MN NF =-1312}{n a n n S 335a 2a 4a 4845=S =q =3a |||1|)(m x x x f ---=2=m 1)(≥x f 2214y x -=2F 4πl M N MN P ||OP =P P ABC -PA ⊥ABC PC AB ⊥P ABC -ABC ABP ACP S S S S =++△△△S ABC △A B C a b c.求角的大小;(Ⅱ)在(Ⅰ)的条件下.若向量与向量共线.且.求的周长.24.(本小题满分10分)已知点的坐标为..是抛物线上不同于原点的相异的两个动点.且.(Ⅰ)求抛物线的焦点坐标、准线方程; (Ⅱ)求证:点共线; (Ⅲ)若.当时.求动点的轨迹方程.25.(本小题满分11分)已知函数()f x 对12,x x ∀∈R 且12x x <有1221()()0f x f x x x ->-恒成立.函数(2017)f x -的图象关于点(2017,0)成中心对称图形. (1)判断函数()f x 在R 上的单调性、奇偶性.并说明理由; (2)解不等式2(1)02x f x +<-;(3)已知函数()f x 是ln y x =.1y x x =+.4y x =-中的某一个.令()22x x ag x =+.求函数()(())F x g f x =在(,2]-∞上的最小值.2cos sin 0A A A -=A m )sin ,1(C =n )sin ,2(B =3=a ABC △C ()1 0,A B 2y x =O 0OA OB ⋅= A C B ,,()AQ QB λλ=∈R 0OQ AB ⋅=Q参考答案:25、(2)由(1)知函数()f x是R上的奇函数.所以(0)0f=.所以不等式2(1)02xfx+<-等价于2(1)(0)2xf fx+<-.又因为()f x是R上的减函数.所以2102xx+>-.整理得(2)(2)(1)0x x x-+->.解得21x -<<或2x >.所以不等式2(1)02x f x +<-的解集为(2,1)(2,)-+∞.(6分)。

浙江普通高中2018-2019学年度高三数学学考模拟题及答案解析(二)(WORD版)

浙江普通高中2018-2019学年度高三数学学考模拟题及答案解析(二)(WORD版)

