人教版八年级下册数学教案导学案及答案全册2

合集下载

人教版初二数学八年级下册教案导学案

人教版初二数学八年级下册教案导学案

人教版初二数学八年级下册教案导学案一、教学目标1. 知识与技能:- 熟练掌握平行线及其性质;- 掌握平行线与交错线的性质;- 能应用平行线性质解决问题。

2. 过程与方法:- 培养学生观察、发现和解决问题的能力;- 通过引入问题,激发学生学习数学的兴趣。

3. 情感态度价值观:- 培养学生严谨求实的科学态度;- 培养学生合作学习的意识。

二、教学重难点1. 重点:- 平行线及其性质的理解和应用;- 平行线与交错线的性质的理解和应用。

2. 难点:- 平行线与交错线的性质的应用。

三、教学准备- 教师:教案、导学案、课件、学生练习册- 学生:学习用具、练习册四、教学过程1. 导入(5分钟)- 引入平行线的概念:请同学们在笔记本上用直尺和铅笔画一个平行四边形,观察并描述它的特点。

2. 探究(30分钟)- 向学生提出以下问题:如果平行线与交错线相交,有什么特点?请同学们自行探究并记录下来。

3. 总结(10分钟)- 整理学生的探究结果,引出平行线与交错线的性质,并向学生讲解和确认。

4. 练习(15分钟)- 请同学们打开练习册,完成相关练习题。

5. 拓展(10分钟)- 提出一些与平行线性质相关的拓展问题,鼓励学生进行讨论和解答。

6. 小结(5分钟)- 对本节课所学内容进行小结,强调学习重点和难点。

五、作业- 完成练习册中相关练习题。

六、教学反思本节课通过提出问题和引导学生自主探究的方式,激发了学生的学习兴趣和主动性。

学生在观察和记录中逐渐理解了平行线与交错线的性质,并能够灵活应用于解决问题。

通过小组合作,培养了学生的合作学习和相互帮助的意识。

然而,在练习环节,部分学生存在理解上的困惑,需要进一步强化巩固。

在今后的教学中,我将更加注重练习环节的设计,以加深学生对知识的理解和熟练应用。

最新人教版八年级下册数学教案导学案及答案全册名师优秀教案

最新人教版八年级下册数学教案导学案及答案全册名师优秀教案

人教版八年级下册数学教案导学案及答案全册第十六章分式16(1分式16.1.1从分数到分式一、教学目标1( 了解分式、有理式的概念.2(理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1(重点:理解分式有意义的条件,分式的值为零的条件.2(难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入10s200v1(让学生填写P4[思考],学生自己依次填出:,,,.as7332(学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少,请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米/时.10060轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,20,v20,v10060所以=.20,v20,vsv100603. 以上的式子,,,,有什么共同点,它们与分数有什么相同点和不as20,v20,v同点,五、例题讲解P5例1. 当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗,这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0, 2m,1mm,2(1) (2) (3) m,1m,1m,312[分析] 分式的值为0时,必须同时满足两个条件:?分母不能为零;?分子为零,这((样求出的m的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1(判断下列各式哪些是整式,哪些是分式,m,4719,y8y,39x+4, , , , , 2xx,9205y2. 当x取何值时,下列分式有意义, x,52x,53 (1) (2) (3) 23,2xx,4x,23. 当x为何值时,分式的值为0, 2x,1x,77x2(1) (2) (3) x,x5x21,3x七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是,哪些是分式,(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.(3)x与y的差于4的商是 . 2x,12(当x取何值时,分式无意义, 3x,2x,13. 当x为何值时,分式的值为0, 2x,x八、答案:m,4719,y8y,3六、1.整式:9x+4, , 分式: , , 2xx,9205y32((1)x?-2 (2)x? (3)x??2 23((1)x=-7 (2)x=0 (3)x=-180x,yx,ys七、1(18x, ,a+b, ,; 整式:8x, a+b, ; x44a,bs80分式:, a,bx2 2( X = 3. x=-1 3课后反思:16.1.2分式的基本性质一、教学目标1(理解分式的基本性质.2(会用分式的基本性质将分式变形.二、重点、难点1(重点: 理解分式的基本性质.2(难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1(P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2(P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3(P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入15933(请同学们考虑: 与相等吗, 与相等吗,为什么, 1420248 315932(说出与之间变形的过程,与之间变形的过程,并说出变形依据, 420248 3(提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3(约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4(通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.,7m,x2m,6b,3x,,,,。

人教版数学八年级下册全套导学案(138页,pdf版 含答案)

人教版数学八年级下册全套导学案(138页,pdf版  含答案)
18.2.1.2矩形的判定 ………………………………………(69)
18.2.2菱形 …………………………………………………(74)
18.2.3正方形 ………………………………………………(79)
18.2.3.1正方形的性质………………………………………( 79 )
18.2.3.2正方形的判定………………………………………( 79 )
0‰=
l.fix fi Ó ,ffi= fiflÓ'(¢$ $?
C13
:C²3
:C33
:C43
1.
1x
:C13Ö
x2flÓ'($ $,‰¨≥0,Ø
{fi ,= fiƒ$ $.
². $ffi‰v%= fi?
C13
:C²3
:C33321:
C43
:C±3
a2(aŠ2):C63
ab(ab)
‰$%= fi $:.
3.µ"·
Dfia0
a(aŠ0)ª0 $fi.
,a$F,¼fla0:
Hfia0
u½%¦,
,a$F0$fi@{,¼fl
a(aŠ0)%~.
0.
:1."¤,aŠ0,"¤;2.C13C43C53;3.a¼$fi f,>,
C33~ flflfl^_`$fcf,cfiKPf$htCiƒ:s3flfl cf }KP ^hCiƒ:m3ofl.fi:h5t2.®$$r$h fiÇ$Ft, ‡tfi.
3. t:uvfiÇ ¾¼y½%:{$F~ }fiÇ$F
3.
~Ç:$~fiÇ$F~ $fi@{ :(a0).
¿$:~‰K,fi V® fiǪ =fi,aªfl{,“”ƒfi=ª.

