广东省揭阳市揭西县2018届九年级上学期期末考试数学试题(附答案)

合集下载

揭西县北师大九年级上数学期末考试题(有答案)

揭西县北师大九年级上数学期末考试题(有答案)

九年级第一学期期末教学质量监测数学试卷注意:请把答案写在答卷相应题号的位置上。

一、选择题(每小题3分,共30分)1.如图的几何体是由六个同样大小的正方体搭成的, 2.其左视图是( )A .B .C .D .2.关于的一元二次方程0102=-+bx x 的一个根为2,则b 的值为( ) A.1 B.2 C.3 D.7 3.点(4,﹣3)是反比例函数xky =的图象上的一点,则=( ) A .-12B .12C .D .14.下列关于的一元二次方程有实数根的是( ) A . 2+2=0B .22++1=0C .2﹣+3=0D . 2﹣2﹣1=05.一个口袋中有2个红球,3个白球,这些球除色外都相同,从口袋中随机摸出一个球,这个球是白球的概率是( )A .B .C .D .6.顺次连结下列四边形的四边中点所得图形一定是菱形的是( ) A . 平行四边形 B .菱形 C .矩形D . 梯形7.反比例函数xky =与一次函数k kx y +=,其中0≠k ,则他们的图象可能是( ) A . B . C . D .8.下列命题中,假命题的是( )A .分别有一个角是 110的两个等腰三角形相似B .如果两个三角形相似,则他们的面积比等于相似比C .若5=8y ,则58=y x D .有一个角相等的两个菱形相似9.在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下,( ) A .小刚的影子比小红的长 B .小刚的影子比小红的影子短 C .小刚跟小红的影子一样长 D .不能够确定谁的影子长 10.如图,在□ABCD 中,BE 平分∠ABC ,CF 平分∠BCD ,E 、F在AD 上,BE 与CF 相交于点G ,若AB=7,BC=10,则△EFG 与△BCG 的面积之比为( )A .4:25B .49:100C .7:10D .2:5 二.填空题:(每小题4分,共24分) 11.如果y=2:3,那么yyx + .12.由于某型病毒的影响,某地区猪肉价格连续两个月大幅下降.由原每斤20元下调到每斤13元,设平均每个月下调的百分率为,则根据题意可列方程为 .13.某养殖户在池塘中放养了鲤鱼1000条,鲢鱼若干,在一次随机捕捞中,共抓到鲤鱼200条,鲢鱼500条,估计池塘中原放养了鲢鱼 条. 14.函数422)1(--+=m mx m y 是y 关于的反比例函数,则m= .15.在矩形ABCD 中,AB =6,BC=8,△ABD 绕B 点顺时针旋转 90到△BEF ,连接DF ,则DF= .16. 如图,菱形ABCD 中,AB=4,∠A BC=60°,点E 、F 、G 分别为线段BC ,CD ,BD 上的任意一点,则EG+FG 的最小值为 .三、解答题(一)(每小题6分,共18分)17.解方程:2+8﹣9=018.如图,在△ABC 中,D 、E 分别在AB 与AC 上,且AD=5,DB=7,AE=6,EC=4,△ADE 与△ACB 相似吗?请说明理由.19.在一次朋友聚餐中,有A 、B 、C 、D 四种素菜可供选择,小明从中选择一种,小莉也从中选择一种(与小明选择的不相同),请利用列表或树状图的方法求出A 与B 两种素菜被选中的概率.四、解答题(二)(每小题7分,共21分) 20.如图,在路灯下,小明的身高如图中线段AB 所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG 所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m ,他的影子长AC=1.4m ,且他到路灯的距离AD=2.1m ,求灯泡的高.21.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点C 作CE∥BD,过点D 作DE∥AC,CE 与DE 相交于点E . (1)求证:四边形CODE 是矩形.(2)若AB=5,AC=6,求四边形CODE 的周长.22.某服装店销售一种服装,每件进货价为40元,当以每件80元销售的时候,每天可以售出50件,为了增加利润,减少库存,服装店准备适当降价。

广东省揭阳市九年级上学期数学期末考试试卷

广东省揭阳市九年级上学期数学期末考试试卷

广东省揭阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)方程x2﹣9=0的根是()A . x=﹣3B . x1=3,x2=﹣3C . x1=x2=3D . x=32. (2分)已知反比例函数的图象经过点P(1,-2),则这个函数的图象位于()A . 第一、三象限B . 第二、三象限C . 第二、四象限D . 第三、四象限3. (2分)一组数据5,2,x,6,4的平均数是4,这组数据的方差是()A . 2B .C . 10D .4. (2分) (2018九上·惠来期中) 把写成比例式其中a,b,c,d均不为,下列选项中错误的是A .B .C .D .5. (2分) (2015九上·阿拉善左旗期末) 已知反比例函数y= ,在下列结论中,不正确的是()A . 图象必经过点(1,2)B . y随x的增大而减少C . 图象在第一、三象限D . 若x>1,则y<26. (2分)已知关于x的一元二次方程有两个相等的实数根,那么m的值为()A .B .C .D .7. (2分)(2016·竞秀模拟) 如图,在4×4的正方形网格图中有△ABC,则sin∠ABC=()A .B .C .D .8. (2分)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为()A . 10米B . 9.6米C . 6.4米D . 4.8米9. (2分) (2019九上·大同期中) 刚刚过去的2018年国庆黄金周,越来越多的外地游客选择来大同游古城、赏美景、品美食、观民俗.小明从大同市旅游局获悉,国庆长假期间,我市共接待海内外游客约900万人次,若每年增长率不变,预计2020年国庆黄金周我市可接待海内外游客约1600万人次.问:年增长率约为()A .B .C .D .10. (2分) (2017九上·江门月考) 在同一直角坐标系中,函数y=kx+k与的图像大致是()A .B .C .D .11. (2分) (2017九下·萧山开学考) 如图,AB,CD都垂直于x轴,垂足分别为B,D,若A(6,3),C(2,1),则△OCD与四边形ABDC的面积比为()A . 1:2B . 1:3C . 1:4D . 1:812. (2分) (2017九上·南山月考) 如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A . 5B .C .D .二、填空题. (共6题;共6分)13. (1分) (2019九上·宜兴期中) 若方程(m+2)x2+5x﹣7=0是关于x的一元二次方程,则m≠________.14. (1分)如图,已知矩形OABC与矩形ODEF是位似图形,P是位似中心,若点B的坐标为,点E的坐标为,则点P的坐标为________.15. (1分) (2018九上·汨罗期中) 已知关于x的一元一次方程x2+3x+1-m=0 ,请你自选一个m的值,使方程没有实数根m=________.16. (1分)(2017·邵阳模拟) 等腰三角形中,腰和底的长分别是10和13,则三角形底角的度数约为________.(用科学计算器计算,结果精确到0.1°)17. (1分)(2017·湖州) 如图,在平面直角坐标系中,已知直线()分别交反比例函数和在第一象限的图象于点,,过点作轴于点,交的图象于点,连结.若是等腰三角形,则的值是________.18. (1分)(2018·成都模拟) 如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数(k≠0)的图象经过圆心P,则k=________。