浙江普通高中2018-2019学年度高三数学学考模拟卷(二) 一、选择题(本大题共18小题,共54.0分)1. 已知集合P ={-3,-2,-1,0},Q ={x ∈N |-2<x <2},那么集合P ∪Q 中元素的个数是( ) A. 2 B. 3 C. 4D. 5 2. 已知向量a ⃗ =(-1,1),b ⃗ =(3,-2),则a ⃗ ⋅b ⃗ =( )A. 5B. −5C. −2D. 23. 若α∈(π2,π),sin (π-α)=45,则cosα=( )A. 35B. −35C. −45D. 154. lg (−1100)2=( )A. −4B. 4C. 10D. −105. 下列函数中,最小正周期为π2的是( )A. y =2018sinxB. y =sin2018xC. y =−cos2xD. y =sin(4x +π4)6. 函数f (x )=2x +√4−x 2x的定义域为( )A. [−2,2]B. [−2,0)∪(0,2]C. (−∞,−2]∪[2,+∞)D. (−2,0)∪(0,2) 7. 直线y =x 与直线x -y +2=0的距离为( )A. 2B. √32C. √2D. √228. 设a =log 49,b =log 132,c =(12)-4,则a 、b 、c 的大小关系为( ) A. a <c <b B. c <a <b C. b <a <cD. b <c <a9. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,cos A =sin B =12,b =√3,△ABC 的面积为( )A. 4B. 32√3C. 2D. √310. 实数x 、y 满足{x −y +2>0x +y >0x <2,则整点(x ,y )的个数为( )A. 2B. 3C. 4D. 511. 函数f (x )=x 2−2e |x|的图象大致是( )A.B.C.D.12. 如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的体积为( )A. 83 B. 8 C. 163 D. 1613. 已知动直线l 过点A (2,-2),若圆C :x 2+y 2-4y =0上的点到直线l 的距离最大.则直线l 在y 轴上的截距是( )A. 2B. −12C. −3D. 314. 已知数列{a n }的前n 项和为S n ,且满足a 1=1,a n a n +1=2n ,则S 20=( )A. 1024B. 1086C. 2048D. 3069 15. 已知Rt △ABC 的斜边AB 的长为4,设P 是以C 为圆心1为半径的圆上的任意一点,则PA ⃗⃗⃗⃗⃗ •PB ⃗⃗⃗⃗⃗ 的取值范围是( )A. [−32,52] B. [−52,52]C. [−3,5]D. [1−2√3,1+2√3]16. 已知x >0、y >0,且2x +1y =1,若2x +y >m 2+8m 恒成立,则实数m 的取值范围为( )A. (−1,9)B. (−9,1)C. [−9,1]D. (−∞,−1)∪(9,+∞)17. 已知平面α截一球面得圆M ,过圆M 的圆心的平面β与平面α所成二面角的大小为60°,平面β截该球面得圆N ,若该球的表面积为64π,圆M 的面积为4π,则圆N 的半径为( )A. 2B. 4C. √13D. √3218. 已知F 1、F 2为椭圆C :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,过左焦点F 1的直线交椭圆于M 、N 两点,若MF 2⊥x 轴,且MN ⃗⃗⃗⃗⃗⃗⃗ =-4NF 1⃗⃗⃗⃗⃗⃗⃗ ,则椭圆的离心率为( )A. 13B. 12C. √33 D. √53二、填空题(本大题共4小题,共15.0分)19. 数列{a n }是各项为正且单调递增的等比数列,前n 项和为S n ,53a 3是a 2与a 4的等差中项,S 5=484,则公比q =______;a 3=______.20. 设函数f (x )=|x -1|-|x -m |.若m =2,不等式f (x )≥1的解集为______.21. 