新人教版八年级下册数学全册导学案

新人教版八年级下册数学全册导学案

目录学习目标学习目标学习目标$16.1二次根式(一)导学案$16.1二次根式(一)导学案$16.1二次根式(一)导学案$16.1二次根式(一)导学案$16.1二次根式(一)导学案$16.1二次根式(二)导学案$16.1二次根式(二)导学案$16.1二次根式(二)导学案$16.1二次根式(二)导学案)0,0()4()8(6416)3()5()5()2(22222<<<+-+-b a b a m m m$16.1二次根式(二)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(一)导学案$16.2二次根式的乘除(二)导学案$16.2二次根式的乘除(二)导学案$16.2二次根式的乘除(二)导学案b a b a =()0,0>≥b a$16.2二次根式的乘除(二)导学案$16.2二次根式的乘除(二)导学案$16.2二次根式的乘除(三)导学案$16.2二次根式的乘除(三)导学案$16.2二次根式的乘除(三)导学案$16.2二次根式的乘除(三)导学案$16.3二次根式的加减(一)导学案$16.3二次根式的加减(一)导学案$16.3二次根式的加减(一)导学案3($16.3二次根式的加减(一)导学案$16.3二次根式的加减(二)导学案$16.3二次根式的加减(二)导学案$16.3二次根式的加减(二)导学案$16.3二次根式的加减(二)导学案)22)(32(2+-$17.1勾股定理(一)导学案$17.1勾股定理(一)导学案上)二、答疑解惑我最棒(约8分钟)甲:乙:丙:丁:同伴互助答疑解惑 三、合作学习探索新知(约15分钟)1、小组合作分析问题2、小组合作答疑解惑3、师生合作解决问题◆关于直角三角形,你知道哪些方面的知识?(1)直角三角形叫Rt △(2)两锐角互余∠A+∠B=90°(3)三角形的面积s=21ab=21hc (4)30°所对的直角边等于斜边的一半(5)证明两个直角三角形全等有“HL”◆毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500•年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯$17.1勾股定理(一)导学案学习活动设计意图 却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突破恍然大悟的样子,站起来,大笑着跑回家去了.同学们,你想知道大哲学家发现了什么吗?(见课件)问题:大正方形的面积与两个小正方形的面积有什么关系?$17.1勾股定理(一)导学案学习活动设计意图◆在约公元前1100年,我国古算书《周髀bì算经》记载,人们已经知道,如果勾是三,股是四,那么弦是五.在我国古代,人们将直角三角形中的短的直角边叫做勾长的直角边叫做股斜边叫做弦.四、归纳总结巩固新知(约15分钟)1、知识点的归纳总结:(1)经过证明被确认正确的命题叫做定理(2)勾股定理:如果直角三角形两直角边分别为a、b,斜边为c,那么即 直角三角形两直角边 的平方和等于斜边的平方。

人教版八年级下数学全册导学案(表格式)【最新】

人教版八年级下数学全册导学案(表格式)【最新】

目录序号章节起始页码1 学习目标 22 16.1二次根式 53 16.2二次根式的乘除154 16.3二次根是的加减295 17.1勾股定理376 17.2勾股定理的逆定理537 18.1平行四边形638 18.2特殊的平行四边形899 19.1函数11 51 0 19.2一次函数1431 1 19.3课题学习选择方案1861 2 20.1数据的集中趋势1951 3 20.2数据的波动程度222备注学习目标第十六章二次根式备注1、了解二次根式、最简二次根式的概念,了解二次根式(根号1下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算第十七章勾股定理备注2、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

第十八章平行四边形备注3、理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性。

4、探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

5、了解两条平行线之间距离的意义,能度量两条平行线之间的距离。

6、探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。

正方形具有矩形和菱形的一切性质7、探索并证明三角形的中位线定理。

学习目标第十九章一次函数备注8、探索简单实例中的数量关系和变化规律,了解常量、变量的意义。

9、结合实例,了解函数的概念和三种表示法,能举出函数的实例。

10、能结合图像对简单实际问题中的函数关系进行分析11、能确定简单实际问题中函数自变量的取值范围,并会求出函数值。

12、能用适当的函数表示法刻画简单实际问题中变量之间的关系13、结合对函数关系的分析,能对变量的变化情况进行初步讨2论14、结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式15、会利用待定系数法确定一次函数的表达式。

人教版八年级数学下册全册导学案

人教版八年级数学下册全册导学案

第十六章 二次根式16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1(a ≥0)的意义解答具体题目. 2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________) (二)学生学习课本知识 (三)、探索新知1、知识:子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,“”称为 .例如:形如 、 、 是二次根式。