广东省揭阳市九年级上学期数学期末联考试卷

广东省揭阳市九年级上学期数学期末联考试卷

广东省揭阳市九年级上学期数学期末联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018九上·天台月考) 下列方程中,属于一元二次方程的是()A .B .C .D .2. (2分)函数y=2x2+3x﹣5是()A . 一次函数B . 正比例函数C . 反比例函数D . 二次函数3. (2分)(2019·成都模拟) 已知函数的图象如图所示,则一元二次方程根的存在情况是()A . 没有实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 无法确定4. (2分)将y=2x2的函数图象向左平移2个单位长度后,得到的函数解析式是()A . y=2x2+2B . y=2(x+2)2C . y=(x-2)2D . y=2x2-25. (2分) (2016九上·苍南月考) 对于函数使得y随x的增大而增大的x的取值范围是()A . x≥-1B . x≤-1C . x≥0D . x≤06. (2分)(2018·河北模拟) 下列命题:①若a+b+c=0,则b2-4ac≥0;②若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b2-4ac >0,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是()A . ①②B . ①③C . ②③D . ①②③7. (2分) (2019九上·海淀期中) 用配方法解方程x2-2x-4=0,配方正确的是()A .B .C .D .8. (2分)(2017·临泽模拟) 抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是()A . b2﹣4ac<0B . abc<0C .D . a﹣b+c<09. (2分)(2017·邢台模拟) 二次函数y=ax2+bx+c(a≠0)的部分图像如图所示,图像过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图像上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2 ,且x1<x2 ,则x1<﹣1<5<x2 .其中正确的结论有()A . 2个B . 3个C . 4个D . 5个10. (2分) (2019八下·龙州期末) 某县第一中学学校管理严格、教师教学严谨、学生求学谦虚,三年来中考数学A等级共728人.其中2016年中考的数学A等级人数是200人,2017年、2018年两年中考数学A等级人数的增长率恰好相同,设这个增长率为x,根据题意列方程,得()A .B .C .D .11. (2分)(2018·平南模拟) 对于抛物线y= (x+4)2﹣5,下列说法正确的是()A . 开口向下B . 对称轴是直线x=4C . 顶点坐标(4,﹣5 )D . 向右平移4个单位,再向上平移5个单位得到y= x212. (2分)(2016·河池) 二次函数y=ax2+bx+c的图象如图所示,则下列结论不正确的是()A . a<0B . c>0C . a+b+c>0D . b2﹣4ac>0二、填空题 (共6题;共6分)13. (1分) (2020九上·新昌期末) 抛物线y=ax2+c(a≠0)与直线y=6相交于点A,B,与y轴交于点C,且∠ACB为直角,当y<0时,自变量x的取值范围是________.14. (1分) (2019九下·邓州模拟) 已知抛物线y=ax2+bx+c(a>0)的顶点为(2,4),若点(﹣2,m),(3,n)在抛物线上,则m________n(填“>”、“=”或“<”).15. (1分) (2018八上·大同月考) 等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为________16. (1分)(2016·海曙模拟) 已知抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,且经过A(m﹣1,n)和B(m+3,n),过点A,B分别作x轴的垂线,垂足记为M,N,则四边形AMNB的周长为________.17. (1分)(2017·资中模拟) 以x为自变量的二次函数y=x2﹣(b﹣2)x+b﹣3的图象不经过第三象限,则实数b的取值范围是________.18. (1分) (2019九上·吉林月考) 如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线y=ax2-10ax+8(a>0)经过点C、D ,则点B的坐标为________.三、解答题 (共8题;共70分)19. (10分) (2020八下·镇海期末) 解下列方程:(1)(2)20. (5分)计算:+2sin60°﹣|﹣|﹣(﹣2015)021. (5分)(2017·西城模拟) 已知x=2y,求代数式(﹣)÷ 的值.22. (10分)(2018·郴州) 如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.23. (10分)理解:数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===2﹣.思路二利用科普书上的和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣.思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图3,直线y=x﹣1与双曲线y=交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.24. (5分) (2017九上·琼中期中) 已知等腰三角形底边长8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的周长.25. (10分) (2019九上·锦州期末) 利民商场经营某种品牌的T恤,购进时的单价是300元,根据市场调查:在一段时间内,销售单价是400元时,销售量是60件,销售单价每涨10元,销售量就减少1件.设这种T恤的销售单价为x元(x>400)时,销售量为y件、销售利润为W元.(1)请分别用含x的代数式表示y和W(把结果填入下表):销售单价(元)x销售量y(件)________销售利润W(元)________(2)该商场计划实现销售利润10000元,并尽可能增加销售量,那么x的值应当是多少?26. (15分)(2020·五峰模拟) 如图,在平面直角坐标系xOy中,直线y=mx+k,与x轴,y轴分别交于点A,B,经过点A的抛物线y=ax2+bx﹣3a与x轴另一个交点为点D,AD=4,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标(用k表示);(2)求抛物线的对称轴;(3)若抛物线的对称轴在y轴右侧,连接BD,BD比BO长1,抛物线与线段BC恰有一个公共点,求直线y=mx+k的解析式和a的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共70分)19-1、19-2、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、25-1、25-2、26-1、26-2、。