已知双曲线x 24−y 2=1,过右焦点F 2作倾斜角为π4的直线l 与双曲线的右支交于M 、N 两点,线段MN 的中点为P ,则P 点的纵坐标为______.22. 在三棱锥P -ABC 中,PA ⊥平面ABC ,PC ⊥AB ,若三棱锥P -ABC 外接球的半径是3,S =S △ABC +S △ABP +S △ACP ,则S 的最大值是______. 三、解答题(本大题共3小题,共31.0分)23. 已知△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c .(Ⅰ)若√3sinAcosA -sin 2A =0,求角A 的大小;(Ⅱ)在(Ⅰ)的条件下,若向量m⃗⃗⃗ =(1,sin C )与向量n ⃗ =(2,sin B )共线,且a =3,求△ABC 的周长.24. 已知点C 的坐标为(1,0),A ,B 是抛物线y 2=x 上不同于原点O 的相异的两个动点,且OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =0. (1)求证:点A ,C ,B 共线;(2)若AQ ⃗⃗⃗⃗⃗ =λQB ⃗⃗⃗⃗⃗⃗ (λ∈R),当OQ ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0时,求动点Q 的轨迹方程.25. 已知函数f (x )对∀x 1,x 2∈R 且x 1<x 2有f(x 1)−f(x 2)x 2−x 1>0恒成立,函数f (x -2017)的图象关于点(2017,0)成中心对称图形.(1)判断函数f (x )在R 上的单调性、奇偶性,并说明理由; (2)解不等式f(x 2x−2+1)<0;(3)已知函数f (x )是y =ln x ,y =x +1x ,y =-4x 中的某一个,令g(x)=2x +a2x ,求函数F (x )=g (f (x ))在(-∞,2]上的最小值.答案和解析1.【答案】D【解析】解:∵集合P={-3,-2,-1,0},Q={x∈N|-2<x<2}={0,1},∴P∪Q={-3,-2,-1,0,1},∴集合P∪Q中元素的个数是5.故选:D.利用并集定义直接求解.本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】B【解析】解:已知向量=(-1,1),=(3,-2),由向量数量积运算可得:=(-1)×3+1×(-2)=-5,故选:B.由平面向量数量积的坐标运算得:=(-1)×3+1×(-2)=-5,得解本题考查了平面向量数量积的坐标运算,属简单题3.【答案】B【解析】解:若α∈(,π),sin(π-α)=,∴cos(π-α)==,则cosα=-cos(π-α)=-,故选:B.由条件利用诱导公式进行化简所给的式子,可得结果.本题主要考查利用诱导公式进行化简三角函数式,属于基础题.4.【答案】A【解析】解:lg()2=lg10-4=-4.故选:A.利用对数的性质、运算法则直接求解.本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.5.【答案】D【解析】解:函数y=2018sinx的最小正周期为2π,故A不对;函数y=sin2018x的最小正周期为=,故B不对,函数y=-cos2x的最小正周期为=π,故C不对;由于y=sin(4x+)的最小正周期为=,故D正确,故选:D.由题意利用三角函数的周期性,得出结论.本题主要考查三角函数的周期性,属于基础题.6.【答案】B【解析】解:要使f(x)有意义,则:;解得-2≤x≤2,且x≠0;∴f(x)的定义域为:[-2,0)∪(0,2].故选:B.可看出,要使得函数f(x)有意义,则需满足,解出x的范围即可.考查函数定义域的概念及求法,指数函数的定义域.7.【答案】C【解析】解:直线y=x,即x-y=0,它与直线x-y+2=0的距离为=,故选:C.由题意利用两条平行直线间的距离公式,求得结果.本题主要考查两条平行直线间的距离公式的应用,注意未知数的系数必需相同,属于基础题.8.【答案】C【解析】解:∵1=log44<log49<log416=2,∴1<a<2,∵=24=16,∴c=16,又因为b=<=0,∴b<a<c,故选:C.根据指数函数的性质判断即可.