凸优化理论与应用_逼近与拟合共39页文档
凸优化理论

凸优化理论第一章凸集1、仿射集1.1、定义:任意以及都有;直观上,如果两点在仿射集内,那么通过任意两点的直线位于其内;1.2、仿射集的关联子空间:如果是仿射集,且,则集合是一个子空间(关于加法和数乘封闭),因此仿射集可以表示为一个子空间加上一个偏移,,可以是C中任意一点;定义C的维数为子空间V的维数(向量基的个数);1.3、线性方程组的解集:等价于仿射集且其关联的子空间是就是的的零空间即;1.4、仿射组合:如果,称为的仿射组合;如果是仿射集,,且,那么;集合C是仿射集集合包含其中任意点的仿射组合;1.5、仿射包:集合C中的点的所有仿射组合组成的集合记为C的仿射包,;仿射包是包含的最小的仿射集合;1.6、仿射维数:集合仿射维数为其仿射包维数, 即仿射包相关联子空间的维数,即是其子空间最大线性无关基;如果集合的仿射维数小于n ,那么这个集合在仿射集合中;1.7、集合相对内部:定义为的内部,记为,即;集合内部:由其内点构成,内点为;1.8、集合的相对边界:集合C的相对边界定义为,为C的闭包;集合C的边界定义为;------------------------------------------------------------------------------------------------------------------------------ 2.凸集:如果,,,都有;直观上,如果两点在凸集内,则两点间的线段也在凸集内;仿射集是凸集;2.1、凸组合:如果,,,称为的凸组合;点的凸组合可以看做他们的混合或加权平均,代表混合时所占的份数。
如果点在凸集内,则它们的凸组合仍在凸集内;C是凸集集合包含其中所有点的凸组合;2.2、集合的凸包:集合C中所有点的凸组合,;C的凸包是包含C的最小凸集;2.3、无穷级数的凸组合:假设,,,并且,,、、,为凸集,那么若下面的级数收敛,那么2.4、积分的凸组合:假设对所有满足,并且,其中为凸集,那么如果下面积分存在,则: ;2.5、概率的凸组合:假设x是随机变量,为凸集,并且的概率为,那么;---------------------------------------------------------------------------------------------------------------------------------- 3锥:如果对于任意和,都有,称集合C为锥;直观上如果点在锥中,那么以原点为端点过该点的射线在锥中;3.1、凸锥:集合C是锥,并且是凸的,则称C为凸锥,即对于任意,和,,都有直观上,如果两点在凸锥中,那么以原点为端点,以过两点的两条射线为边界的扇形面在凸锥中;3.2、锥组合:具有,形式的点称为的锥组合(或非负线性组合);如果均属于凸锥C,那么的每一个锥组合也在C中;集合C是凸锥它包含其元素的所有锥组合;3.3、锥包:集合C的锥包是C中所有元素的锥组合的集合;---------------------------------------------------------------------------------------------------------------------------------- 凸集的例子:空集、单点集、全集都是的仿射子集;线段是凸的,但不是仿射的;射线是凸的,不是仿射的,不是锥(除非端点是零点);直线是仿射的,自然是凸的;如果通过零点,则是锥,并且是凸锥;子空间是仿射的、凸锥(满足对加法、数乘封闭、含零元);超平面:,其中,且;,,在超平面上;闭的半空间:非平凡线性不等式的解空间,,半空间是凸的,但不是仿射的,也不是锥;半空间边界、内部:、;Euclid球:欧几里得球是凸集:;椭球:椭球是凸集:,对称正定矩阵,决定椭球从各个方向扩展的幅度;半轴长度有给出;正半定矩阵;若为奇异矩阵,椭球退化,即一些维度上半轴长为零,这时其仿射维数等于A的秩,退化的椭球也是凸的;范数球、范数锥:它们是凸集,范数锥:,;如二阶锥(二次锥);---------------------------------------------------------------------------------------------------------------------------------- 4.多面体:有限个线性等式和不等式的解集:,,;因此多面体是有限个半空间和超平面的交集;仿射集合(如子空间、超平面、直线)、射线、线段、半空间都是多面体;多面体是凸集;有界多面体也称为多胞形<=>有限集合的凸包;多面体可以表示为,,b、d为向量;4.1、单纯形(一种多面体):点描述法设k+1个点,,仿射独立,即,,,线性独立,那么这些点决定了一个单纯形:,,,,这个集合的仿射维数(它的仿射闭包的维数),即是,空间的维数,显然它的一个基就是,,,即集合的仿射维数为k;单纯形是凸集、并且是多面体,一般称k维单纯形(k+1个仿射独立点生成的凸包);4.2、常见的单纯形:1维单纯形是一条空间线段(1个基向量,2个空间点);2维单纯形是一个空间三角形(含其内部)(2个基向量,3个空间点);3维单纯形是一个四面体(3个基向量,4个空间点);4.3、单位单纯形:由零向量0和单位向量,,决定的n维单纯形,它可以表示为满足下列条件的向量的集合:;4.4、概率单纯形:由单位向量,,决定的n-1维单纯形,它是满足下列条件的向量集合:;概率单纯形中的每个向量对应于随机变量n个取值对应的一个概率分布,可理解为第i个元素的概率;4.5、单纯形的多面体描述法C是单纯形,充要条件是,对于某些,,有;,其中,,,,,,显然,B的秩为k;因此存在非奇异矩阵,使得,,,则: ,,,,,,,显然:且且且;这里A的选择与,,有关;4.6、多面体:凸包描述法有限集合,,的凸包是:,,,是一个有界多面体,但是无法用线性不等式和不等式的集合将其表示;凸包表达式的一个扩展:,,,其意义是,,的凸包加上,,的锥包,定义了一个多面体,反之每个多面体也都可以表示为此类形式;仿射集是凸集;多面体是凸集;仿射集是多面体;单纯形(特殊多面体)是凸集,可以给出线性等式和不等式表示;多面体(使用线性等式和不等式组定义)等价于凸包,无法给出线性等式和不等式表示;有限集的凸包是有界多面体,无法给出线性等式和不等式表示;5.保凸运算:用以从凸集构造出其他凸集;5.1、求交集:无穷多个凸集的交是凸集;5.2、仿射映射:,且,若S是凸的,那么是凸的;反之成立;伸缩、平移、投影是仿射映射;凸集的和、直积是凸的,凸集的投影是凸的,凸集的部分和是凸的;注意:,也是仿射函数;线性矩阵不等式的解:,是凸集;双曲锥:,是凸集;5.3、透视映射:,,定义域为,如果C是凸集,那么是凸集;反之成立;5.4、线性分式映射:是仿射的,其中并且,那么:,是线性分式(投射)函数, 定义域,P是透视函数;同样象与原象的凸性可以互推;线性分式映射的应用:条件概率,设u和v是分别在,,和,,中取值的随机变量,并且表示概率。
凸优化理论与应用_逼近与拟合

