abc输出组合数
组合与组合数公式

例5、6本不同的书,按下列要求各有多少种不同的分 法:
(1)分给甲、乙、丙三人,每人2本; (2)分为三份,每份2本; (3)分为三份,一份1本,一份2本,一份3本: (4)分给甲、乙、丙三人,一人1本,一人2 本,一人 3本。
a a a 推广:从
1,
2,
n1这n+1个不同的元素中,
取出m个元素的组合数
c,m 这些组合可以分成两类: n1
a a a a a a 一类含 ,一1类不含 。含1 的组1 合是从
2, 3,
n1
这n个不同元素中取出m-1个元素的组合数为 m1;不
a a a a c 含 1的组合是从
2,
C
x3 x2
1 10
Ax33
⑸ 计算:C50 C51 C52 C53 C54 C55
推广:
C
0 n
C
1 n
C
2 n
C n1 n
C
n n
2n
例3、12件产品中有3件次品,9件正品,从中抽取5 件,
(1) 5件产品中没有次品的取法有多少种? (2) 5件产品中有2件次品的取法有多少种?
例6、某省的福利彩票中,不考虑次序的7个数码组 成一注,7个数码中没有重复,每一个数码都选自 数码1,2,…,36,如果电视直播公开摇奖时只有 一个大奖,计算:
(1)公开摇奖时最多可以摇出多少不同的注;
(2)购买一注时的中奖率。
作业
P26
3,4,5,8
7.3.1组合与组合数公式

问题1:高二年段12个班要举行篮球赛,如果任意两 个班都比赛一次,需要安排几场比赛? 问题2:列车从甲站到乙站中途停车8次,单程需要制 作多少种不同的火车票?
问题3:汽车公司从12辆客车中选3辆客车运送高二年 级同学,有多少种不同选法?
你能说说上面3问题 的特点吗?
从n个不同元素中取出m m n 个不同 元素,不论次序的构成一组, 称为一个组合。
3解法1
C C C C 9 604种. 解法2 抽出的 3 件产品中至少有 1件是次品 的抽法的种数 , 也就是从 100件中抽出 3 件的 抽法种数减去 3件中都是合格品的抽法 的种 数,即
3 C100 C3 . 98 161 700 152 096 9 604种
组合
排列
abc bac cab acb bca cba abd bad dab adb bda dba acd cad dac adc cda dca
bcd cbd dbc bdc cdb dcb
m n m n
abc abd acd bcd
上述解释可以推广到一 般情形. 求从 n个不同元素中取出 m个元素的排列数 , 可看作由以下 2个步骤得到的 :
性质1
m n
nm n
在推导性质1时, 我们运 用了证明组合相等 的一个常用而重要的方 法,即通过阐明等号 两边的不同表达式实际 上是对同一个组合 问题的两个不同的计数 方案, 从而达到证明 的目的 .
探究 你能根据上述的思想方 法, 利用分类 计数原理 ,证明下列组合数的性质 吗?
性质 2
m m1 Cm C C . n1 n n
m n m n m m
数公式. 因为 A m n
五年级奥数计数综合排列组合ABC级教师版

实用文档排列组合知识结构排列问题一、在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.nm?个不同元)个元素,按照一定的顺序排成一列,叫做从一般地,从个不同的元素中取出(nnm素中取出个元素的一个排列.m根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.nm?个不同的元素的排列中取出)个元素的所有排列的个数,叫做从从个不同的元素中取出(nnm m P个元素的排列数,我们把它记做.m n 个步骤完成:根据排列的定义,做一个元素的排列由mm1种方法;:从个不同的元素中任取一个元素排在第一位,有步骤nn2种方法;个元素中任取一个元素排在第二位,有(步骤):从剩下的()11n?n?……)(个位置,有种步骤:从剩下的个元素中任取一个元素排在第1)](m?[n?1n??mn?(m?1)?mm方法;,即个不同元素中取出个元素的排列数是由乘法原理,从)1mn??n?2)?(?n(?n?1)(?nm m)1m??2)(n?.P?(nn?1)(nn?m1,开始,后面每个因数比前一个因数小,这里,,且等号右边从n n共有个因数相乘.m排列数二、n(P12?n??)???n1)(n?2??3的情况,排列数公式变为一般地,对于.nm?n nnn 个排列全部取出的排列,叫表示从个不同元素中取个元素排成一列所构成排列的排列数.这种nn的乘积,开始,后面每一个因数比前一个因数小,一直乘到做个不同元素的全排列.式子右边是从11实用文档n nn?nP!Pn!?n(?3?2?n?n?1)(?n?2)?!1.还可以写为:,读做,其中的阶乘,则记为nn在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算.三、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.m?n)个(元素组成一组不计较组内各元素的次序,叫做从个不一般地,从个不同元素中取出nnm 同元素中取出个元素的一个组合.m从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.m?n)的所有组合的个数,叫做从个不同元素中取出个不同元从个不同元素中取出个元素(nnmm m 素的组合数.