形如 、 、 不是二次根式。

2、应用举例例11xx>01x y+x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。

例2.当x 解:由 得: 当 时,(3)注意:1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。

二、学生小组交流解疑,教师点拨、拓展例3.当x 11x +在实数范围内有意义?例4(1)已知,求xy的值.(答案:2)(2),求a 2004+b 2004的值.(答案:25)三、巩固练习教材练习.四、课堂检测(1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式?1x(2)、填空题1.形如________的式子叫做二次根式.2.面积为5的正方形的边长为________.(3)、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.3.x有()个.A.0 B.1 C.2 D.无数4.已知a、b=b+4,求a、b的值.16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 课时: 2 学习内容:1a ≥0)是一个非负数; 22=a (a ≥0). 学习目标:1(a ≥02=a (a ≥0),并利用它进行计算和化简.2(a ≥0)是一个非负数,用具体数据结合算2=a (a ≥0);最后运用结论严谨解题. 教学过程 一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0叫什么?当a<0 (二)学生学习课本知识 (三)、探究新知1a ≥0)是一个 数。

人教版初中数学八年级下册全册导学案

人教版初中数学八年级下册全册导学案

人教版初中数学八年级下册全册导学案第十七章反比例函数课题 com 反比例函数的意义课时一课时学习目标理解并掌握反比例函数的概念会判断一个给定函数是否为反比例函数会根据已知条件用待定系数法求反比例函数的解析式重点难点重点理解反比例函数的意义确定反比例函数的表达式难点反比例函数的意义导学指导复习旧知什么是常量什么是变量函数是如何定义的我们学过哪几种函数每一种函数形式怎样写出下列问题中的函数关系式并说明是什么函数梯形的上底长是2下底长是4一腰长是6则梯形的周长y与另一腰长x之间的函数关系式某种文具单价为3元当购买m个这种文具时共花了y元则y与m的关系式学习新知阅读教材P39-P40相关内容思考讨论合作交流完成下列问题什么是反比例函数反比例函数的自变量可以取一切实数吗为什么仔细观察反比例函数的解析式y kx我们还可以把它写成什么形式3回忆我们学过的一次函数和正比例函数我们是用什么方法求它们的解析式的以此类推我们也可以采用同样的方法来求反比例函数的解析式课堂练习下列等式中y是x的反比例函数的是①y 4x ②yx 3 ③y 6x-1 ④xy 12 ⑤y 5x2 ⑥y x2⑦y -√2x⑧y -32x已知y是x的反比例函数当x 3时y 7写出y与x的函数关系式2当x 7时y等于多少要点归纳通过今天的学习你有哪些收获与同伴交流一下拓展训练1函数y m-4 x3-m是反比例函数则m的值是多少2若反比例函数y kx与一次函数y 2x-4的图象都过点Am2第二课时反比例函数的图象和性质的应用学习目标进一步理解和掌握反比例函数的图及其性质结合函数图象能利用待定系数法求函数关系式并能比较大小能灵活运用函数图象和性质解决一些较综合的问题重点难点重点灵活运用反比例函数的性质难点利用数形结合的思想比较大小及求函数关系式导学指导复习旧知1反比例函数y -2x的图象在第象限在每个象限中y随x的增大而 2已知反比例函数y mx的图象位于一三象限则m的取值范围是3已知点-31在双曲线y kx上则k4面积为4的三角形ABC一边长为x设这条边上的高为y则y与x的变化规律用图象表示大致为5已知y是x的反比例函数当x 3时y -21 写出y与x的函数关系式2求当x -2时y的值3课堂练习课题 172 实际问题与反比例函数课时四课时第一课时实际问题与反比例函数学习目标运用反比例函数的概念和性质解决实际问题利用反比例函数求出问题中的值重点难点重点运用反比例函数的意义和性质解决实际问题难点把实际问题转化为反比例函数这一数学模型导学指导复习旧知反比例函数的意义图象和性质已知y是x的反比例函数当x 3时y -5写出y与x的函数关系式求当y 23时x的值前面我们学习了反比例函数的意义图象及其性质今天我们将研究如何利用反比例函数来解决实际问题学习新知某校科技小组进行野外考察途中遇到一片十几米宽的烂泥湿地为了安全迅速通过湿地他们沿着前进路线铺垫了若干木板构筑成一条临时通道从而顺利完成了任务你能理解这样做的道理吗若人和木板对湿地地面的压力合计600牛那么如何用含S的代数式表示pp 是S的反比例函数吗为什么当木板面积为02m2时压强多大当压强是6000Pa时木板面积多大教材例1课堂练习1教材P54练习第1题2一个面积为42的长方形相邻两边长分别为x和y写出x与y的关系式并画出图象小红的解答y与x的函数关系式是y 42x画出的图象如下图所示小红的解答对吗为什么要点归纳今天你有什么收获还有什么疑惑与同伴交流一下拓展训练某商场出售一批进价为2元的贺卡在市场营销中发现此商品的日销售单价x 元与日销售量y 张之间有如下关系X 元 3 4 5 6 