广东省揭阳市九年级(上)期末数学试卷

广东省揭阳市九年级(上)期末数学试卷

九年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1. 下列运算正确的是()A.(x−y)2=x2−y2B.x2⋅x4=x6C.(−3)2=−3D.(2x2)3=6x62.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1083.如图,空心圆柱的主视图是()A.B.C.D.4.正多边形的一个内角是150°,则这个正多边形的边数为()A.10B.11C.12D.135.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学知道自己的成绩后,要判断能否进入决赛,还需知道这9名同学成绩的()6.A.众数 B.中位数 C.平均数如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()A.α+β=180∘B.α+β=90∘C.β=3αD.α−β=90∘D.方差7.如图,▱A BCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20B.16C.12D.88. 关于 x 的一元二次方程(k +1)x -2x +1=0 有两个实数根,则 k 的取值范围是( )A. k≥0B. k≤0C. k<0 且 k ≠−1D. k ≤0 且 k≠−19.在同平面直角坐标系中,函数 y =x -1 与函数 y =1x 的图象大致是()A. B.C.D.10. 如图,CE 是 ABCD 的边 AB 的垂直平分线,垂足为点 O ,CE 与 DA 的延长线交于点 E 、连接 AC ,BE ,DO ,DO 与 AC 交于点 F ,则下列结论: ①四边形 ACBE 是菱形;②∠ACD =∠BAE ;③AF :BE =2:3;④S 3.其中正确的结论有()个.:S =2:AFOEA.1B.2C.3D.4二、填空题(本大题共 6 小题,共 24.0 分)11. 分解因式:ab -9a =______. 12. 若 x -2x =1,则 2x -4x +3=______. 13. 如下图,在 △R t ABC 中,∠C =90°,DE 垂直平分 AB ,垂足为 E ,D 在 BC 上,已知∠CAD =32°,则∠B =______度.14. 对于实数 a ,b ,定义运算“※”如下:a ※b =a 2-ab ,例如,5※3=5 -5×3=10.若(x +1) ※(x -2)=6,则 x 的值为______.15. 如图,点 A 在双曲线 y =5x 上,点 B 在双曲线 y =8x 上,且 AB ∥x 轴, △则OAB 的面积等于______.2 四边 形 △COD2 2 2 216. 如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A为直角顶点,OA 为一直角边作等腰直角三角形11OA A,再以点A 为直角顶点,OA为直角边作等腰直角三角形OA A…依此规律,1 22223则点A的坐标是______.2018三、计算题(本大题共2小题,共12.0分)17. 解分式方程:xx−1+21−x=4.18. 先化简,再求值:(1-1a+1)÷2aa2−1,其中a=-2.四、解答题(本大题共7小题,共54.0分)19. 如图,△在ABC中,∠C=90°,∠B=30°(1)在BC上作出点D,使它到A,B两点的距离相等(用尺规作图法,保留作图痕迹,不要求写作法)(2)若BD=6,求CD长.20. 为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.21. 襄阳市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?22. 已知:如图,△在ABC中,∠BAC=90°,M是斜边BC的中点,BN⊥AM,垂足为点N,且BN的延长线交AC于点D.(1)求证△:ABC△∽ADB;(2)如果BC=20,BD=15,求AB的长度.23. 如图,在平行四边形ABCD中,过对角线BD中点的直线交AD、BC边于F、E.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,写出EF与BD的关系.(3)若∠A=60°,AB=4,BC=6,四边形BEDF是矩形,求该矩形的面积.24. 如图,直线y=kx+b与反比例函数y=k2x 的图象交于A(1,6),B(a,3)两点.1(1)求k、k的值;12(2)结合图形,在第一象限内,直接写出k x+b-k2x>0时,x的取值范围;(3)1如图2,梯形OBCE中,BC∥OE,过点C作CE⊥x轴于点E,CE和反比例函数的图象交于点P,当梯形OBCE的面积为9时,请判断PC和PE的大小关系,并说明理由.25. 在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(Ⅰ)如图①,当点D落在BC边上时,求点D的坐标;(Ⅱ)如图②,当点D落在线段BE上时,AD与BC交于点H.①求△证ADB≌△AOB;②求点H的坐标.(Ⅲ)记K为矩形AOBC对角线的交点,S△为KDE的面积,求S的取值范围(直接写出结果即可).答案和解析1.【答案】B【解析】解:∵(x-y ) =x -2xy+y ,故选项 A 错误;∵x∵•x =x ,故选项 B 正确;=3,故选项 C 错误;∵(2x) =8x ,故选项 D 错误;故选:B .计算出各个选项中式子的正确结果,即可得到哪个选项是正确的.本题考查完全平方差公式、同底数幂的乘法、算术平方根、积的乘方,解题的 关键是明确它们各自的计算方法.2.【答案】C【解析】解:5 300 万=5300×10 =5.3×10 .故选 C .科学记数法的表示形式为 a×10 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小 数点移动的位数相同.当原数绝对值大于 10 时,n 是正数;当原数的绝对值小于 1 时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10 的形式,其 中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.3.【答案】A【解析】解:如图所示,空心圆柱体的主视图是圆环.故选:A .找到从正面,看所得到的图形即可,注意所有的棱都应表现在主视图中.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现 出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.2 2 22 4 6 23 64 7 nn解:外角是:180°-150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数是解题关键.5.【答案】B【解析】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.6.【答案】D【解析】解:过C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠1=∠β,∠α=180°-∠2,∴∠α-∠β=180°-∠2-∠1=180°-∠BCD=90°,故选:D.过C作CF∥AB,根据平行线的性质得到∠1=∠β,∠2=180°-∠α,于是得到结论.本题考查了平行线的性质,熟记平行线的性质是解题的关键.解:∵四边形 ABCD 是平行四边形,∴OA=OC , ∵AE=EB , ∴OE= BC ,∵AE+EO=4, ∴2AE+2EO=8, ∴AB+BC=8,∴平行四边形 ABCD 的周长=2×8=16,故选:B .首先证明:OE= BC ,由 AE+EO=4,推出 AB+BC=8 即可解决问题;本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟 练掌握三角形的中位线定理,属于中考常考题型.8.【答案】D【解析】解:根据题意得 k+1≠0 且△=△ (-2) -4(k+1)≥0,解得 k ≤0 且 k ≠-1.故选:D .根据一元二次方程的定义和判别式的意义得到 k+1≠0 且△=△ (-2) -4(k +1)≥0, 然后求出两个不等式的公共部分即可.本题考查了根的判别式:一元二次方程 ax +bx+c=0(a ≠0)的根与△=b -4ac 有如下关系: △当>0 时,方程有两个不相等的实数根;当△=0△ 时,方程有两个相 等的实数根;当△<△ 0 时,方程无实数根.9.【答案】C【解析】解:函数 y=中 k=1>0,故图象在第一、三象限;函数 y=x-1 的图象在第一、 三、四象限,故选:C .根据反比例函数的性质可得:函数 y= 的图象在第一、三象限,由一次函数与系数的关系可得函数 y=x-1 的图象在第一、三、四象限,进而选出答案.2 22 2此题主要考查了反比例函数与一次函数图象,关键是掌握一次函数图象与系数的关系.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.10.【答案】C【解析】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=AB= DC,CD⊥CE,∵OA∥DC,∴===,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四边形ACBE是平行四边形,∵AB⊥EC,∴四边形ACBE是菱形,故①正确,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠B AE,故②正确,∵OA∥CD,∴∴===,=,故③错误,△设AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a△,AOC的面积 △=AOE 的面积=3a ,∴四边形 AFOE 的面积为 4a △,ODC 的面积为 6a∴S四 形:S =2:3.故④正确,故选:C .根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性 质一一判断即可;本题考查平行四 边形的性 质、菱形的判定和性 质、平行 线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数 解决问题,属于中考常考题型.11.【答案】a (b+3)(b -3)【解析】解:原式=a (b -9)=a (b+3)(b-3),故答案为:a (b+3)(b-3).根据提公因式,平方差公式,可得答案.本题考查了因式分解,一提,二套,三检查,分解要彻底.12.【答案】5【解析】解:当 x-2x=1 时,原式=2(x -2x )+3 =2×1+3=5,故答案为:5.将 x -2x=1 代入原式=2(x-2x )+3 计算可得.此题主要考 查了代数式求 值问题 ,要熟 练掌握,求代数式的 值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化 简;③已知条件和所给代数式都要化简.