记作.C nm可分成以下两步:个元素的排列数一般地,求从个不同元素中取出的P nm nm第一步:从个不同元素中取出个元素组成一组,共有种方法;C nm nm第二步:将每一个组合中的个元素进行全排列,共有种排法.P m mmmm.根据乘法原理,得到CP?P?nmnm Pn(?n?1)(?n?2)?(?n?m?1)mn.因此,组合数?C?nm m(?m?1)(?m?2)??3?2?1P m这个公式就是组合数公式.四、组合数的重要性质mn?m m?n)一般地,组合数有下面的重要性质:(C?C nnmn?m这个公式的直观意义是:表示从个元素中取出个元素组成一组的所有分组方法.表示从CC nm nn个元素中取出()个元素组成一组的所有分组方法.显然,从个元素中选出个元素的分组方法nnm?mn恰是从个元素中选个元素剩下的()个元素的分组方法.nmmn?322人不去开会的方法是一样多的,即.人中选例如,从人开会的方法和从人中选出CC?55355n0,.规定C?1C?1nn五、插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1实用文档个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.六、使用插板法一般有如下三种类型:⑴个人分个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的nm m?1C1)?(m(n?1).个空隙中放上个插板,所以分法的数目为1n?nam个.这个时候,我们先发给每个人个,还剩下⑵个东西,要求每个人至少有个人分1)?(a个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1)]?(a[n?m m?1C.11)?m(a?n?nmm个东西,每个人多发1个人分个,这个东西,允许有人没有分到.这个时候,我们不妨先借来⑶m?1样就和类型⑴一样了,不过这时候物品总数变成了,因此分法的数目为.C)mn?(个1?n?m例题精讲一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复,则通过“住店法”可顺利解题,在这类问题使用住店处理的的元素看作“客”,能重复的元素看作“店”策略中,关键是在正确判断哪个底数,哪个是指数 4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(1)有【例1】4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(2)有 4个不同的邮筒,则有多少种不同投法?)将3封不同的信投入(3433344()3:【解析】(1))(2 个车间实习共有多少种不同方法?把6名实习生分配到72【例】种不同方案,【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有767.依次类推,由分步计数原理知共有种不同方案第二步:将第二名实习生分配到车间也有7种不同方案,33CA8338 D )A、、 B、、 C3【例】 8名同学争夺3项冠军,获得冠军的可能性有(88 3项冠名学生看作8家“店”,【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8388种可能,因此共有种军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有A不同的结果。
数字电路的基础知识 几种常用的组合逻辑组件

(2-1)
加法运算的基本规则: (1)逢二进一。 (2)最低位是两个数最低位的叠加,不需考虑进位。 (3)其余各位都是三个数相加,包括加数、被加数和低位来的进位。 (4)任何位相加都产生两个结果:本位和、向高位的进位。
(2-2)
(1)半加器:
半加运算不考虑从低位来的进位
A---加数;B---被加数;S---本位和; C---进位。
设ABC每个输出代表一种组合。 b.由状态表写出逻辑式 c.由逻辑式画出逻辑图
(2-23)
2-4线译码器74LS139的内部线路
A1
A0 输入
S
控制端
&
Y3
&
Y2
输出
&
Y1
&
Y0
(2-24)
74LS139的功能表
S
A1 A0
Y0
Y1
Y2
Y3
1XX 1 1 1 1
0000111
0011011
0101101
(2-36)
0111110
“—”表示低电平有效。
(2-25)
74LS139管脚图
Ucc 2S 2A0 2A1 2Y0 2Y1 2Y2 2Y3
2S 2A0 2A1 2Y0 2Y1 2Y2 2Y3
1S
1A0 1A1 1Y0 1Y1 1Y2 1Y3
1S 1A0 1A1 1Y0 1Y1 1Y2 1Y3 GND
一片139种含两个2-4译码器
(2-26)
例:利用线译码器分时将采样数据送入计算机。
总 线
三态门
EA 三态门
EB 三态门
EC 三态门
ED
A
B
C
组合数公式的证明

A C A 根据分步计数原理, 3 4
3 3
4
3
3
A 从而 3 C4
4 3
A3
从 n 个不同元中取出m个元素的排列数
A C A m m m
n
nm
组合数公式:
Cnm
Anm Amm
n(n 1)(n 2) m!