Y张第三课时实际问题与反比例函数学习目标掌握反比例函数在其他学科中的运用体验学科整合思想通过解决杠杆原理实际问题与反比例函数关系的探究能够从函数的观点来解决实际问题重点难点重点运用反比例函数的知识解决实际问题难点如何把实际问题转化成数学问题利用反比例函数的知识解决实际问题导学指导希腊科学家阿基米德发现杠杆定律后豪言壮志地说给我一个支点我能撬动这个地球杠杆定理若两个物体与支点的距离反比于其重量则杠杆平衡通俗点说阻力×阻力臂动力×动力臂学习新知自主学习教材P52例3讨论交流合作完成下列问题例3中相等关系是什么由此得到一个什么等式它是什么函数关系例3第2中至少是什么意思如何解决用反比例函数的知识解释我们在使用撬棍时为什么动力臂越长越省力希腊科学家阿基米德发现杠杆定律后说的撬动地球请同学们帮他计算一下假定地球的质量的近似值是6×1025牛顿即为阻力假设阿基米德有500牛顿的力量即为动力阻力臂为2000千米计算多长的动力臂才能把地球撬动 5.同学们还能否举出我们生活中经常碰到的具有杠杆定律的物理模型课堂练习教材P54习题172第4题教材P55习题172第5题要点归纳本节课你有哪些收获与同伴交流一下拓展训练教材P55习题172第7题第四课时实际问题与反比例函数学习目标体验现实生活与反比例函数的关系掌握反比例函数在其他学科中的运用体验学科整合思想通过解决电学中的问题与反比例函数关系的探究能够从函数的观点来解释生活中的一些规律重点难点重点运用反比例函数的知识解释生活中的一些规律和解决实际问题难点如何把实际问题转化为数学问题利用反比例函数的知识解决实际问题导学指导通过对教材P53内容的自主学习与同伴的合作交流后完成下列问题 1电学知识告诉我们用电器的输出功率P瓦两端的电压U伏及用电器的电阻R欧姆有如下关系PR U2这个关系也可以写成P 或R 说明P与R是函数关系2仔细研究例4后想一想为什么收音机的音量某些台灯的亮度以及电风扇的转速可以调节课堂练习要点归纳与同伴交流一下你今天的体会拓展训练为了预防疾病某单位对办公室采用药熏消毒法进行消毒已知药物燃烧时室内每立方米空气中的含药量y毫克与时间x分钟成正比例药物燃烧后y与x 成反比例如图现测得药物8分钟燃毕此时室内空气中每立方米的含药量6毫克请根据题中所提供的信息解答下列问题1药物燃烧时写出y与x的函数关系式自变量x的取值范围药物燃烧后写出y与x的函数关系式2研究表明当空气中每立方米的含药量低于16毫克时员工方可进办公室那么从消毒开始至少需要经过几分钟后员工才能回到办公室3研究表明当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时才能有效杀灭空气中的病菌那么此次消毒是否有效为什么本章小结一画出本章的知识结构图二本章的相关知识一反比例函数的意义二反比例函数的图象和性质三反比例函数的应用三做一做1函数y m-2 x3-m2是反比例函数时则m的值是多少2如图Rt△ABO的顶点A是双曲线y kx与直线y -x k1 在第四象限的交点AB⊥x轴于B且S△ABO 32 1 求这两个函数的解析式2求直线和双曲线的两个交点AC的坐标和△AOC的面积某水库蓄水160万立方米由于连降大雨水库的蓄水量达到了190万立方米为保证安全该区地防洪部门决定开闸放水使水库蓄水量回到160万立方米写出放水时间t天与放水量a万立方米天之间的函数关系如果每天放水6万立方米几天可以使水库的蓄水量回到160万立方米你吃过拉面吗实际上在做拉面的过程中渗透着数学知识一定体积的面团做成拉面面条的总长度一m第十八章勾股定理课题 181 勾股定理课时4课时第一课时勾股定理学习目标了解勾股定理的文化背景体验勾股定理的探索过程了解利用拼图验证勾股定理的方法利用勾股定理已知直角三角形的两边求第三边的长重点难点重点探索和体验勾股定理难点用拼图的方法验证勾股定理导学指导毕达哥拉斯是古希腊著名的数学家相传2500年以前他在朋友家做客时发现朋友家用地砖铺成的地面反映了直角三角形的某种特性是什么呢我们来研究一下吧阅读教材P64-P66内容思考讨论合作交流后完成下列问题请同学们观察一下教材P64图181-1中的等腰直角三角形有什么特点请用语言描述你发现的特点等腰直角三角形是特殊的直角三角形一般的直角三角形是否也满足这种特点你能解决教材P65的探究吗由此你得出什么结论我们如何证明你得出的结论呢你看懂我国古人赵爽的证法了吗动手摆一摆想一想画一画证一证吧课堂练习教材P69习题181第1题求下图字母AB所代表的正方形的面积3.在直角三角形ABC中∠C 90°若a 4c 8则b要点归纳本节课你学到了什么知识还存在什么困惑与同伴交流一下拓展训练1.直角三角形的两边长分别是3cm5cm试求第三边的长度2你能用下面这个图形证明勾股定理吗第二课时勾股定理的应用1学习目标能熟练的叙述勾股定理的内容能用勾股定理进行简单的计算运用勾股定理解决生活中的问题重点难点重点运用勾股定理进行简单的计算难点应用勾股定理解决简单的实际问题导学指导复习旧知什么是勾股定理它描述了直角三角形中的什么的关系求出下列直角三角形的未知边在Rt△ABC中∠C 90°已知ab 12c 5求a已知b 6∠A 30°求ac如下图长方形ABCD中长AB是4cm宽BC是3cm求AC的长学习新知先自主解决教材P66的探究1然后合作交流课堂练习教材P68练习第1题如图所示一个圆柱形铁桶的底面半径是12cm高为10cm若在其中隐藏一细铁棒问铁棒的长度最长不能超过多长通过本节课的学习你有哪些收获与同伴交流一下拓展训练有一根长70cm的木棒要放在长宽高分别是50cm40cm30cm的木箱中能否放进去第三课时勾股定理的应用2学习目标能运用勾股定理的数学模型解决现实世界的实际问题通过例题的分析与解决感受勾股定理在实际生活中的应用重点难点重点运用勾股定理解决实际问题难点勾股定理的灵活运用导学指导复习旧知1.