f (v j ) f (vk ) L v j vk , j , k 1,..., m
一阶微分约束
f (u)
x f ( u ) M i i i 1
n
二阶微分约束
mI 2 f (u ) MI
信息与通信工程学院 庄伯金 bjzhuang@ 29
1
信息与通信工程学院 庄伯金 bjzhuang@
19
信号复原
已知加噪信号:
xcor x v
信号复原问题的描述:
minimize(w.r.t. R ) 函数 ( x ) : R n R 为正则函数或光滑函数。
2
( x xcor 2 , ( x ))
其中 x0 zu 为方程组 Ax b 的解。
信息与通信工程学院 庄伯金 bjzhuang@
13
最小范数问题
最小平方范数问题:范数 2 ,最优解满足: 2 x* AT * 0, Ax* b
最小罚问题:
minimize
(x )
i 1 i
n
subject to Ax b
minimize
sup ( Ax b )
AI A
若 I A 为有限集,可转换为:
minimize t subject to Ai x b t , i 1,..., m
信息与通信工程学院 庄伯金 bjzhuang@
26
函数拟合
已知一函数族:
fi , i A
x* arg min Ax b n
*
xR
注:若 b R( A) ,则 u b 为平凡情况。
02凸优化理论与应用_凸函数

6
下水平集(sublevel set)
定义:集合
C { x dom f | f ( x ) }
称为 f 的 下水平集。
定理:凸函数的任一下水平集均为凸集。 任一下水平集均为凸集的函数不一定为凸函数。
信息与通信工程学院 庄伯金 bjzhuang@
7
函数上半图(epigraph)
定义:集合
epi f {( x , t ) | x dom f , f ( x ) t }
称为函数
f
的上半图。
f
定理:函数
为凸函数当且仅当
f
的上半图为凸集。
信息与通信工程学院 庄伯金 bjzhuang@
8
Jensen不等式
f
为凸函数,则有:
yC
凸函数的透视算子
g ( x , t ) tf ( x / t )
信息与通信工程学院 庄伯金 bjzhuang@
11
共轭函数(conjugate function)
定义:设函数 f : R 定义为
*
n
R
,其共轭函数 f : R
T
*
n
R
,
f ( y ) su p ( y x f ( x )).
n
为真锥,函数 f : R
n
R
称为 K 单调增,若函数 f ( x ) 满足:
x K y f (x) f ( y)
广义凸函数的定义:设K R 均有
m
为真锥,函数 f : R
n
R
m
称为 K 凸,若函数 f ( x ) 满足对 x , y dom f , 0 1
凸优化理论与应用