(n m 1)
Cnm
n! m!(n
m)!
C 例1计算:⑴
4 7
⑵ C170
C A (3) 已知 3 2 ,求 n .
排列与元素的顺序有关,而组合则与元素的顺序无关
想一想:ab与ba是相同的排列还是相同的组合?为什么?
两个相同的排列有什么特点?两个相同的组合呢?
判断下列问题是组合问题还是排列问题?
(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有多 少个? 组合问题
(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车 票? 排列问题 有多少种不同的火车票价?组合问题
思考题 已知
Cm n2
:
C m1 n2
:
C m2 n2
3 : 5 : 5, 求m、n的值。
单循环决出冠亚军. (1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况。
(1) 中国—美国 美国—古巴
组合和组合数公式一

想一想
什么是两个相同的排列? 什么是两个相同的组合?
相同排列:元素相同且顺序相同. 相同组合:元素相同
从 a , b , c三个不同的元素 中取出两个元素的所有组合分 别是
ab , ac , bc
已知4个元素a , b , c , d ,写出每
排列定义
一般地说,从 n 个不同元素 中,任取 m (m≤n) 个元素,按照 一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一 个排列。
组合 思考交流
1. 从9名学生中选出3人做值日,有 多少种不同的选法?
2. 有5 本不同的书,某人要从中借2 本,有多少种不同的借法?
对比
1. 北京、上海、广州三个民航站 之间的直达航线,需要准备多少种不 同的飞机票?
c
d
bc
d
abc , abd , acd , bcd .
写出从 a , b , c , d 四个元素中任 取三个元素的所有排列.
c d b d b c c d a d a cb d a d a b b c a c a b
bcd acdabd abc
a
b
c
d
所有的排列为:
abc bac cab dab abd bad cad dac
bcd cbd dbc bdc cdb dcb
求 P34 可分两步考虑:
第一步,C34( 4)个;
第二步,P33( 6)个;
根据乘法原理,P34 C34 P33 .
C3 4
P3 4
P3 3
从 n 个不同元素中取出m个元素
的排列数 Pmn Cmn Pmm
Cm n
五年级奥数.计数综合.排列组合(ABC级).学生版

分列组合常识构造一、分列问题在现实生涯中经常会碰到如许的问题,就是要把一些事物排在一路,构成一列,盘算有若干种排法,就是分列问题.在排的进程中,不但与介入分列的事物有关,并且与各事物地点的先后次序有关.一般地,从个不合的元素中掏出()个元素,按照必定的次序排成一列,叫做从个不合元素中掏出个元素的一个分列.依据分列的界说,两个分列雷同,指的是两个分列的元素完整雷同,并且元素的分列次序也雷同.假如两个分列中,元素不完整雷同,它们是不合的分列;假如两个分列中,固然元素完整雷同,但元素的分列次序不合,它们也是不合的分列.分列的根本问题是盘算分列的总个数.从个不合的元素中掏出()个元素的所有分列的个数,叫做从个不合的元素的分列中掏出个元素的分列数,我们把它记做.依据分列的界说,做一个元素的分列由个步调完成:步调:从个不合的元素中任取一个元素排在第一位,有种办法;步调:从剩下的()个元素中任取一个元素排在第二位,有()种办法;……步调:从剩下的个元素中任取一个元素排在第个地位,有(种)办法;由乘法道理,从个不合元素中掏出个元素的分列数是,即,这里,,且等号右边从开端,后面每个因数比前一个因数小,共有个因数相乘.二、分列数一般地,对于的情形,分列数公式变成.暗示从个不合元素中取个元素排成一列所构成分列的分列数.这种个分列全体掏出的分列,叫做个不合元素的全分列.式子右边是从开端,后面每一个因数比前一个因数小,一向乘到的乘积,记为,读做的阶乘,则还可以写为:,个中.在分列问题中,有时刻会请求某些物体或元素必须相邻;求某些物体必须相邻的办法数量,可以将这些物体当作一个整体绑缚在一路进行盘算.三、组合问题日常生涯中有许多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同窗中选出几人介入某项运动等等.这种“分组”问题,就是我们将要评论辩论的组合问题,这里,我们将侧重研讨有若干种分组办法的问题.一般地,从个不合元素中掏出个()元素构成一组不计较组内各元素的次序,叫做从个不合元素中掏出个元素的一个组合.