由于台风的影响一棵树在地面上6米处折断树顶落在离树干底部8米处则这棵树在折断前不包括树根的高度是2.小民为准备新年元旦晚会布置拉花时搬来了一架高为25米的梯子靠在墙上已知梯子上端离地面24米则梯子离墙角的距离为3.如下图已知在△ABC中∠ACB 90°AB 5cmBC 3cmCD⊥BC于点D求CD 的长学习新知先自主探究教材P67探究2然后合作交流并完成教材上的问题教材P68练习第2题如下图图中三个正方形围成一个直角三角形三个正方形的面积分别是S1S2S3则S1S2S3三者之间的关系是com题要点归纳今天你有什么收获与同伴交流一下拓展训练1.某楼房三楼失火消防队员赶来救火了解到每层楼高3米消防队员取来65米长的云梯如果梯子的底部离墙基的水平距离时25米请问消防队员能否进入三楼灭火2如图以直角三角形的三边向外作等边三角形探究SS和S之间的关系〔总结反思〕第四课时勾股定理的应用3学习目标熟练地掌握勾股定理并能灵活的运用勾股定理解决数学中的实际问题能运用勾股定理在数轴上画出表示无理数的点进一步领会数形结合的思想重点难点重点运用勾股定理解决数学中的实际问题难点勾股定理的灵活运用导学指导复习旧知1勾股定理的内容2在Rt△ABC中∠ACB 90°已知a 2b 3则c 当c 13a 5则b 3实数包括和4数轴上的点和一一对应5在数轴上画出表示下列各数的点023-2-1学习新知自主探究教材P69探究3合作交流后完成教材上的问题课堂练习课题 182 勾股定理的逆定理课时二课时第一课时勾股定理的逆定理学习目标了解互逆命题和互逆定理的概念理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理掌握勾股定理的逆定理并能利用勾股定理的逆定理判定一个三角形是否为直角三角形重点难点重点勾股定理的逆定理及应用难点勾股定理的逆定理的证明导学指导复习旧知1勾股定理的内容2已知在Rt△ABC中∠C 90°abc是△ABC的三边则1已知a 3 b 4 求c2 已知a 25 b 6 求c3 已知a4 b 75 求c3思考分别以上述abc为边的三角形的形状是什么样的学习新知阅读教材P73-P74相关内容思考讨论合作交流后完成下列问题命题1和命题2的题设和结论分别是什么它们的题设和结论有什么联系你能否举出类似的例子原命题成立那么它的逆命题一定成立吗那么怎样才成立呢如何证明命题2成立证证看课堂练习教材P75练习第12题在△ABC中AB 3AC 4BC 5则∠ 90°写出下列定理的逆命题并判断它是否有逆定理如果两个角是直角那么它们相等对顶角相等要点归纳本节课你有什么收获与同伴交流一下拓展训练能够成为直角三角形三条边长的三个正整数我们称为勾股数观察下列表格给出的三个数abca b c345 3242 52 51213 52122 132 72425 72242 252 94041 92402 412 17bc 172b2 c21求出bc的值2写出你发现的规律第二课时勾股定理的逆定理的应用学习目标进一步理解勾股定理的逆定理能灵活运用勾股定理及逆定理解决实际问题进一步加深性质定理与判定定理之间的关系的认识重点难点重点灵活运用勾股定理及逆定理解决实际问题难点灵活运用勾股定理及逆定理解决实际问题导学指导复习旧知叙述勾股定理及逆定理在Rt△ABC中∠C 90°已知a 6 c 10 求b已知a 40 b 9 求c直角三角形两条直角边分别是3和4则斜边上的高是判断下列三角形是否是直角三角形a 3b 5c 6a 35b 45c 1a 3b 2√2c √17学习新知自主学习教材P75例2合作交流后完成下列问题如何画出示意图建立数学模型海天号轮船的航行方向会有几种可能课堂练习教材P76练习第3题如下图所示三个村庄ABC之间的距离分别是AB 5kmBC 12kmAC 13km要从B 修一条公路BD直达AC已知公路的造价2600万元km求修这条公路的最低造价是多少要点归纳谈谈你本节课的收获拓展训练已知如图四边形ABCD中∠B 90°AB 4BC 3AD 13CD 12求四边形ABCD的面积本章小结一画出本章知识结构图二本章相关知识1勾股定理2勾股定理的逆定理3互逆命题和互逆定理三做一做1如图在两面墙之间有一个底端在A点的梯子当它靠在一侧的墙上时梯子的顶端在B点当它靠在另一侧墙上时梯子的顶端在D点已知∠BAC 60°∠DAE 45°DE 3√2 m求BC的长度2若△ABC的三边abc满足a2b2c250 6a8b10c则△ABC的形状是什么3下列命题的逆命题正确的是A.如果两个角是直角那么它们相等 B全等三角形的对应角相等C.如果两个实数相等那么它们的平方也相等 D到角的两边距离相等的点在角的平方线上4直角三角形的两条边的长度分别是8和10试求第三边的长度有一个水池水面是一个边长为10米的正方形在水池的中央有一根芦苇它高出水面1米把芦苇的顶端拉向水池一边的中点芦苇和岸边的水面正好平齐则水的深度是多少如图将一张矩形纸片沿着AE折叠后D点恰好落在BC边上的F点上已知AB 8cmBC 10cm求EC的长度第十九章四边形课题 191 平行四边形课时四课时第一课时 