本题考查了指数函数和对数函数的性质,考查数的大小比较,是一道基础题.9.【答案】B【解析】解:cosA=sinB=,可得A=60°,B=30.那么:C=90°∵b=,则c=2,a=3△ABC的面积S=ba=故选:B.根据cosA=sinB=,求解A,B,结合正余弦定理即可求解本题考查了三角形的内角和定理和计算能力.属于基础题.10.【答案】C【解析】解:当x=1时,不等式组为,此时-1<y<3,此时y=0,1,3有3个整数点,当x=0时,不等式组为,此时0<y<2,此时y=1,有1个整数点,当x=-1时,不等式组为,此时无解综上所述,共有4个整数点,故选:C.作出不等式组对应的平面区域,分别进行讨论即可.本题主要考查二元一次不等式组表示平面区域,利用分类讨论的思想进行讨论是解决本题的关键.11.【答案】D【解析】解:函数f(x)=,可得f(-x)=f(x),可知f(x)是偶函数,排除A;e|x|>0,当x2-2=0时,即x=时,f(x)有两个零点,x=0时,可得f(0)=-2.;排除B;当x或x时,可得e|x|>x2-2,图象逐渐走低;故选:D.根据奇偶性和带入特殊点即可选出答案.本题考查了函数图象变换,是基础题.12.【答案】C【解析】解:由题意,几何体为正方体的一部分的三棱锥A=BCD,正方体的列出为4,所以几何体的体积为:=.故选:C.由题意,画出几何体的直观图,利用三视图的数据求解几何体的体积即可.本题考查三视图,考查学生的计算能力,确定几何体的形状是关键.13.【答案】C【解析】解:根据题意,圆C:x2+y2-4y=0,即x2+(y-2)2=4,圆心C(0,2),圆C:x2+y2-4y=0上的点到直线l的距离最大,则直线AC与直线l垂直,又由K AC==-2,则直线l的斜率为,又由直线直线l过点A(2,-2),此时直线l的方程为y+2=(x-1),即y=x-3,直线l在y轴上的截距是-3;故选:C.根据题意,分析圆C的圆心,分析可得当直线AC与直线l垂直,圆C:x2+y2-4y=0上的点到直线l的距离最大,求出直线AC的斜率,进而可得直线l的斜率,即可得直线l的方程,据此分析可得答案.本题考查直线与圆的位置关系,注意分析圆C到直线距离的最大的情况,属于基础题.14.【答案】D【解析】解:∵数列{a n}的前n项和为S n,且满足a1=1,a n a n+1=2n,∴当n=1时,a2=2,当n≥2时,,∴数列{a n}的奇数项和偶数项分别成等比数列,公比为2,∴S20=(a1+a3+…+a19)+(a2+a4+…+a20)=+=3069.故选:D.由a1=1,a n a n+1=2n,得当n=1时,a2=2,当n≥2时,,数列{a n}的奇数项和偶数项分别成等比数列,公比为2,利用等比数列的前n项和公式即可求出结果.本题考查数列的前20项和的求法,考查等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.15.【答案】C【解析】解:以CA为x轴,CB为y轴建立直角坐标系,设∠BAC=α,则A(4cosα,0),B(0,4sinα),P(cosθ,sinθ),∴=(4cosα-cosθ,-sinθ),=(-cosθ,4sinα-sinθ),∴=cosθ(cosθ-4cosα)+sinθ(sinθ-4sinα)=1-4cos(θ-α)∈[-3,5],∴)∈[-3,5].故选:C.以CA为x轴,CB为y轴建立直角坐标系,设∠BAC=α,则A(4cosα,0),B(0,4sinα),P(cosθ,sinθ),再代入计算即可.本题的关键在于设出∠BAC=α,然后用三角代换表示各点的坐标,这样使得问题容易表达并易于求解.16.【答案】B【解析】解:∵x>0,y>0,且=1,∴(2x+y)()=5++≥5+2=9,当且仅当x=3,y=3时取等号,∵2x+y>m2+8m恒成立,∴m2+8m<9,解得-9<m<1,故选:B.先把2x+y转化为(2x+y)()展开后利用基本不等式求得其最小值,然后根据2x+y>m2+8m恒成立求得m2+7m≤9,进而求得m的范围.本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力.17.