从分列和组合的界说可以知道,分列与元素的次序有关,而组合与次序无关.假如两个组合中的元素完整雷同,那么不管元素的次序若何,都是雷同的组合,只有当两个组合中的元素不完整雷同时,才是不合的组合.从个不合元素中掏出个元素()的所有组合的个数,叫做从个不合元素中掏出个不合元素的组合数.记作.一般地,求从个不合元素中掏出的个元素的分列数可分成以下两步:第一步:从个不合元素中掏出个元素构成一组,共有种办法;第二步:将每一个组合中的个元素进行全分列,共有种排法.依据乘法道理,得到.是以,组合数.这个公式就是组合数公式.四、组合数的主要性质一般地,组合数有下面的主要性质:()这个公式的直不雅意义是:暗示从个元素中掏出个元素构成一组的所有分组办法.暗示从个元素中掏出()个元素构成一组的所有分组办法.显然,从个元素中选出个元素的分组办法恰是从个元素中选个元素剩下的()个元素的分组办法.例如,从人中选人开会的办法和从人中选出人不去开会的办法是一样多的,即.划定,.五、插板法一般用来解决求分化必定命量的无不同物体的办法的总数,应用插板法一般有三个请求:①所要分化的物体一般是雷同的:②所要分化的物体必须全体分完:③介入分物体的组至少都分到1个物体,不克不及有没分到物体的组消失.在有些标题中,已知前提与上面的三个请求其实不必定完整相符,对此应该对已知前提进行恰当的变形,使得它与一般的请求相符,再实用插板法.六、应用插板法一般有如下三种类型:⑴小我分个器械,请求每小我至少有一个.这个时刻我们只须要把所有的器械排成一排,在个中的个闲暇中放上个插板,所以分法的数量为.⑵小我分个器械,请求每小我至少有个.这个时刻,我们先发给每小我个,还剩下个器械,这个时刻,我们把剩下的器械按照类型⑴来处理就可以了.所以分法的数量为.⑶小我分个器械,许可有人没有分到.这个时刻,我们无妨先借来个器械,每小我多发1个,如许就和类型⑴一样了,不过这时刻物品总数变成了个,是以分法的数量为.例题精讲【例 1】4个男生2个女生6人站成一排合影留念,有若干种排法?假如请求2个女生紧挨着排在正中央有若干种不合的排法?【巩固】4男2女6小我站成一排合影留念,请求2个女的紧挨着有若干种不合的排法?【例 2】将A.B.C.D.E.F.G七位同窗在操场排成一列,个中学生B与C必须相邻.请问共有若干种不合的分列办法?【巩固】6名小同伙站成一排,若两人必须相邻,一共有若干种不合的站法?若两人不克不及相邻,一共有若干种不合的站法?【例 3】书架上有4本不合的漫画书,5本不合的童话书,3本不合的故事书,全体竖起排成一排,假如同类型的书不要离开,一共有若干种排法?假如只请求童话书和漫画书不要离开有若干种排法?【巩固】四年级三班举办六一儿童节联欢运动.全部运动由2个跳舞.2个演唱和3个小品构成.请问:假如请求同类型的节目持续表演,那么共有若干种不合的出场次序?【例 4】8人围圆桌会餐,甲.乙两人必须相邻,而乙.丙两人不得相邻,有几种坐法?【巩固】a,b,c,d,e五小我排成一排,a与b不相邻,共有若干种不合的排法?【例 5】一台晚会上有个演唱节目和个跳舞节目.求:⑴当个跳舞节目要排在一路时,有若干不合的安插节目标次序?⑵当请求每个跳舞节目之间至少安插个演唱节目时,一共有若干不合的安插节目标次序?【巩固】由个不合的独唱节目和个不合的合唱节目构成一台晚会,请求随意率性两个合唱节目不相邻,开端和最后一个节目必须是合唱,则这台晚会节目标编排办法共有若干种?【例 6】有10粒糖,分三天吃完,天天至少吃一粒,共有若干种不合的吃法?【巩固】小红有10块糖,天天至少吃1块,7天吃完,她共有若干种不合的吃法?【巩固】有12块糖,小光要6天吃完,天天至少要吃一块,问共有种吃法.【例 7】10只无差此外橘子放到3个不合的盘子里,许可有的盘子空着.请问一共有若干种不合的放法?【巩固】将个雷同的苹果放到个不合的盘子里,许可有盘子空着.一共有种不合的放法.【例 8】把20个苹果分给3个小同伙,每人起码分3个,可以有若干种不合的分法?【巩固】三所黉舍组织一次联欢晚会,共表演14个节目,假如每校至少表演3个节目,那么这三所黉舍表演节目数的不合情形共有若干种?【例 9】(1)小明有10块糖,天天至少吃1块,8天吃完,共有若干种不合吃法?(2)小明有10块糖,天天至少吃1块,8天或8天之内吃完,共有若干种吃法?【巩固】有10粒糖,天天至少吃一粒,吃完为止,共有若干种不合的吃法?【例 10】马路上有编号为,,,…,的十只路灯,为勤俭用电又能看清路面,可以把个中的三只灯关失落,但又不克不及同时关失落相邻的两只,在两头的灯也不克不及关失落的情形下,求知足前提的关灯办法有若干种?