com边形的性质学习目标理解平行四边形的定义及有关概念能根据定义探索并掌握平行四边形的对边相等对角相等的性质了解平行四边形在实际生活中的应用能根据平行四边形的性质进行简单的计算和证明重点难点重点平行四边形的概念和性质难点如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法即为什么要添加对角线导学指导现实世界中四边形也在装点着我们的生活宏伟的建筑物铺满地砖的地板别具一格的窗棂天空飞舞的风筝处处都有四边形的身影在小学我们已经学过一些特殊的四边形如长方形正方形平行四边形和梯形等这些特殊的四边形与我们的生活关系更为密切在章前图中你能找出它们吗在本章我们将进一步认识这些特殊的四边形分析它们的联系与区别探索并证明它们的性质及判定方法进一步提高分析问题解决问题的能力学习新知阅读教材P83-P84内容思考讨论合作交流后完成下列问题1什么叫做平行四边形如何表示一个平行四边形2四边形与平行四边形有怎样的从属关系你能举出生活中的平行四边形的例子吗3平行四边形有什么性质你能证明吗课堂练习教材P84练习第123题2如图在平行四边形ABCD中如果EF‖ADGH‖CDEF与GH相交于点O那么图中的平行四边形一共有A.4个 B5个 C8个 D9个3在平行四边形ABCD中AB的度数之比为54则∠C等于A.60°B80°C100°D120°要点归纳通过学习本节课你学到了哪些知识与同伴交流一下拓展训练已知任意三点ABC是否存在点D使ABCD围成一个平行四边形如果存在请你作出平行四边形如果不存在请说明理由第二课时平行四边形的性质2学习目标探索并掌握平行四边形的性质平行四边形的对角线互相平分会运用平行四边形的性质进行推理和计算重点难点重点平行四边形的对角线互相平分难点平行四边形性质的灵活运用及几何计算题的解题表达导学指导复习旧知平行四边形是如何定义的生活中有什么物体是平行四边形形状的前面我们学习了平行四边形的哪些性质我们是如何证明平行四边形的这些性质的学习新知自主学习教材P85-P86内容思考讨论合作交流后完成下列问题如下图所示平行四边形ABCD的对角线有什么特征请用文字语言叙述并用数学符号表示出来你能证明你叙述的对角线的特征吗你发现了吗平行四边形的问题都是如何解决的课堂练习教材P86练习第12题已知平行四边形ABCD的周长是48cmAB比BC长4cm那么这个四边形的各边长为多少在平行四边形ABCD中已知∠B∠D 140°求∠C的度数平行四边形ABCD的周长为60cm△AOB的周长比△COB的周长大8cm则AB BC要点归纳完成下列表格平行四边形的图形平行四边形的边平行四边形的角平行四边形的对角线解决平行四边形问题的常用辅助线是什么 3你还有哪些收获拓展训练如图田村有一口呈四边形的池塘在它的四个角ABCD处均种有一棵梨树田村准备开始挖池塘建养鱼池想使建后的鱼池面积为原来池塘面积的两倍又想保持梨树不动并要求建后的池塘成为平行四边形形状请问田村能否实现这一设想若能请你设计并画出图形若不能请说明理由画图保留痕迹不写画法第三课时 com 平行四边形的判定1学习目标运用类比的方法得出平行四边形的两个判定方法会运用这两个判定方法解决简单的问题重点难点要点归纳本节课你有哪些收获拓展训练如图已知点MN分别是平行四边形ABCD的边ABDC的中点求证四边形AMCN是平行四边形如图在平行四边形ABCD中EFGH分别是各边中点求证四边形EFGH是平行四边形第四课时 com 平行四边形的判定2学习目标掌握用一组对边平行且相等来判定平行四边形的方法理解和领会三角形三角形中位线定理及其应用会综合应用平行四边形的四种判定方法和性质来证明问题重点难点重点1平行四边形各种判定方法及其应用尤其是根据不同条件能正确地选择判定方法2理解并应用三角形中位线定理难点1平行四边形的判定定理与性质定理的综合应用2理解三角形中位线定理的推导感悟几何的思维方法导学指导复习旧知平行四边形的定义是什么平行四边形具有哪些性质平行四边形是如何判定的学习新知阅读教材P88-P90相关内容思考讨论合作交流后完成下列问题今天又有了一种判定平行四边形的方法是什么如何证明你看得懂例4吗它是如何思考解决问题的由例4我们知道了三角形的中位线的性质是什么什么是两条平行线间的距离我们还学过点与点之间的距离点到直线的距离它们有何联系与区别课堂练习要点归纳今天你有哪些收获与同伴交流一下拓展训练如图已知BECF分别为△ABC中∠B∠C的平方线AM⊥BE于MAN⊥CF于N 求证MN‖BC课题 192 特殊的平行四边形课时五课时第一课时 com 矩形的性质学习目标在四边形ABCD中∠ABC ∠ADC 90°E是AC的中点EF平分∠BED交BD于点F猜想EF与BD具有怎样的关系试证明你的猜想第二课时矩形的判定学习目标理解并掌握矩形的判定方法能应用矩形定义判定等知识解决简单的证明题和计算题进一步培养分析能力重点难点重点矩形的判定定理及推论难点定理的证明方法及运用导学指导复习旧知什么是平行四边形什么是矩形矩形有哪些性质你能猜想如何判定矩形吗学习新知阅读教材P95-P96相关内容思考讨论合作交流后完成下列问题利用矩形的定义可以判定一个平行四边形是矩形由此你发现什么还有哪些方法可以证明一个四边形是矩形如何证明试一试课堂练习教材P96练习第12题下列各句判定矩形的说法是否正确为什么有一个角是直角的四边形是矩形有四个角是直角的四边形是矩形四个角都相等的四边形是矩形对角线相等的四边形是矩形对角线相等且互相垂直的四边形是矩形对角线互相平分且相等的四边形是矩形对角线相等且有一个角是直角的四边形是矩形一组邻边垂直一组对边平行且相等的四边形是矩形两组对边分别平行且对角线相等的四边形是矩形要点归纳今天你有什么收获与同伴交流一下拓展训练已知如图平行四边形ABCD的四个内角的平分线分别相交于点EFGH 求证四边形EFGH是矩形第三课时 com 菱形的性质学习目标理解菱形的定义掌握菱形的特殊性质了解菱形在生活中的应用实例能根据菱形的性质解决简单的实际问题理解菱形的面积公式会选择适当的方法计算菱形的面积重点难点重点菱形的性质和应用。