【答案】C【解析】解:球的表面积为64π,可得球面的半径为4.∵圆M的面积为4π,∴圆M的半径为2.根据勾股定理可知OM=2,∵过圆心M且与α成60°二面角的平面β截该球面得圆N,∴∠OMN=30°,在直角三角形OMN中,ON=,∴圆N的半径为.故选:C.先求出圆M的半径,球面的半径,然后根据勾股定理求出求出OM的长,找出二面角的平面角,从而求出ON的长,最后利用垂径定理即可求出圆N的半径.本题考查二面角的平面角,以及解三角形知识,同时考查空间想象能力,分析问题解决问题的能力,属于中档题.18.【答案】C【解析】解:如图所示,∵MF2⊥x轴,∴M,设N(x0,y0).=(x0-c,y0-),=(-c-x0,-y0).∵=-4,∴(x0-c,y0-)=-4(-c-x0,-y0).∴x0-c=-4(-c-x0),y0-=4y0.∴x0=-,y0=-.∴N(-,-).代入椭圆方程可得:+=1,化为:a2=3c2,解得e=.故选:C.如图所示,由MF2⊥x轴,可得M,设N(x0,y0).根据=-4,利用向量相等解得N的坐标,代入椭圆方程即可得出.本题考查了椭圆的标准方程及其性质、向量坐标运算性质,考查了推理能力与计算能力,属于中档题.19.【答案】3 36【解析】解:由题意可得:q>1,∵是a2与a4的等差中项,S5=484,∴2×=a2+a4,即a1q2=a1(q+q3),484=,联立解得:a1=4,q=3.∴a3=4×32=36.故答案为:3,36.由题意可得:q>1,由是a2与a4的等差中项,S5=484,可得2×=a2+a4,即a1q2=a1(q+q3),484=,联立解得:a1,q.再利用通项公式即可得出.本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.20.【答案】{x|x≥2}【解析】解:m=2时,f(x)≥1⇔|x-1|-|x-2|≥1⇔或或,解得x≥2,故答案为{x|x≥2}分3段解不等式再相并.本题考查了绝对值不等式的解法,属中档题.21.【答案】√53【解析】解:双曲线=1,过右焦点F2(,0),倾斜角为的直线l的方程为y=x-,代入双曲线方程可得3x2-8x+24=0,设M(x1,y1),N(x2,y2),可得x1+x2=,MN的中点的横坐标为,纵坐标为-=.故答案为:.求得双曲线的右焦点和直线l的方程,代入双曲线方程,运用韦达定理和中点坐标公式,可得P的坐标.本题考查直线风吹荷双曲线方程联立,运用韦达定理和中点坐标公式,考查运算能力,属于基础题.22.【答案】18【解析】解:根据题意,PA⊥平面ABC,AB⊂平面ABC,AC⊂平面ABC∴AB⊥PA,AC⊥PA,又因为AB⊥PC,PC∩PA=P,所以AB⊥平面PAC,又因为AC⊂平面PAC,∴AB⊥AC,即AB,AC,PA两两垂直.将三棱锥还原为如图的长方体,设PA=a,AB=b,AC=c,则长方体的外接球即为原三棱锥的外接球,所以长方体的体对角线为外接球半径的二倍,即:=2×3=6,即a2+b2+c2=36.S=S△ABC+S△ABP+S△ACP=ab++bc=(ab+bc+ac )≤(++) =(a 2+b 2+c 2)=18,当且仅当a=b=c=2时取得等号.故填18. 根据题意,PA ,AB ,AC 两两垂直,将三棱锥还原为长,宽高分别为AC ,AB ,PA 的长方体,则三棱锥的外接球即为长方体的外接球,所以=2R=6,而S=S △ABC +S △ABP +S △ACP =(AB×BC+AB×AP+AC×AP ),然后利用基本不等式处理即可. 本题考查了三棱锥的外接球,题目中有三条侧棱两两垂直的三棱锥的外接球通常转化为截得该三棱锥的长方体的外接球来处理,本题属于中档题. 23.【答案】(本题满分为12分) 解:(Ⅰ)∵√3sinAcosA -sin 2A =0, ∴√32sin2A +12cos2A -12=0, ∴sin (2A +π6)=12,∵0<A <π,∴π6<2A +π6<13π6, ∴2A +π6=5π6,则A =π3…6分(Ⅱ)∵向量m⃗⃗⃗ =(1,sin C )与向量n ⃗ =(2,sin B )共线, ∴2sin C =sin B .由正弦定理得到:b =2c .