【巩固】黉舍新建筑的一条道路上有盏路灯,为了节俭用电而又不影响正常的照明,可以熄灭个中盏灯,但两头的灯不克不及熄灭,也不克不及熄灭相邻的盏灯,那么熄灯的办法共有若干种?【例 11】在四位数中,列位数字之和是4的四位数有若干?【巩固】大于2000小于3000的四位数中数字和等于9的数共有若干个?【例 12】所有三位数中,与456相加产生进位的数有若干个?【巩固】从1到2004这2004个正整数中,共有几个数与四位数8866相加时,至少产生一次进位?教室检测【随练1】某小组有12个同窗,个中男少先队员有3人,女少先队员有人,全组同窗站成一排,请求女少先队员都排一路,而男少先队员不排在一路,如许的排法有若干种?【随练2】把7支完整雷同的铅笔分给甲.乙.丙3小我,每人至少1支,问有若干种办法?【随练3】在三位数中,至少消失一个6的偶数有若干个?家庭功课【作业1】将三盆同样的红花和四盆同样的黄花摆放成一排,请求三盆红花互不相邻,共有种不合的放法.【作业2】黉舍合唱团要从个班中填补名同窗,每个班至少名,共有若干种抽调办法?【作业3】能被3整除且至少有一个数字是6的四位数有个.【作业4】黉舍乒乓球队一共有4名男生和3名女生.某次比赛后他们站成一排拍照,请问:(1)假如请求男生不克不及相邻,一共有若干不合的站法?(2)假如请求女生都站在一路,一共有若干种不合的站法?【作业5】由0,1,2,3,4,5构成的没有反复数字的六位数中,百位不是2的奇数有个.【作业6】泊车站划出一排个泊车地位,今有辆不合的车须要停放,若请求残剩的个空车位连在一路,一共有若干种不合的泊车计划?教授教养反馈学生对本次课的评价○特殊知足○知足○一般家长看法及建议家长签字:。
2019-2020学年数学人教A版选修2-3检测:1.2.2.1组合与组合数公式

1.2.2组合第一课时组合与组合数公式填一填1.组合及组合数的定义(1)组合:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C m n表示.2.组合数公式及其性质公式展开式C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!阶乘式C m n=n!m!(n-m)!性质性质1C m n=C n-mn性质2C m n+1=C m n+C m-1n备注①n,m∈N*且m≤n;②规定:C0n=1判一判判断(1.从a1,a2,a3三个不同元素中任取两个元素组成一个组合,所有组合的个数为C23.(√) 2.从1,3,5,7中任取两个数相乘可得C24个积.(√)3.C35=5×4×3=60.(×)4.C2 0162 017=C12 017=2 017.(√)5.10个人相互写一封信,共写出了C210封信.(×)6.10个人相互通一次电话,共通了A210电话.(×)7.从10个人中选3人去开会,有C310种选法.(√)8.从10个人中选出3人担任不同学科的科代表,有A310种选法.(√)想一想1.提示:从排列与组合的定义可以知道,两者都是从n个不同元素中取出m(m≤n)个元素,这是排列,组合的共同点;它们的不同点是:排列与元素的顺序有关,组合与元素的顺序无关.只有元素相同且顺序也相同的两个排列才是相同的;只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.2.“abc ”和“acb ”是相同的排列还是相同的组合?提示:由于“abc ”与“acb ”的元素相同,但排列的顺序不同,所以“abc ”与“acb ”是相同的组合,但不是相同的排列.3.我们知道,“排列”与“排列数”是两个不同的概念,那么,“组合”与“组合数”是同一个概念吗?为什么?提示:“组合”与“组合数”是两个不同的概念,“组合”是指“从n 个不同元素中取出m (m ≤n )个元素合成一组”,它不是一个数,而是具体的一件事;“组合数”是指“从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数”,它是一个数.4.两个组合是相同组合的充要条件是什么?提示:只要两个组合中的元素安全相同,不管顺序如何,这两个组合就是相同的组合. 5.判断组合与排列的依据是什么?提示:判断组合与排列的依据是看是否与顺序有关,与顺序有关的是排列问题,与顺序无关的是组合问题.思考感悟:练一练1.(1)把当日动物园的4张门票分给5个人,每人至多分一张,而且票必须分完,有多少种分配方法?(2)从2,3,5,7,11这5个质数中,每次取2个数分别作为分子和分母构成一个分数,共能构成多少个不同的分数?(3)从9名学生中选出4名参加一个联欢会,有多少种不同的选法?解析:(1)是组合问题.