人教版八年级数学下册导学案(全册)-精品推荐

人教版八年级数学下册导学案(全册)-精品推荐

第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。

理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。

(2)被开方数必须是 数。

判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。

(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。

巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。

2.若1213-+-x x 有意义,则x 的取值范围是 。

3.已知122+-+-=x x y ,则=yx4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(此文档为word格式,下载后您可任意编辑修改!)第十六章分式16.1分式16.1.1从分数到分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:,,,.2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米时.轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0?(1)(2) (3)[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4, ,, , ,2. 当x取何值时,下列分式有意义?(1)(2)(3)3. 当x为何值时,分式的值为0?(1)(2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米时,轮船的顺流速度是千米时,轮船的逆流速度是千米时.(3)x与y的差于4的商是 .2.当x取何值时,分式无意义?3. 当x为何值时,分式的值为0?八、答案:六、1.整式:9x+4, , 分式: , ,2.(1)x≠-2 (2)x≠(3)x≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ,; 整式:8x, a+b, ;分式:,2.X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.,,,,。

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.解: =, =, =, = , =。

六、随堂练习1.填空:(1) = (2) =(3) = (4) =2.约分:(1)(2)(3)(4)3.通分:(1)和(2)和(3)和(4)和4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) (2) (3) (4)七、课后练习1.判断下列约分是否正确:(1)= (2)=(3)=02.通分:(1)和(2)和3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1)(2)八、答案:六、1.(1)2x (2) 4b (3) bn+n (4)x+y2.(1)(2)(3)(4)-2(x-y)23.通分:(1)=, =(2)=, =(3)= =(4)= =4.(1) (2) (3) (4)课后反思:16.2分式的运算16.2.1分式的乘除(一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.二、重点、难点1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行运算 .三、例、习题的意图分析1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是,大拖拉机的工作效率是小拖拉机的工作效率的倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1<a2-2+1,即(a-1)2<a2-1.这一点要给学生讲清楚,才能分析清楚“丰收2号”单位面积产量高.(或用求差法比较两代数式的大小)四、课堂引入1.出示P13本节的引入的问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍.[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1.P14[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?类似分数的乘除法法则得到分式的乘除法法则的结论.五、例题讲解P14例1.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.P15例2.[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P15例.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是、,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1<a2-2+1,即(a-1)2<a2-1,可得出“丰收2号”单位面积产量高.六、随堂练习计算(1)(2)(3)(4)-8xy (5) (6)七、课后练习计算(1)(2)(3)(4)(5)(6)八、答案:六、(1)ab (2)(3)(4)-20x2 (5)(6)七、(1)(2)(3)(4)(5)(6)课后反思:16.2.1分式的乘除(二)一、教学目标:熟练地进行分式乘除法的混合运算.二、重点、难点1.重点:熟练地进行分式乘除法的混合运算.2.难点:熟练地进行分式乘除法的混合运算.三、例、习题的意图分析1. P17页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2, P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.四、课堂引入计算(1) (2)五、例题讲解(P17)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1)= (先把除法统一成乘法运算)= (判断运算的符号)= (约分到最简分式) (2) x x x x xx x --+⋅+÷+--3)2)(3()3(444622 =x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算) =x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22 (分子、分母中的多项式分解因式) =)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x =六、随堂练习计算(1) (2)103326423020)6(25b a c c ab b a c ÷-÷ (3) (4)22222)(x y x xy y xy x x xy -⋅+-÷- 七、课后练习计算(1) (2)(3) (4)八、答案:六.(1) (2) (3) (4)-y七. (1) (2) (3) (4)课后反思:16.2.1分式的乘除(三)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.三、例、习题的意图分析1. P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.四、课堂引入计算下列各题:(1)==() (2) ==()(3)==()[提问]由以上计算的结果你能推出(n为正整数)的结果吗?五、例题讲解(P17)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.六、随堂练习1.判断下列各式是否成立,并改正.(1)= (2)=(3)= (4)=2.计算(1) (2)(3)(4) 5)(6)七、课后练习计算(1) (2)(3) (4)八、答案:六、1. (1)不成立, = (2)不成立, =(3)不成立, = (4)不成立, =2. (1)(2)(3)(4)(5) (6)七、(1) (2) (3)(4)课后反思:16.2.2分式的加减(一)一、教学目标:(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.三、例、习题的意图分析1. P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2. P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, …, R n的关系为.若知道这个公式,就比较容易地用含有R1的式子表示R2,列出,下面的计算就是异分母的分式加法的运算了,得到,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂堂引入1.出示P18问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出的最简公分母是什么?你能说出最简公分母的确定方法吗?五、例题讲解(P20)例6.计算[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)2222223223y x y x y x y x y x y x --+-+--+[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式. 解:2222223223y x y x y x y x y x y x --+-+--+ =22)32()2()3(y x y x y x y x --++-+ ===(2)[分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.