边 AFOE △COD 2 2 2 2 213.【答案】29【解析】 解:∠C=90°,∠CAD=32°⇒∠A DC=58°,DE 为 AB 的中垂线⇒∠B AD=∠B又∠BAD+∠B =58°⇒∠B=29°故填 29°利用中垂线和三角形外角性质计算.本题涉及中垂线和三角形外角性质,难度中等.14.【答案】1【解析】解:由题意得,(x+1) -(x+1)(x-2)=6,整理得,3x+3=6,解得,x=1,故答案为:1.根据题意列出方程,解方程即可.本题考查的是一元二次方程的解法,根据题意正确得到方程是解题的关键. 15.【答案】32【解析】【分析】本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引 x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点,本题作辅助线把△OAB的面积转化为两个三角形的面积的差是解题的关键.延长 AB 交 y 轴于点 C ,根据反比例函数系数的几何意义求出△BOC 的面积与△AOC 的面积,然后相 减即可得解.【解答】解:延长 BA 交 y 轴于点 C .S = ×5= ,S = ×8=4,2 △OAC △OCB则 S =S -S =4- = .故答案为 .16.【答案】(0,21009)【解析】解:由已知,点 A 每次旋转转动 45°,则转动一周需转动 8 次,每次转动点 A到原点的距离变为转动前的∵2018=252×8+2倍 ∴点 A 2018 的在 y 轴正半轴上,OA = 2018 1009 故答案为:(0,2 )本题点 A 坐标变化规律要分别从旋转次数与点 A 所在象限或坐标轴、点 A 到 原点的距离与旋转次数的对应关系.本题是平面直角坐 标系下的规律探究题,除了研究 动点变化的相关数据 规律, 还应该注意象限符号.17.【答案】解:方程整理得:xx −1-2x−1=4,去分母得:x -2=4(x -1),去括号得:x -2=4x -4,移项合并得:3x =2,解得:x =23,经检验 x =23 是原方程的解.【解析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到 x 的值,经 检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 18.【答案】解:原式=a+1−1a+1÷2aa2−1=aa+1•(a+1)(a−1)2a=a −12,当 a =-2 时,原式=−2−12=-32.【解析】先将括号中两 项通分,利用同分母分式减法法 则计算,再将除法 转化为乘法, 将式子化为最简,然后将 a 的值代入计算即可.△OAB △OCB △OAC =21009本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质.19.【答案】解:(1)如图所示,点D即为所求.(2)如图,连接AD,由作图知,BD=AD=6,∵△R t ABC中,∠B=30°,∴∠CAB=60°,∵BD=AD,∴∠B=∠BAD=30°,∴∠CAD=30°,则CD=12AD=3.【解析】(1)作线段AB的垂直平分线,与BC的交点即为所求;(2)连接AD,由作图知AD=BD,∠B=∠B AD=30°,再由∠CAD=60°知∠CAD=30°,从而依据CD=AD可得答案.本题主要考查作图-复杂作图,解题的关键是掌握线段中垂线的尺规作图和中垂线的性质及等腰三角形和直角三角形的性质.20.【答案】解:(1)根据题意得:15÷10%=150(名).本项调查中喜欢“跑步”的学生人数是;150-15-45-30=60(人),所占百分比是:60150×100%=40%,画图如下:(2)用A表示女生,B表示男生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是820=25.【解析】(1)用A的人数除以所占的百分比,即可求出调查的学生数;用抽查的总人数减去A、B、D的人数,求出喜欢“跑步”的学生人数,再除以被调查的学生数,求出所占的百分比,再画图即可;(2)用A表示女生,B表示男生,画出树形图,再根据概率公式进行计算即可.本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【答案】解:(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:20x+15y=38015x+10y=280,解得:x=16y=4.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100-a)件,根据题意得:16a+4(100-a)≤900,解得:a≤1253.∵a为整数,∴a≤41.答:A种奖品最多购买41件.【解析】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,找出关于a的一元一次不等式.(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100-a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.22.【答案】证明:(1)∵M是斜边BC的中点,∴AM=CM,∴∠MAC=∠C,∵∠MAC+∠BAN=90°,∠ABD+∠BAN=90°,∴∠MAC=ABD,∴∠C=∠ABD,∵∠BAC=∠DAB=90°,∴△ABC△∽ADB;(2)∵△ABC△∽ADB,∴ACAB=BCBD=2015=43,设AC=4x,AB=3x,可得:(4x)+(3x)=20,222解得:x=±4(负值舍去),∴AB=3x=12.【解析】(1)根据直角三角形的性质和相似三角形的判定证明即可;(2)根据相似三角形的性质解答即可.此题考查相似三角形的判定和性质,关键是根据直角三角形的性质和相似三角形的判定和性质解答.23.【答案】解:(1)∵四边形ABCD是平行四边形,O是BD中点,∴BC∥AD,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,根据菱形的性质可得:EF与BD互相垂直平分;(3)∵四边形BEDF是矩形∴∠AFB=90°又∵∠A=60°,∴∠ABF=30°,∴AF=12AB=12×4=2,∴△R t ABF中,BF=23,又∵AD=BC=6,∴DF=6-2=4,∴矩形 BEDF 的面积=BF ×DF =23×4=83.【解析】(1)根据平行四边形 ABCD 的性质,判 △定BOE ≌△DOF (ASA ),得出四边形 BEDF 的对角线互相平分,进而得出结论;(2)根据根据菱形的性质作出判断:EF 与 BD 互相垂直平分;(3)根据 Rt △ABF 的边角关系,求得 BF 和 AF ,再根据矩形的性质,求得 DF 的长,最后计算矩形的面积.本题主要考查了平行四边形的判定与性质,菱形、矩形的性质以及全等三角形的判定与性质,解题时注意:矩形的对边平行且相等,菱形的对角线互相垂 直平分,对角线互相平分的四边形是平行四边形.24.【答案】解:(1)把 A (1,6)代入 y =k2x 得,k =1×6=6, 所有反比例函数的解析式为y =6x ,把 B (a ,3)代入 y =6x 得,3=6a ,解得 a =2,所有 B 点坐标为(2,3),把 A (1,6)、B (2,3)代入 y =k x +b 得, 1 k1+b=62k1+b=3,解得k1=−3b=9,所有 k 、k 的值分别为-3,6; 1 2(2)1<x <2 时,k x +b-k2x >0;(4)PC =PE .理由如下:∵四边形 OBDE 为梯形,∴BC ∥OE ,而 B 点坐标为(2,3),∴C 点的纵坐标为 3,设 C 点坐标为(a ,3),∵CE ⊥x 轴,∴E 点坐标为(a ,0),P 点的横坐标为 a ,∵P 点在 y =6x 的图象上,∴P 点坐标为(a ,6a ),∵梯形 OBCE 的面积为 9,∴12(BC+OE )×CE =9,即 12(a +a -2)×3=9,解得 a =4,∴C 点坐标为(4,3),P 点坐标为(4,32),E 点坐标为(4,0),∴PC =3-32=32,PE=32-0=32,21∴PC=PE.【解析】可得a=2,(1)先把A(1,6)代入y=可求得k=1×6=6,再把B(a,3)代入y=2即B点坐标为(2,3),然后把A(1,6)、B(2,3)代入y=k x+b得到关于k 、b11的方程组,解方程组即可.(2)观察图象得到当x<0或1<x<2时,直线y=k x+b都在反比例函数y=1的图象上方,即k x+b->0;1(3)根据梯形的性质得到BC∥OE,则由B点坐标为(2,3),得到C点的纵坐标为3,设C点坐标为(a,3),则E点坐标为(a,0),P点的横坐标为a,利用P点在y=的图象上,则P点坐标为(a,),根据梯形的面积公式得到(BC+OE)×CE=9,即(a+a-2)×3=9,解得a=4,易得PC=3-,PE=-0=,于是有PC=PE.本题考查了反比例函数综合题:点在反比例函数图象上,点的横纵坐标满足反比例函数图象的解析式;平行于x轴的直线上的所有点的纵坐标相同;平行于y轴的直线上的所有点的横坐标相同;合理运用梯形的性质和面积公式建立等量关系.25.【答案】解:(Ⅰ)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在△R t ADC中,CD=AD2−AC2=4,∴BD=BC-CD=1,∴D(1,3).(Ⅱ)①如图②中,由四边形 ADEF 是矩形,得到∠ADE =90°,∵点 D 在线段 BE 上,∴∠ADB =90°,由(Ⅰ)可知,AD =AO ,又 AB =AB ,∠AOB =90°,∴ △R t ADB ≌ △R t AOB (HL ).②如图②中, △由ADB ≌△AOB ,得到∠BAD=∠BAO ,又在矩形 AOBC 中,OA ∥BC ,∴∠CBA =∠OAB ,∴∠BAD =∠CBA ,∴BH =AH ,设 AH =BH =m ,则 HC =BC -BH =5-m ,在 △R t AHC 中,∵AH =HC +AC , ∴m =3 +(5-m ), ∴m =175,∴BH =175,∴H (175,3).(Ⅲ)如图③中,当点 D 在线段 BK 上时 △,DEK 的面积最小,最小值=12•DE •DK =12×3× (5-342)=30−3344,当点 D 在 BA 的延长线上时 △,D ′E ′K 的面积最大,最大面积=12×D ′ E ′×KD ′=12×3×(5+342)=30+3344.综上所述,30−3344≤S ≤30+3344.【解析】(Ⅰ)如图①,在 Rt △ACD 中求出 CD 即可解决问题;(Ⅱ)①根据 HL 证明即可;②,设 AH=BH=m ,则 HC=BC-BH=5-m ,在 R t △AHC 中,根据 AH =HC +AC ,2 2 2 2 2 2 2 2 2构建方程求出m即可解决问题;(Ⅲ)如图③中,当点D在线段BK上时△,DEK的面积最小,当点D在BA的延长线上时△,D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题,属于中考压轴题.第20 页,共20 页。