由于4张票是相同的(都是当日动物园的门票),不同的分配方法取决于从5人中选择哪4人,这和顺序无关.(2)是排列问题,选出的2个数作分子或分母,结果是不同的. (3)是组合问题,选出的4人无角色差异,不需要排列他们的顺序.2.求值:3C 38-2C 25.解析:3C 38-2C 25=3×8×7×63×2×1-2×5×42×1=148. 3.求值:C 34+C 35+C 36+…+C 310.解析:利用组合数的性质C m n +1=C m n +C m -1n, 则C 34+C 35+C 36+…+C 310=C 44+C 34+C 35+…+C 310-C 44 =C 45+C 35+…+C 310-C 44= … =C 411-1=329.4.求值:C 5-n n +C 9-nn +1.(提示:先求n 的范围,再确立n 的值进而求值)解析:⎩⎪⎨⎪⎧5-n ≤n ,5-n ≥0,9-n ≤n +1,9-n ≥0,解得4≤n ≤5.又因为n ∈N *,所以n =4或n =5.当n =4时,原式=C 14+C 55=5.当n =5时,原式=C 05+C 46=16.知识点一组合的概念1.(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?(2)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票价?(往返票价相同)(3)从全班40人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)从全班40人中选出3人参加某项劳动,有多少种不同的选法? 在上述问题中,哪些是组合问题?哪些是排列问题?解析:(1)飞机票与起点、终点有关,有顺序,是排列问题. (2)票价与起点、终点无关,没有顺序,是组合问题. (3)3人分别担任三个不同职务、有顺序,是排列问题. (4)3人参加某项相同劳动,没有顺序,是组合问题.知识点二 组合数公式2.计算:C 581007解析:原式=C 38+C 2100×1=8×7×63×2×1+100×992×1=56+4 950=5 006. 3.下列计算结果为21的是( )A .A 24+C 26B .C 37C .A 27D .C 27解析:C 27=7×62×1=21. 答案:D知识点三 组合数性质4.C 05+C 15+5555解析:原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2×⎝ ⎛⎭⎪⎫6+5×42×1=32. 5.证明:C m +1n +C m -1n +2C m n =C m +1n +2.解析:法一:左边=n !(m +1)!(n -m -1)!+n !(m -1)!(n -m +1)!+2n !m !(n -m )!=n !(m +1)!(n -m +1)![(n -m )(n -m +1)+m (m +1)+2(m +1)(n -m +1)] =n !(m +1)!(n -m +1)!(n +2)(n +1) =(n +2)!(m +1)!(n -m +1)! =C m +1n +2=右边,原结论得证.法二:利用公式C m n =C m n -1+C m -1n -1推得左边=(C m +1n +C m n )+(C m n +C m -1n )=C m +1n 1+C m n 1=C m +1n 2=右边.知识点四6.6解析:每两人握手1次,无顺序之分,是组合问题,故一共握手C 26=15次.7.现有10名教师,其中男教师6名,女教师4名. (1)现要从中选2名去参加会议有多少种不同的选法?(2)选出2名男教师或2名女教师参加会议,有多少种不同的选法? (3)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?解析:(1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C 210=10×92×1=45种. (2)可把问题分两类情况:第1类,选出的2名是男教师有C 26种方法; 第2类,选出的2名是女教师有C 24种方法.根据分类加法计数原理,共有C 26+C 24=15+6=21种不同选法.(3)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,共有不同的选法C 26×C 24=6×52×1×4×32×1=90种.基础达标一、选择题1.以下四个命题,属于组合问题的是( ) A .从3个不同的小球中,取出2个排成一列 B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开同一辆车从甲地到乙地解析:只有从100位幸运观众选出2位幸运之星,与顺序无关,是组合问题. 