解: =)3)(3(6)3(2131-+-+-+-x x x x x ====六、随堂练习计算(1) (2)(3) (4)ba b a b a b a b a b a b a b a ---+-----+-87546563 七、课后练习计算(1) (2) (3) (4)22643461461x y x y x y x ----- 八、答案:四.(1) (2) (3) (4)1五.(1) (2) (3)1 (4)课后反思: 16.2.2分式的加减(二)一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算.二、重点、难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.三、例、习题的意图分析1. P21例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2. P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.五、例题讲解(P21)例8.计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算(1)x x x x x x x x -÷+----+4)44122(22 [分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边..解: x x x x x x x x -÷+----+4)44122(22 =)4(])2(1)2(2[2--⋅----+x x x x x x x =)4(])2()1()2()2)(2([22--⋅-----+x x x x x x x x x x ==(2)2224442y x x y x y x y x y y x x +÷--+⋅- [分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边. 解:2224442y x x y x y x y x y y x x +÷--+⋅- =22222224))((2xy x y x y x y x y x y y x x +⋅-+-+⋅- ===六、随堂练习计算(1) (2)(3))2122()41223(2+--÷-+-a a a a 七、课后练习1.计算(1) (2) 22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)2.计算,并求出当-1的值.八、答案:六、(1)2x (2) (3)3七、1.(1) (2) (3) 2.,-课后反思:16.2.3整数指数幂一、教学目标:1.知道负整数指数幂=(a≠0,n是正整数).2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.二、重点、难点1.重点:掌握整数指数幂的运算性质.2.难点:会用科学计数法表示小于1的数.三、例、习题的意图分析1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.2. P24观察是为了引出同底数的幂的乘法:,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3. P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.5.P25最后一段是介绍会用科学计数法表示小于1的数. 用科学计算法表示小于1的数,运用了负整数指数幂的知识. 用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.6.P26思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.7.P26例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数.四、课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法: (m,n是正整数);(2)幂的乘方: (m,n是正整数);(3)积的乘方: (n是正整数);(4)同底数的幂的除法: ( a≠0,m,n是正整数,m>n);(5)商的乘方: (n是正整数);2.回忆0指数幂的规定,即当a≠0时,.3.你还记得1纳米=10-9米,即1纳米=米吗?4.计算当a≠0时, ===,再假设正整数指数幂的运算性质 (a≠0,m,n是正整数,m >n)中的m>n这个条件去掉,那么==.于是得到=(a≠0),就规定负整数指数幂的运算性质:当n是正整数时, =(a≠0).五、例题讲解(P24)例9.计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P25)例10. 判断下列等式是否正确?[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例11.[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数.六、随堂练习1.填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= (5)2 -3= (6)(-2) -3=2.计算(1) (x3y-2)2(2)x2y-2²(x-2y)3 (3)(3x2y-2) 2÷(x-2y)3七、课后练习1. 用科学计数法表示下列各数:0.000 04, -0. 034, 0.000 000 45, 0. 003 0092.计算(1) (3³10-8)³(4³103) (2) (2³10-3)2÷(10-3)3八、答案:六、1.(1)-4 (2)4 (3)1 (4)1(5)(6)2.(1)(2)(3)七、1.(1)4³10-5 (2) 3.4³10-2(3)4.5³10-7(4)3.009³10-32.(1) 1.2³10-5(2)4³103课后反思:16.3分式方程(一)一、教学目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.二、重点、难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.三、例、习题的意图分析1. P31思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2.P32的归纳明确地总结了解分式方程的基本思路和做法.3.P33思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P33的归纳出检验增根的方法.4. P34讨论提出P33的归纳出检验增根的方法的理论根据是什么?5.教材P38习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数. 这种方程的解必须验根.四、课堂引入1.回忆一元一次方程的解法,并且解方程2.提出本章引言的问题:一艘轮船在静水中的最大航速为20千米时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米时,根据“两次航行所用时间相同”这一等量关系,得到方程.像这样分母中含未知数的方程叫做分式方程.五、例题讲解(P34)例1.解方程[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.(P34)例2.解方程[分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根.六、随堂练习解方程(1) (2)(3)(4)七、课后练习1.解方程(1) (2)(3) (4)2.X为何值时,代数式的值等于2?八、答案:六、(1)x=18 (2)原方程无解(3)x=1 (4)x=七、1.(1)x=3 (2) x=3 (3)原方程无解(4)x=1 2. x=课后反思:16.3分式方程(二)一、教学目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.二、重点、难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.三、例、习题的意图分析本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.P36例4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v千米时,提速前行驶的路程为s千米,完成. 用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s千米所用的时间,提速后列车的平均速度设为未知数x千米时,以及提速后列车行驶(x+50)千米所用的时间.这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力.四、例题讲解P35例3分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率³工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1P36例4分析:是一道行程问题的应用题, 基本关系是:速度=.这题用字母表示已知数(量).等量关系是:提速前所用的时间=提速后所用的时间五、随堂练习1. 学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.2. 一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?3. 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.六、课后练习1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快,结果于下午4时到达,求原计划行军的速度。

相关文档
最新文档