广东省揭阳市九年级上学期期末数学试卷

广东省揭阳市九年级上学期期末数学试卷

广东省揭阳市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共8题;共16分)1. (2分)(2017·全椒模拟) 二次函数y=x2﹣2x的顶点为()A . (1,1)B . (2,﹣4)C . (﹣1,1)D . (1,﹣1)2. (2分)在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A .B .C .D . 13. (2分)如果给定数组中每一个数都加上同一个非零常数,则数据的()A . 平均数不变,方差不变B . 平均数改变,方差改变C . 平均数改变,方差不变D . 平均数不变,方差改变4. (2分)如图,在等边△ABC中,BC=6,点D,E分别在AB,AC上,DE∥BC,将△ADE沿DE翻折后,点A 落在点A′处.连结A A′并延长,交DE于点M,交BC于点N.如果点A′为MN的中点,那么△ADE的面积为()A .B . 3C . 6D . 95. (2分)(2017·埇桥模拟) 如图,在▱ABCD中,点E、F分别在边AD、BC上,且EF∥CD,G为边AD延长线上一点,连接BG,则图中与△ABG相似的三角形有()个.A . 1B . 2C . 3D . 46. (2分)下列图中是太阳光下形成的影子是()A .B .C .D .7. (2分)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为()A . 2009B . 2010C . 2011D . 20128. (2分) (2016七下·太原期中) 如图,是一台自动测温记录仪记录的图象,它反映了我市春季气温T(℃)随时间t(时)变化而变化的关系,观察图象得到下列信息,其中错误的是()A . 凌晨4时气温最低为﹣5℃B . 14时气温最高为16℃C . 从0时至14时,气温随时间推移而上升D . 从14时至24时,气温随时间推移而下降二、填空题: (共10题;共11分)9. (1分)(2017·东莞模拟) 如果 = ,那么 ________1 (填“=”“>”“<”)10. (1分)(2017·青浦模拟) 抛物线y=﹣ax2+2ax+3(a≠0)的对称轴是________.11. (1分) (2017九上·南涧期中) x2=x的解是________.12. (1分)(2017·邗江模拟) 如图,△ABC内接于⊙O,半径为5,BC=6,CD⊥AB于D点,则tan∠ACD的值为________.13. (2分)△ABC的3条边的长分别为6、8、10,与其相似的△DEF的最长边为15,则△DEF的最短边为________,△DE F的面积为________.14. (1分)如图,⊙I是△ABC的内切圆,切点分别为点D、E、F,若∠DEF=52o ,则∠A=________.15. (1分)如图,在△ABC中,AB=AC,点D在边BC上,连接AD,将线段AD绕点A逆时针旋转到AE,使得∠DAE=∠BAC,连接DE交AC于F,请写出图中一对相似的三角形:________(只要写出一对即可).16. (1分) (2017九上·常山月考) 教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是________17. (1分)(2017·烟台) 如图,在直角坐标系中,每个小方格的边长均为1,△AOB与△A′OB′是以原点O为位似中心的位似图形,且相似比为3:2,点A,B都在格点上,则点B′的坐标是________.18. (1分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…-4-3-2-10…y…3-2-5-6-5…则x<-2时, y的取值范围是________.三、解答题: (共10题;共121分)19. (10分)(2017·东光模拟) 计算:(1)﹣10﹣1+ ﹣5sin30°+(3.14﹣π)0(2)已知m2﹣5=3m,求代数式2m2﹣6m﹣1的值.20. (11分)(2017·邳州模拟) 人民网为了解百姓对时事政治关心程度,特对18~35岁的青年人每天发微博数量进行调查,设一个人的“日均发微博条数”为m,规定:当m≥10时为甲级,当5≤m<10时为乙级,当0≤m <5时为丙级,现随机抽取20个符合年龄条件的青年人开展调查,所抽青年人的“日均发微博条数”的数据如下:0828101375731210711368141512(1)样本数据中为甲级的频率为________;(直接填空)(2)求样本中乙级数据的中位数和众数.(3)从样本数据为丙级的人中随机抽取2人,用列举法或树状图求抽得2个人的“日均发微博条数”都是3的概率.21. (5分)如图,在矩形ABCD中,点E是CD的中点,点F是边AD上一点,连结FE并廷长交BC的延长线于点G,连接BF、BE。