由余弦定理得到:a 2=b 2+c 2-2bc cos A ,即9=4c 2+c 2-2×2c 2×12, 则解得:c =√3,∴b =2√3,∴△ABC 的周长为a +b +c =3+3√3.…12分【解析】(Ⅰ)由三角函数恒等变换的应用化简已知等式可得sin (2A+)=,结合A 的范围,可求角A 的大小;(Ⅱ)利用条件及两个向量共线的性质,正余弦定理来求b 、c 的值,进而得解三角形的周长.本题考查向量共线的坐标表示,考查二倍角公式和两角差的正弦公式的运用,考查正弦定理、余弦定理的运用,考查运算求解的能力,属于中档题.24.【答案】(1)证明:设A(t 12,t 1),B(t 22,t 2),(t 1≠t 2,t 1≠0,t 2≠0),则OA ⃗⃗⃗⃗⃗ =(t 12,t 1),OB ⃗⃗⃗⃗⃗⃗ (t 22,t 2),因为OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =0,∴t 12t 22+t 1t 2=0,又t 2≠0,t 1≠0,∴t 1t 2=-1, 因为AC ⃗⃗⃗⃗⃗ =(1−t 12,−t 1),BC ⃗⃗⃗⃗⃗ =(1−t 22,−t 2),且t 1(1−t 12)−t 2(1−t 22)=(t 1−t 2)−t 1t 12+t 2t 22=(t 1−t 2)(1+t 1t 2)=0,所以AC⃗⃗⃗⃗⃗ ∥BC ⃗⃗⃗⃗⃗ , 又AC ,CB 都过点C ,所以三点A ,B ,C 共线.(2)解:由题意知,点Q 是直角三角形AOB 斜边上的垂足,又定点C 在直线AB 上,∠CQO =90°,所以设动点Q (x ,y ),则OQ ⃗⃗⃗⃗⃗⃗ =(x ,y),CQ ⃗⃗⃗⃗⃗ =(x −1,y),又OQ ⃗⃗⃗⃗⃗⃗ ⋅CQ ⃗⃗⃗⃗⃗ =0,所以x (x -1)+y 2=0,即(x −12)2+y 2=14(x ≠0),动点Q 的轨迹方程为(x −12)2+y 2=14(x ≠0).【解析】(1)利用向量方法,证明,即可证明点A ,C ,B 共线; (2)若,当时,,即可求动点Q 的轨迹方程.本题考查轨迹方程,考查三点共线的证明,考查向量知识的运用,属于中档题.25.【答案】解:(1)∵对∀x 1,x 2∈R 且x 1<x 2有f(x 1)−f(x 2)x 2−x 1>0恒成立,∴对∀x 1,x 2∈R 且x 1<x 2时,有f (x 1)>f (x 2),∴函数f (x )在R 上的单调递减.∵函数f (x -2017)的图象关于点(2017,0)成中心对称图形,∴函数f (x )的图象关于点(0,0)成中心对称图形, ∴函数f (x )是奇函数.(2)由(1)得函数f (x )在R 上的单调递减.且f (0)=0∴不等式f(x 2x−2+1)<0⇔x 2x−2+1>0⇒x 2+x−2x−2>0⇒(x -2)(x -1)(x +2)>0⇒-2<x <<1或>>2∴不等式解集为:(-2,1)∪(2,+∞)(3)由(1)得f (x )=-4x函数F (x )=g (f (x ))=2-4x +a2−4x ,令2-4x =t ,在(-∞,2]上t ≥2-8函数G(t)=t+at在[2-8,0]递增,当a≤0时,G(t)=t+at∴函数F(x)=g(f(x))在(-∞,2]上的最小值为2-8+28a.≥2√a≥2-7,当a≥2-16时,G(t)=t+at∴函数F(x)=g(f(x))在(-∞,2]上的最小值为2-7.在(0,2-16]递减,当0<a≤2-16时,G(t)=t+at∴函数F(x)=g(f(x))在(-∞,2]上的最小值为2-16+216a.【解析】(1)可得对∀x1,x2∈R且x1<x2时,有f(x1)>f(x2),即函数f(x)在R上的单调递减.可得函数f(x)的图象关于点(0,0)成中心对称图形,即函数f(x)是奇函数.(2)由(1)得函数f(x)在R上的单调递减.且f(0)=0∴不等式⇔⇒,即可求解(3)由(1)得f(x)=-4x函数F(x)=g(f(x))=2-4x+,令2-4x=t,在(-∞,2]上t≥2-8函数G(t)=t+,分a≤0,a≥2-16,0<a≤2-16讨论本题考查导数的综合应用,考查函数的单调性,对称性及函数的奇偶性,考查点到直线的距离公式,考查计算能力,属于中档题.。