答案:C2.计算C 28+C 38+C 29等于( )A .120B .240C .60D .480解析:∵C m -1n +C m n =C mn +1,∴原式=C 39+C 29=C 310=120. 答案:A3.如果C 2n=28,则n 的值为( ) A .9 B .8 C .7 D .6解析:∵C 2n =n (n -1)2, ∴n (n -1)2=28,即n 2-n -56=0,解得n =8.答案:B4.(C 2100+C 97100)÷A 3101的值为( ) A .6 B .101 C.16 D.1101解析:(C 2100+C 97100)÷A 3101=(C 2100+C 3100)÷A 3101=C 3101÷(C 3101A 33)=1A 33=16.5.某施工小组有男工7人,女工3人,现要选1名女工和2名男工去支援另一施工小组,不同的选法有( )A .C 310种B .A 310种C .A 13A 27种D .C 13C 27种解析:每个被选的人都无顺序差别,是组合问题.分两步完成:第一步,选女工,有C 13种选法;第二步,选男工,有C 27种选法.故共有C 13C 27种不同的选法.答案:D6.方程C x 14=C 2x -414的解为( )A .4B .14C .4或6D .14或2解析:由题意知⎩⎪⎨⎪⎧x =2x -42x -4≤14x ≤14或⎩⎪⎨⎪⎧x =14-(2x -4)2x -4≤14x ≤14解得x =4或6.故选C.答案:C7.从一个正方体的顶点中选四个点,可构成四面体的个数为( ) A .70 B .64 C .58 D .52解析:四个顶点共面的情况有6个表面和6个对角面,共12个,所以组成四面体的个数为C 48-12=58.故选C 项.答案:C 二、填空题8.10个人分成甲、乙两组,甲组4人,乙组6人,则不同的分组种数为________.(用数字作答)解析:先选甲组有C 410,再选2组C 66,不同分组方法有C 410·C 66=210种. 答案:2109.若A 3n =12C 2n ,则n =________.解析:因为A 3n =n (n -1)(n -2),C 2n =12n (n -1),所以n (n -1)(n -2)=6n (n -1).又n ∈N *,且n ≥3,所以n =8.答案:810.若C m -1n :C m n :C m +1n=3:4:5,则n -m =________. 解析:由题意知⎩⎨⎧C m -1nC m n =34,CmnCm +1n=45,由组合数公式得⎩⎪⎨⎪⎧ 3n -7m +3=0,9m -4n +5=0,解得⎩⎪⎨⎪⎧n =62,m =27.所以n -m =62-27=35.答案:3511.不等式C 2n-n <5的解集为________. 解析:由C 2n-n <5,得n (n -1)2-n <5,∴n 2-3n -10<0,解得-2<n <5.由题设条件知n ≥2,且n ∈N *,∴n =2,3,4.故原不等式的解集为{2,3,4}.答案:{2,3,4}12.某城市纵向有6条道路,横向有5条道路,构成如图所示的矩形道路网(图中黑线表示道路),则从西南角A 地到东北角B 地的最短路线共有________条.解析:要使路线最短,只能向右或向上走,途中不能向左或向下走.因此,从A 地到B 地归结为走完5条横线段和4条纵线段.设每走一段横线段或纵线段为一个行走时段,从9个行走时段中任取4个时段走纵线段,其余5个时段走横线段,共有C 49C 55=126(种)走法,故从A 地到B 地的最短路线共有126条.答案:126 三、解答题13.试判断下列问题是组合问题还是排列问题.(1)从a 、b 、c 、d 四名学生中选2名学生完成同一件工作,有多少种不同的选法? (2)从a 、b 、c 、d 四名学生中选2名学生完成两件不同的工作,有多少种不同的选法? (3)a 、b 、c 、d 四支足球队之间进行单循环比赛,共需比赛多少场? (4)a 、b 、c 、d 四支足球队争夺冠亚军,有多少种不同的结果? 解析:(1)2名学生完成的是同一件工作,没有顺序,是组合问题. (2)2名学生完成两件不同的工作,有顺序,是排列问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题. (4)冠亚军是有顺序的,是排列问题.14.(1)解方程:C x -2x +2+C x -3x +2=110A 3x +3; (2)解不等式:1C 3x -1C 4x <2C 5x.