<合集试卷3套>2018年广东省名校九年级上学期数学期末考试试题

<合集试卷3套>2018年广东省名校九年级上学期数学期末考试试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在平面直角坐标系xOy 中,点()()()()A 2,2,B 0,3,C 3,3,D 4,2---,y 是关于x 的二次函数,抛物线1y 经过点A B C ,,.抛物线2y 经过点B C D ,,,抛物线3y 经过点A B D ,,,抛物线4y 经过点A C D ,,,则下列判断:①四条抛物线的开口方向均向下;②当x 0<时,四条抛物线表达式中的y 均随x 的增大而增大; ③抛物线1y 的顶点在抛物线2y 顶点的上方; ④抛物线4y 与y 轴交点在点B 的上方. 其中正确的是 A .①②④ B .①③④ C .①②③ D .②③④【答案】A【分析】根据BC 的对称轴是直线x=1.5,AD 的对称轴是直线x=1,画大致示意图,即可进行判定. 【详解】解:①由()()()()A 2,2,B 0,3,C 3,3,D 4,2---可知,四条抛物线的开口方向均向下, 故①正确;②1y 和2y 的对称轴是直线x=1.5,3y 和4y 的对称轴是直线x=1,开口方向均向下,所以当x 0<时,四条抛物线表达式中的y 均随x 的增大而增大, 故②正确;③1y 和2y 的对称轴都是直线x=1.5,D 关于直线x=1.5的对称点为(-1,-2),而A 点坐标为(-2,-2),可以判断2y 比1y 更陡,所以抛物线1y 的顶点在抛物线2y 顶点的下方, 故③错误;④4y 的对称轴是直线x=1, C 关于直线x=1的对称点为(-1,3),可以判断出抛物线4y 与y 轴交点在点B 的上方, 故④正确.故选:A. 【点睛】本题考查了二次函数的图象和性质,根据对称点找到对称轴是解题的关键,充分运用数形结合的思想能使解题更加简便.如果逐个计算出解析式,工作量显然更大. 2.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和cy x=的图象为( )A .B .C .D .【答案】C【解析】根据二次函数y=ax 2+bx+c (a≠0)的图象可以得到a <0,b >0,c <0,由此可以判定y=ax+b 经过一、二、四象限,双曲线cy x=在二、四象限. 【详解】根据二次函数y=ax 2+bx+c (a≠0)的图象, 可得a <0,b >0,c <0, ∴y=ax+b 过一、二、四象限, 双曲线cy x=在二、四象限, ∴C 是正确的. 故选C . 【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系. 3.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a≠0)中的x 与y 的部分对应值如下表: x … ﹣3 ﹣2 ﹣1 0 1 … y…﹣6466…给出下列说法:①抛物线与y 轴的交点为(0,6); ②抛物线的对称轴在y 轴的左侧;③抛物线一定经过(3,0)点;④在对称轴左侧y随x的增大而减增大.从表中可知,其中正确的个数为()A.4 B.3 C.2 D.1 【答案】B【解析】试题分析:当x=0时y=6,x=1时y=6,x=﹣2时y=0,可得,解得,∴抛物线解析式为y=﹣x2+x+6=﹣(x﹣)2+,当x=0时y=6,∴抛物线与y轴的交点为(0,6),故①正确;抛物线的对称轴为x=,故②不正确;当x=3时,y=﹣9+3+6=0,∴抛物线过点(3,0),故③正确;∵抛物线开口向下,∴在对称轴左侧y随x的增大而增大,故④正确;综上可知正确的个数为3个,故选B.考点:二次函数的性质.4.如图所示的几何体的左视图是()A.B.C.D.【答案】A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】从左边看共一列,第一层是一个小正方形,第二层是一个小正方形,故选:A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图. 5.如图,在ABC 中,若2//,,43AD DE BC DE cm DB ==,则BC 的长是( )A .7cmB .10cmC .13cmD .15cm【答案】B【分析】根据平行线分线段成比例定理,先算出25AD AB =,可得25DE BC =,根据DE 的长即可求得BC 的长.【详解】解:∵23AD DB =, ∴25AD AB =, ∵//DE BC , ∴25AD DE AB BC ==, ∵4DE cm =, ∴BC 10cm =. 【点睛】本题考查了平行线分线段成比例定理,由题意求得25AD AB =是解题的关键. 6.将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是( ) A .(0,1) B .(2,﹣1)C .(4,1)D .(2,3)【答案】C【分析】把点(2,1)的横坐标加2,纵坐标不变即可得到对应点的坐标. 【详解】解:∵将点(2,1)向右平移2个单位长度, ∴得到的点的坐标是(2+2,1), 即:(4,1), 故选:C . 【点睛】本题主要考查了坐标系中点的平移规律,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.在Rt ABC ∆中,∠C=90°,∠A=2∠B ,则sin A 的值是( )A.12B.22C.32D.1【答案】C【分析】根据三角形内角和定理求出∠A的值,运用特殊角的三角函数值计算即可.【详解】∵∠A+∠B+∠C=180°,∠A=2∠B,∠C=90°,∴2∠B+∠B+90°=180°,∴∠B=30°,∴∠A=60°,∴3 sin sin602A=︒=.故选:C.【点睛】本题考查了三角形内角和定理的应用以及特殊角的三角函数值,准确掌握特殊角的三角函数值是解题关键.8.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的直径为5,BC=4,则AB的长为()A.25B.23C.4 D.5【答案】A【分析】连接BO,根据垂径定理得出BD,在△BOD中利用勾股定理解出OD,从而得出AD,在△ABD中利用勾股定理解出AB即可.【详解】连接OB,∵AO⊥BC,AO过O,BC=4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD22OB BD-22522⎛⎫-⎪⎝⎭32,∴AD=OA+OD=52+32=4,在Rt△ADB中,由勾股定理得:AB=22AD BD+=2224+=25,故选:A.【点睛】本题考查圆的垂径定理及勾股定理的应用,关键在于熟练掌握相关的基础性质.9.下列手机手势解锁图案中,是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.某水库大坝高20米,背水坝的坡度为3)A.40米B.60米C.303D.203【答案】A【解析】坡面的垂直高度h和水平宽度l的比叫做坡度(或坡比),我们把斜坡面与水平面的夹角叫做坡角,若用α表示,可知坡度与坡角的关系式,tanα(坡度)=垂直距离÷水平距离,根据公式可得水平距离,依据勾股定理可得问题的答案.【详解】∵大坝高20米,背水坝的坡度为1: 3∴水平距离33根据勾股定理可得背水面的坡长为40米.故选A.【点睛】本题考查解直角三角形的应用-坡度、坡角的有关知识,熟悉且会灵活应用坡度公式是解此题的关键.11.为了美化校园环境,加大校园绿化投资.某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x ,则( ) A .18(1+2x )=33 B .18(1+x 2)=33C .18(1+x )2=33D .18(1+x )+18(1+x )2=33【答案】C【解析】根据题意可以列出相应的一元二次方程,本题得以解决. 【详解】由题意可得, 18(1+x )2=33, 故选:C . 【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的增长率问题.12.如图,AB ∥CD ,E ,F 分别为AC ,BD 的中点,若AB=5,CD=3,则EF 的长是( )A .4B .3C .2D .1【答案】D【详解】连接DE 并延长交AB 于H ,∵CD ∥AB ,∴∠C=∠A ,∠CDE=∠AHE .∵E 是AC 中点,∴DE=EH .∴△DCE ≌△HAE (AAS ). ∴DE=HE ,DC=AH .∵F 是BD 中点,∴EF 是△DHB 的中位线.∴EF=12BH . ∴BH=AB ﹣AH=AB ﹣DC=2.∴EF=2.故选D . 二、填空题(本题包括8个小题) 13.函数2y x =-x 的取值范围是_____.【答案】2x ≥【分析】根据被开方式是非负数列式求解即可.【详解】依题意,得20x-≥,解得:2x≥,故答案为2x≥.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.14.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度h(单位:m)与水流喷出时间t(单位:s)之间的关系式为2305h t t=-,那么水流从喷出至回落到水池所需要的时间是__________s.【答案】1【分析】由于水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2即可求出t,也就求出了水流从抛出至回落到地面所需要的时间.【详解】水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2得:5t2-30t=0,解得:t1=0(舍去),t2=1.故水流从抛出至回落到地面所需要的时间1s.故答案为:1【点睛】本题考查的是二次函数在实际生活中的应用,关键是正确理解题意,利用函数解决问题,结合实际判断所得出的解.15.