i0
i0
信息与通信工程学院 庄伯金
bjzhuang@
18
半正定锥(Positive semidefinite cone)
n阶对称矩阵集:
S n {X nn | X X T }
n阶半正定矩阵集:
S
n
{X
S
n
|
ቤተ መጻሕፍቲ ባይዱ
X
0}
n阶正定矩阵集:
Sn
{X
Sn
|
n阶半正定矩阵集为
展函数 f : n {} 为
扩展函数
f
(x)
f
(x)
信息与通信工程学院 庄伯金
bjzhuang@
x domf x domf
也是凸函 数!
34
凸函数的一阶微分条件
若函数 f 的定义域 domf为开集,且函数 f 一阶可微, 则函数 f 为凸函数当且仅当 domf 为凸集,且对 x, y domf
21
真锥(proper cone)
真锥的定义:锥 K Rn 满足如下条件 1.K为凸集;
2.K为闭集;
K具有内点
3.K非中空;
4.K有端点。
K内不含直线
信息与通信工程学院 庄伯金
bjzhuang@
22
广义不等式
真锥 K下的偏序关系:
x K y y x K
广义不等式
凸优化问题理论上有 有效的方法进行求解!
3
本课程的主要内容
理论部分
凸集和凸函数 凸优化问题 对偶问题
应用部分
逼近与拟合 统计估计 几何问题
算法部分
非约束优化方法 等式约束优化方法 内点法
信息与通信工程学院 庄伯金
bjzhuang@
数学中的凸优化与凸分析

数学中的凸优化与凸分析凸优化和凸分析是数学中重要的分支领域,它们在诸多应用领域都有着广泛的应用。
本文将介绍凸优化和凸分析的基本概念、性质以及它们在实际问题中的应用。
一、凸集与凸函数在进一步探讨凸优化和凸分析之前,我们先来了解一些基本概念。
首先是凸集和凸函数。
1. 凸集凸集是指集合中任意两点的连线上的点都属于该集合。
具体地,对于任意$x, y$属于集合$C$和$0\leq\lambda\leq 1$,满足$\lambda x+(1-\lambda)y$也属于$C$,则$C$是一个凸集。
2. 凸函数凸函数是定义在凸集上的实值函数,满足对于集合内的任意$x,y$和$0\leq\lambda\leq 1$,有$f(\lambda x+(1-\lambda)y)\leq \lambdaf(x)+(1-\lambda)f(y)$。
简单来说,凸函数的任意两点的连线上的函数值都不超过连线两端的函数值。
二、凸优化凸优化是指优化问题的目标函数是凸函数,约束条件是凸集的优化问题。
凸优化问题有着许多重要的性质和算法。
1. 凸优化问题的一般形式凸优化问题的一般形式可以表示为:$$\begin{align*}\text{minimize}\quad &f(x)\\\text{subject to}\quad &x\in C\end{align*}$$其中,$f(x)$是凸函数,$C$是凸集。
2. 凸优化问题的性质凸优化问题具有以下性质:(1)全局最优解是局部最优解。
这意味着在凸优化问题中,存在一个全局最优解,同时该最优解也是局部最优解。
(2)凸优化问题无局部最优解和全局最优解之间的鞍点。
凸优化问题不存在鞍点,因此可以通过寻找局部最优解来获得全局最优解。
3. 典型凸优化问题凸优化问题在实践中有着广泛的应用,以下是一些典型的凸优化问题:(1)线性规划问题(Linear Programming,简称LP)$$\begin{align*}\text{minimize}\quad &c^Tx\\\text{subject to}\quad &Ax\leq b\\&x\geq 0\end{align*}$$(2)二次规划问题(Quadratic Programming,简称QP)$$\begin{align*}\text{minimize}\quad &\frac{1}{2}x^TPx+q^Tx+r\\\text{subject to}\quad &Gx\leq h\\&Ax=b\end{align*}$$(3)半正定规划问题(Semidefinite Programming,简称SDP)$$\begin{align*}\text{minimize}\quad &\langle C,X\rangle\\\text{subject to}\quad &\langle A_i,X\rangle=b_i,\quad i=1,\ldots,m\\&X\succeq 0\end{align*}$$三、凸分析凸分析是研究凸集和凸函数性质的数学分支,它主要研究凸集的性质以及凸函数的导数和二阶导数。
凸优化理论与应用_凸函数