解析:(1)原方程可化为C x -2x +3=110A 3x +3, 即C 5x +3=110A 3x +3, ∴(x +3)!5!(x -2)!=(x +3)!10·x !, ∴1120(x -2)!=110·x (x -1)·(x -2)!, ∴x 2-x -12=0,解得x =4或x =-3, 经检验知,x =4是原方程的解.(2)将原不等式化简可以得到6x (x -1)(x -2)-24x (x -1)(x -2)(x -3)<240x (x -1)(x -2)(x -3)(x -4). 由x ≥5,得x 2-11x -12<0,解得5≤x <12. ∵x ∈N *,∴x ∈{5,6,7,8,9,10,11}.能力提升15.设x ∈N *,求Cx -12x -3+x +1解析:由题意可得:⎩⎪⎨⎪⎧2x -3≥x -1,x +1≥2x -3,解得2≤x ≤4.∵x ∈N *,∴x =2或x =3或x =4.当x =2时原式的值为4;当x =3时原式的值为7; 当x =4时原式的值为11.∴所求的值为4或7或11.16.某足球赛共32支球队有幸参加,它们先分成8个小组进行循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这16支球队再分成8个小组决出8强,8强再分成4个小组决出4强,4强再分成2个小组决出2强,最后决出冠、亚军,此外还要决出第三名、第四名,问这次足球赛共进行了多少场比赛?解析:可分为如下几类比赛:(1)小组循环赛:每组有C24=6场,8个小组共有48场;(2)八分之一淘汰赛,8个小组的第一、二名组成16强,根据赛制规则,16强分成8组,每组两个队比赛一场,可以决出8强,共有8场;(3)四分之一淘汰赛,根据赛制规则,8强再分成4组,每组两个队比赛一次,可以决出4强,共有4场;(4)半决赛,4强再分成2组,每组两个队比赛一场,可以决出2强,共有2场;(5)决赛,2强比赛1场确定冠、亚军,4强中的另两支队比赛1场,决出第三、四名,共有2场.综上,共有48+8+4+2+2=64场比赛.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
public class AllCombString {
public static int t;//组合个数
public static void main(String[] args) {
String str = "123";
char[] c = str.toCharArray();
println(c)
t++;
allCombString(c,0);
System.out.println(t);
}
public static void allCombString(char[] c,int s){
int l = c.length;
if(l-s==2){
char temp = c[l-1];
c[l-1] = c[l-2];
c[l-2] = temp;
println(c);
t++;
}
else{
for(int i=s;i<l;i++){
moveToHead(c,i,s);
char ct[] = new char[l];
System.arraycopy(c, 0, ct, 0, l);//保持其他元素位置不变 allCombString(ct,s+1);
}
}
}
public static void moveToHead(char[] c,int id,int s){
if(id>s&&id<c.length){
char temp = c[id];
for(int i=id;i>s;i--){
c[i] = c[i-1];
}
c[s] = temp;
println(c);
t++;
}
}
public static void println(char[] c){
System.out.println(new String(c));
}
}
输出结果:
123
132
213
231
321
312
6
设计思路:
1、n个字符,顺序选取其中第1个;
2、在剩下的n-1个字符中,再选取其中的第1个;
3、若剩余的字符只剩下2个,则这两个字符交换位置;若不是,则继续第2步。
4、这是一个典型的递归,无论有多少个字符,到最后只需交换最后两个字符即可。
5、为了能按顺序选取字符(因为递归之后会影响字符的顺序,如:“abcd”经过第一轮递归之后变成“adbc”,这时再执行第2步的话,取到的字符是“d”,而不是“b”),所以这里使用了数组拷贝,for循环不受递归的影响。
(这个问题想了老半天,暂时只能用这种方法,即使效率比较低)。
6、组合的个数是字符个数的阶层,如“abc”,组合个数为3!=6。