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为_______cm.【答案】5 3π【分析】根据Rt△ABC中的30°角所对的直角边是斜边的一半、直角三角形斜边上的中线等于斜边的一半以及旋转的性质推知△AA′C是等边三角形,所以根据等边三角形的性质利用弧长公式来求CA′旋转所构成的扇形的弧长.【详解】解: ∵在Rt △ABC 中,∠B=30°,AB=10cm ,∴AC=12AB=5cm . 根据旋转的性质知,A′C=AC ,∴A′C=12AB=5cm . ∴点A′是斜边AB 的中点,∴AA′=12AB=5cm . ∴AA′=A′C=AC ,∴∠A′CA=60°. ∴CA′旋转所构成的扇形的弧长为:60551803ππ⨯⨯=(cm ).故答案为:53π. 16.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________; 【答案】5【分析】先确定外接圆的半径是AB ,圆心在AB 的中点,再计算AB 的长,由此求出外接圆的半径为5. 【详解】∵在△ABC 中,∠C=90°,∴△ABC 外接圆直径为斜边AB 、圆心是AB 的中点, ∵∠C=90°,AC=6,BC=8, ∴22226810ABAC BC ,∴△ABC 外接圆半径为5. 故答案为:5. 【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.17.如图,已知点A ,点C 在反比例函数y =kx(k >0,x >0)的图象上,AB ⊥x 轴于点B ,OC 交AB 于点D ,若CD =OD ,则△AOD 与△BCD 的面积比为__.【答案】1.【分析】作CE ⊥x 轴于E ,如图,利用平行线分线段成比例得到OB OE =BD CE =OD OC =12,设D (m ,n ),则C (2m ,2n ),再根据反比例函数图象上点的坐标特征得到k =4mn ,则A (m ,4n ),然后根据三角形面积公式用m 、n 表示S △AOD 和S △BCD ,从而得到它们的比.【详解】作CE ⊥x 轴于E ,如图,∵DB ∥CE , ∴OB OE =BD CE =OD OC =12, 设D (m ,n ),则C (2m ,2n ), ∵C (2m ,2n )在反比例函数图象上, ∴k =2m×2n =4mn , ∴A (m ,4n ),∵S △AOD =12×(4n ﹣n )×m =32mn ,S △BCD =12×(2m ﹣m )×n =12mn ∴△AOD 与△BCD 的面积比=32mn :12mn =1.故答案为1. 【点睛】考核知识点:平行线分线段成比例,反比例函数;数形结合,利用平行线分线段成比例,反比例函数定义求出点的坐标关系是关键.18.写出一个图象的顶点在原点,开口向下的二次函数的表达式_____. 【答案】y=﹣2x 2(答案不唯一)【分析】由题意知,图象过原点,开口向下则二次项系数为负数,由此可写出满足条件的二次函数的表达式.【详解】解:由题意可得:y=﹣2x 2(答案不唯一). 故答案为:y=﹣2x 2(答案不唯一). 【点睛】本题考查了二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键. 三、解答题(本题包括8个小题) 19.解下列方程:()21810(x x -+=配方法) ()()23122x x x -=-.【答案】()1415x =;() 21x =或23x =-. 【解析】试题分析:(1)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半的平方,把方程左边写完全平方的形式,然后用直接开平方法求解;(2)把方程右边的项移到左边,然后用因式分解法求解.试题解析:()2181x x -=-,2816116x x ∴-+=-+,即2(4)15x -=,则4x -=4x ∴=±()()()231210x x x -+-=,()()1320x x ∴-+=,则10x -=或320x +=,解得:1x =或23x =-. 20.用适当方法解下列方程.(1) 23x l 4x -= (2) ()()()2x 2x 5x l 2x 5+=-+【答案】(1)123x +=,223x =;(2)11x =-,252x =- 【解析】(1) 23l 4x x -= ,234l 0x x --= ,△=16-4×3×(-1)=28,∴442663x ±±=== ,∴1x =2x = (2) ()()()2x 2x 5x l 2x 5+=-+,()()()2x 2x 5x l 2x 50+--+=,()()2x 5x l 0++=,∴2x 50+=或x l 0+=,∴11x =-,252x =- 21.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.【答案】王老师购买该奖品的件数为40件.【解析】试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.试题解析:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x 件,则每件商品的价格为:[40﹣(x ﹣30)×0.5]元,根据题意可得:x[40﹣(x ﹣30)×0.5]=1400,解得:x 1=40,x 2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.考点:一元二次方程的应用.22.已知关于x 的方程()2120x m x m -++=的一个实数根是3,求另一根及m 的值. 【答案】6m =,另一根为4.【分析】把3x =代入方程求出m 的值,再把m 代入原方程即可求解.【详解】解:把3x =代入方程,得()93120m m -++=,解得6m =,把6m =代入原方程,得27120x x -+=,解得13x =,24x =.所以另一根为4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知方程的解的定义及方程的解法.23.解方程:x 2﹣6x ﹣40=0【答案】x 1=10,x 2=﹣1.【分析】用因式分解法即可求解.【详解】解:x 2﹣6x ﹣10=0,(x ﹣10)(x+1)=0,∴x﹣10=0或x+1=0,∴x1=10,x2=﹣1.【点睛】本题考查一元二次方程的解法,解题的关键是掌握一元二次方程的解法,有直接开平方法、配方法、公式法、因式分解法.24.在一个不透明的口袋里有标号为1,2,3,45,的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.(1)下列说法:①摸一次,摸出一号球和摸出5号球的概率相同;②有放回的连续摸10次,则一定摸出2号球两次;③有放回的连续摸4次,则摸出四个球标号数字之和可能是20.其中正确的序号是(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率,(用列表法或树状图)【答案】(1)①③;(2)3 5【分析】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,错误;③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;(2)列表得出所有等可能的情况数,找出两球标号数字是一奇一偶的情况数,即可求出所求的概率.【详解】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,错误;③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;故答案为:①③;(2)列表如下:所有等可能的情况有20种,其中数字是一奇一偶的情况有12种,则P (一奇一偶)=123205=. 【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.25.三台县教育和体育局为帮助万福村李大爷“精准脱贫”,在网上销售李大爷自己手工做的竹帘,其成本为每张40元,当售价为每张80元时,每月可销售100张.为了吸引更多顾客,采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5张.设每张竹帘的售价为x 元(x 为正整数),每月的销售量为y 张.(1)直接写出y 与x 的函数关系式;(2)设该网店每月获得的利润为w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)李大爷深感扶贫政策给自己带来的好处,为了回报社会,他决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,求销售单价应该定在什么范围内?【答案】(1)5500y x =-+;(2)当降价10元时,每月获得最大利润为4500元;(3)6674x ≤≤.【分析】(1)根据“销售单价每降1元,则每月可多销售5张”写出y 与x 的函数关系式即可;(2)根据题意,利用利润=每件的利润×数量即可得出w 关于x 的表达式,再利用二次函数的性质即可得到最大值;(3)先求出每月利润为4220元时对应的两个x 值,再根据二次函数的图象和性质即可得出答案.【详解】(1)由题意可得:()100580y x =+-整理得5500y x =-+;(2)由题意,得: ()()405500w x x =--+2570020000x x =-+-()25704500x =--+∵50a =-<.∴w 有最大值即当70x =时,=4500w 最大值∴应降价807010-=(元)答:当降价10元时,每月获得最大利润为4500元;(3)由题意,得:()257045004220200x --+=+解之,得:166x =,274x =,∵抛物线开口向下,对称轴为直线70x =,∴6674x ≤≤.【点睛】本题主要考查二次函数的应用,掌握二次函数的图象和性质以及一元二次方程的解法是解题的关键. 