2018年浙江省普通高等学校全国招生统一考试数学模拟卷参考答案

2018年浙江省普通高等学校全国招生统一考试数学模拟卷参考答案


y12 2
1
y12

2

x12 2
,代入上式得 kPA kPB
1 2
(2)当直线 PQ 的斜率存在时,设其方程 y kx b , Q(x2, y2 )
y kx b
由 x2
4

y2 2
1
(1 2k 2 )x2
4kbx 2b2
4
0

x1
于 A、B 的两点,且 PBQ 90 .
(1)求 kPA kPB 的值; (2)求 BPQ 面积的最大值.
解析:(1)由题意知 A(2, 0), B(2, 0) ,设 P(x1, y1)
则 kPA
kPB

y1 x1 2
y1 x1 2

y12 x12 4
又因为点 P 在椭圆上,所以 x12 4
故 f (x)max max f (0), f (1) 1
又因为 f (x) 1 1 x 1 x 2 1 (x 1)2 7 7
48 8
88
由于等号不能同时取到,所以 f (x) 7 8
7
综上可知:

f
(x) 1
8
21.如图,已知椭圆 E : x2 y2 1 的左、右顶点分别为 A、B ,若 P、Q 为椭圆 E 上不同 42
所以 1 1 1 x 1 (1 1 x) 0
1 x 2
1 x
2
故 g'(x) 0
所以 g(x) 在区间[0,1] 单调递增,故 g(x) g(0) 0
所以 f (x) 1 1 x 1 x 2 48
(2)设 h(x) f '(x) 1 1 x 3 2 1 x 2 4

浙江省浙南、浙北部分学校2018届高三第二学期3月联考试卷(数学理)

浙江省浙南、浙北部分学校2018届高三第二学期3月联考试卷(数学理)

浙江省2018届浙南、浙北部分学校高三第二学期3月联考试卷理 科 数 学本试卷卷分选择题和非选择题两部分.满分150分,考试时间120分钟.参考公式:如果事件,互斥,那么 棱柱的体积公式如果事件,相互独立,那么其中表示棱柱的底面积,表示棱柱的高棱锥的体积公式如果事件在一次实验中发生的概率是,那么次独立重复实验中事件恰好发生次的概率其中表示棱锥的底面积,表示棱锥的高棱台的体积公式球的表面积公式球的体积公式其中分别表示棱台的上底、下底面积,其中表示球的半径表示棱台的高选择题部分<共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试卷卷上.b5E2RGbCAP 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.p1EanqFDPw 1.若复数z 与其共轭复数满足:DXDiTa9E3d 开始A.z2-2z+2=0 B.z2-2z-2=0C.2z2-2z+1=0 D.2z2-2z-1=02.已知,则的最小值为A.B.C.D.3.某程序框图如图所示,则该程序运行后输出的S的值为A.1 B.C. D.4.袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p.若A、B两个袋子中的球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率是,则p的值为RTCrpUDGiTA. B. C.D.5.下列四个条件:①,,均为直线;②,是直线,是平面;③是直线,,是平面;④,,均为平面. 其中能使命题“”成立的有5PCzVD7HxAA.4个 B.3个 C.2个D.1个6.设关于x的方程x2+2ax+b=0 有实数根,且两根均小于2,a≥2且|b| ≤4, 则下列说法正确的是jLBHrnAILgA.是的充要条件B.是的充分不必要条件C.是的必要不充分条件D.是的既不充分也不必要条件7.若不等式组表示的平面区域是三角形,则实数k的取值范围是A.B.或C.或 D.或8.已知为椭圆的左、右焦点,若为椭圆上一点,且的内切圆的周长等于,则满足条件的点的个数为A.4 B.2 C.1 D.0xHAQX74J0X9.现定义其中i为虚数单位,e为自然对数的底,,且实数指数幂的运算性质对都适用,若,,那么复数等于A.B.C.D.10.已知数列满足:,当且仅当n=3时最小,则实数a的取值范围为A .<-1,3)B .C .<2,4)D .非选择题部分<共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试卷卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题411.若某几何体的三视图 (单位:cm>几何体的体积是________cm3. 12.若的展开式中的系数为,则的值等于。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 2 22.解: (I) 2S n an an 2 , 2S n1 an 1 a n 1 2n 2
2
1 2
A(1,0) ,
1 2 1 f ( ) sin[ ( ) ] sin( ) 0 , 2 3 2 3