25
共轭函数 具有凸性!
13
共轭函数的性质
Fenchel’s inequality
f ( x) f * ( y) yT x.
性质:若 f ( x )为凸函数,且 f ( x ) 的上半图是闭集,则有
f ** f .
n z R 性质:设 f ( x ) 为凸函数,且可微,对于 ,若 y f ( z )
若 f ( x ) 为准凸函数,根据 f ( x ) 的任意 t 下水平集,我们 可以构造一个凸函数族 t ( x),使得
f ( x) t t ( x) 0
例:
f ( x) t 0 t ( x) . otherwise
性质:若 t ( x) 为准凸函数 f ( x ) 的凸函数族表示,对每一 个 x domf ,若 s t ,则有
7
函数上半图(epigraph)
定义:集合
epif {( x, t ) | x domf , f ( x) t}
称为函数 f 的上半图。
定理:函数 f 为凸函数当且仅当 f 的上半图为凸集。
信息与通信工程学院 庄伯金 bjzhuang@
8
Jensen不等式
凸函数的一阶微分条件
若函数 f 的定义域 domf 为开集,且函数 f 一阶可微, 则函数 f 为凸函数当且仅当 domf 为凸集,且对 x, y domf
f ( y) f ( x) f ( x)T ( y x)
信息与通信工程学院 庄伯金 bjzhuang@
定理:若函数 f ( x ) 一阶可微,则 f ( x ) 为准凸函数,当且仅 当 domf 为凸集,且对 x, y domf ,有
凸优化理论与应用-几何问题PPT课件

aT xi b 1, i 1,..., N , 且aT yi b 1, i 1,..., M
可编辑
5
线性判别
支撑超平面 H1: aT xs b 1
H 2 : aT yt b 1
两超平面之间的距离:
d(H1, H 2) 2 / a 2
已知凸集包含在内的最大体积椭球的球心称为mve中心
凸优化理论与应用
第7章 几何问题
可编辑
1
体积问题
已知集合 C , E 为包含 C 的椭球,满足: C E {v | Av b 1}
求包含 C 的体积最小的椭球问题:
minimize log det A1
subject to sup Av b 1
maximize log det B subject to sup IC (Bu d) 0
u 2 1
若 C 为多面体,则问题变为:
maximize log det B subject to Bai 2 aiT d bi ,i 1,..., m
可编辑
3
中心问题
已知凸集 C ,包含在C 内的最大体积球的球心,称为 Chebyshev中心。
vC
若 C 为有限集,则问题变为:
minimize log det A1
subject to sup Avi b 1,i 1,..., m
可编辑
2
体积问题
已知凸集 C , E 为包含在C 内的椭球,满足: E {Bu b | u 1} C
2
求包含在 C 内的体积最大的椭球问题:
已知凸集 C ,包含在 C 内的最大体积椭球的球心,称 为MVE中心。
凸优化理论与应用_对偶问题

12
LP问题的对偶问题
标准LP问题
minimize cT x subject to Ax b x 0
对偶函数
bT g ( , )
AT c 0 otherwise
对偶问题 maximize
g ( , )
等价描述 maximize
g ( , )
19
Entropy maximization
原始问题:minimize
i1 xi log xi ,
n
n D R
subject to Ax b
对偶函数:
1 x 1
T
g ( , ) b e
T
1
e
i 1
n
aiT
n 对偶问题: aiT T 1 maximize b e e i 1
7
对偶函数与共轭函数
共轭函数
f *( y) sup ( yT x f ( x))
xdomf
共轭函数与对偶函数存在密切联系 具有线性不等式约束和线性等式约束的优化问题: minimize f 0 ( x)
subject to Ax b Cx d
对偶函数:
g ( , ) bT d T f 0* ( AT C T )
1 maximize q( )T P( ) 1 q( ) r ( ) 2 subject to 0
Slater条件:存在 x ,满足
T (1/ 2) xT Px q i i xr i 0, i 1,..., m
信息与通信工程学院 庄伯金 bjzhuang@