3 ,解得
2 ,……………………3 分 3


3
……………………6 分
(Ⅱ)由(Ⅰ)知 f ( x) sin(
2 x ) 3 3

(1 x )(1 x
当 x (0,1) , y 0 当 x (1, ) , y 0 y f ( x) g ( x) 在 (0,1) 上单调递增,在 (1, ) 上单调递减……………13 分 ∴ f max ( x) f (1)
1 1 ……………………………………………………15 分 e2 2
2
…………………6 分
(II)设 AB 的方程为 y kx b 代入 x 2 4 y ,得: x 4kx 4b 0 ∵ xB xA 16k 16b 4 ,∴ k 1 b
2
2
…………………………………9 分

y kx b 1 b k xR 2k 2 y kx 1
3 ∴∠GFB=30° ,BG= , 2
∵ ABC BCD 90 ,∴CD=1,∴ BH 2 3
∴ sin BHG
3 4
……………………15 分
2 2x ?e (4 x - 3) ?2e2 x 20.解: (I) f ¢ ……3 分 ( x) = x (e 2 x ) 2
=
11. a b ,1; 15. [
12.1,1;
13.
3 , 5 2 ; 2
14.
2 a 1 , 2n1 2 ; 3
3 , 0) ; 2
16.336 种;
17.
3 17 4
三、解答题:本大题共 5 小题,共 74 分.解答应写出文字说明、证明过程或演算步骤.
18.解: (Ⅰ)∵ O 是 ABD 的重心, C ( , 0) ,∴ 故函数 f ( x) 的最小正周期为 3,即
2 (1 k 2 )[ x1 x2 xR ( x1 x2 ) xR ]
k2 (1 k )(4 2k ) ……………………………13 分 4
2 2
9 7 625 (k 2 ) 2 4 18 144
∴当 k
625 14 时, | PR | | QR | 的最大值等于 ……………………15 分 144 6
∴外接圆半径等于
57 6
…………………………14 分
19.解: (I)取 AD 中点 F,连 PF , BF , ∵ ADP 是等边三角形,∴ PF AD 又∵ AD BP ∴ AD 平面 PFB , ∵ BF 平面 PFB ,∴ AD BF ………………………4 分 ……………………2 分
BD AB 2 ∴ BC 3 …………………………6 分
(II)∵AD⊥平面 PFB ,AD平面 APD ∴平面 PFB⊥平面 APD …………………………………8 分 作 BG⊥PF 交 PF 为 G,则 BG⊥平面 APD,AD、BC 交于 H,∠BHG 为直线 BC 与平面 ADP 所成的角 …………10 分 又∵BP=3 ……………………12 分 由题意得 PF=BF= 3
……………………8 分
∴ B(0,
1 3 ) 且 C ( , 0) ∴ BCO 60 2 2
1 2
∵ C ( , 0) 是 BD 的中点,
D(1,
3 ) 2
……………………10 分
AD 4
3 19 4 2
……………………11 分
19 AD 57 2 ∴ 2R sin ACD sin120 3
2018 年 3 月份温州市普通高中高考适应性测试
数学试题参考答案及评分标准
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是 符合题目要求的.
题号 答案
1 C
2 B
3 B
4 A
5 D
6 C
7 A
8 C
9 CΒιβλιοθήκη 10 A二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分.
(II) y f ( x) g ( x)
4 x 3 1 2 x x e2 x 2
y
2 8x 6 x x 1 x e2 x 2(1 x )(1 4 x ) (1 x )(1 x ) ………………………………9 分 x e2 x 28 x ) ……………………………………………10 分 x e2 x
21.解: (I)∵ A(0,0), B(4, 4) , ∴ k 1 ………………………………………………………………………2 分 联立:
y x 1 x2 4 x 4 0 2 x 4y
2
设 P( x1 , y1 ), Q( x2 , y2 ) ,则 | PQ | 1 k | x1 x2 | 8
2 - 8x + 6 x ……………………4 分 e2 x × x
1 \ k = f¢ (1) = 0, f (1) = 2 e 1 \ 切线方程为 y = 2 ……………………………6 分 e
因为函数 y = f ( x) 在 x = 1 处的切线与 y = g ( x) 也相切
a2 1 2 …………………………7 分 \ = 2 \ a =? 2 e e
……………………………………………10 分
联立:
y kx 1 x 2 4kx 4 0 ,∴ x1 x2 4k , x1 x2 4 ,……11 分 2 x 4 y
2
则: | PR | | QR | (1 k )( x1 xR )( x2 xR )
相关文档
最新文档