26.解方程2213x x +=【答案】11x =,212x =. 【解析】分析:用配方法解一元二次方程即可.还可以用公式法或者因式分解法. 详解:方法一:移项,得2231x x -=-,二次项系数化为1,得23122x x -=-, 22233132424x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭, 231416x ⎛⎫-= ⎪⎝⎭, 由此可得3144x -=±, 11x =,212x =. 方法二:方程整理得:22310x x -+=,分解因式得:(x−1)(2x−1)=0,解得:11x =,212x =. 点睛:考查解一元二次方程,常见的方法有:直接开方法,配方法,公式法和因式分解法,观察题目选择合适的方法.27.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1) 请画出△ABC 向左平移5个单位长度后得到的△A B C ;(2) 请画出△ABC 关于原点对称的△A B C ;(3) 在轴上求作一点P ,使△PAB 的周长最小,请画出△PAB ,并直接写出P 的坐标.【答案】(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0)【分析】(1)按题目的要求平移就可以了关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可(3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.【详解】(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,点P的坐标为:(2,0)【点睛】1、图形的平移;2、中心对称;3、轴对称的应用九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx ﹣2的解集是().A.514x<<B.413x<<C.513x<<D.1<x<2【答案】C【分析】先把A点代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m−3,接着解(m−3)x+3>mx−2得x<53,然后利用函数图象可得不等式组mx>kx+b>mx−2的解集.【详解】把P(1,m)代入y=kx+3得k+3=m,解得k=m−3,解(m−3)x+3>mx−2得x<53,所以不等式组mx>kx+b>mx−2的解集是1<x<53.故选:C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.2.已知关于x的方程x2﹣x+m=0的一个根是3,则另一个根是()A.﹣6 B.6 C.﹣2 D.2【答案】C【分析】由于已知方程的二次项系数和一次项系数,所以要求方程的另一根,可利用一元二次方程的两根之和与系数的关系.【详解】解:设a是方程x1﹣5x+k=0的另一个根,则a+3=1,即a=﹣1.故选:C.【点睛】此题主要考查一元二次方程的根,解题的关键是熟知一元二次方程根与系数的关系.3.顺次连接平行四边形四边的中点所得的四边形是()A.矩形B.菱形C.正方形D.平行四边形【答案】D【解析】试题分析:顺次连接四边形四边的中点所得的四边形是平行四边形,如果原四边形的对角线互相垂直,那么所得的四边形是矩形,如果原四边形的对角线相等,那么所得的四边形是菱形,如果原四边形的对角线相等且互相垂直,那么所得的四边形是正方形,因为平行四边形的对角线不一定相等或互相垂直,因此得平行四边形.故选D.考点:中点四边形的形状判断.4.如图所示几何体的左视图正确的是()A.B.C.D.【答案】A【分析】左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可.【详解】该几何体的左视图为:是一个矩形,且矩形中有两条横向的虚线.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图5.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3,过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2017的横坐标为()A.100833B.0 C.10093D.1007【答案】A【分析】由题意根据坐标的变化找出变化规律并依此规律结合2017=504×4+1即可得出点A2017的坐标进而得出横坐标.【详解】解:∵∠A1A2O=30°,点A1的坐标为(1,0),∴点A2的坐标为(0.∵A2A3⊥A1A2,∴点A3的坐标为(-3,0).同理可得:A4(0,-3 ,A5(9,0),A6(0,9 ,…,∴A4n+1(4n,0),A4n+2(0,4n+1),A4n+3(-( 4n+2,0),A4n+4(0,-( )4n+3)(n为自然数).∵2017=504×4+1,3.∴A2017(2016,0),即(31008,0),点A2017的横坐标为1008故选:A.【点睛】本题考查规律型中点的坐标以及含30度角的直角三角形,根据点的变化找出变化规律是解题的关键. 6.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线互相平分且相等【答案】B【分析】矩形、菱形、正方形都是特殊的平行四边形,因而平行四边形的性质就是四个图形都具有的性质.【详解】解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.故选:B.【点睛】本题主要考查了正方形、矩形、菱形、平行四边形的性质,理解四个图形之间的关系是解题关键.7.下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得【答案】C【解析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1【详解】A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误;D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C.【点睛】本题考查了概率的意义,概率的意义反映的只是这一事件发生的可能性的大小,概率取值范围:0≤p ≤1,其中必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0;随机事件,发生的概率大于0并且小于1.事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.8.如图,是抛物线2y ax bx c =++的图象,根据图象信息分析下列结论:①20a b +=;②0abc >;③240b ac ->;④420a b c ++<.其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④【答案】D 【分析】采用数形结合的方法解题,根据抛物线的开口方向,对称轴,与x 、y 轴的交点,通过推算进行判断. 【详解】①根据抛物线对称轴可得12b x a=-= ,20a b +=,正确; ②当x=0 ,c 0y =< ,根据二次函数开口向下和12b a -=得,0a < 和0b > ,所以0abc >,正确; ③二次函数与x 轴有两个交点,故240b ac =-> ,正确;④由题意得,当x 0= 和x=2 时,y 的值相等,当x 0=,y 0< ,所以当x=2,y 420a b c =++< ,正确;故答案为:D .【点睛】本题考查了二次函数的性质和判断,掌握二次函数的性质是解题的关键.9.一个圆柱和一个正方体按如图所示放置,则其俯视图为( )A .B .C .D .【答案】D【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:一个圆柱和一个正方体按如图所示放置,则其俯视图为左边是一个圆,右边是一个正方形. 故选:D .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.10.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】A【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合求解.【详解】B 既是轴对称图形,又是中心对称图形;C 只是轴对称图形;D 既不是轴对称图形也不是中心对称图形,只有A 符合.故选A.11.若关于x 的一元二次方程()21630k x x -++=有实数根,则实数k 的取值范围为( )A .4k ≤,且1k ≠B .4k <,且1k ≠C .4k <D .4k ≤【答案】A 【解析】∵原方程为一元二次方程,且有实数根,∴k -1≠0且△=62-4×(k-1)×3=48-12k≥0,解得k≤4,∴实数k 的取值范围为k≤4,且k≠1,故选A .12.如图,小明为了测量一凉亭的高度AB (顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶DE (0.5m DE BC ==,A ,C ,B 三点共线),把一面镜子水平放置在平台上的点G 处,测得15m CG =,然后沿直线CG 后退到点E 处,这时在镜子里恰好看到凉亭的顶端A ,测得3m EG =.若小明身高1.6m ,则凉亭的高度AB 约为( )A .2.5mB .9mC .9.5mD .10m【答案】A【分析】根据光线反射角等于入射角可得AGC FGE ∠=∠,根据90ACG FEG ∠=∠=︒可证明ACG FEG ,根据相似三角形的性质可求出AC 的长,进而求出AB 的长即可.【详解】∵光线反射角等于入射角,∴AGC FGE ∠=∠,∵90ACG FEG ∠=∠=︒,∴ACG FEG , ∴ AC CG FE EG=, ∴1516.3AC =, ∴8AC =,∴()8058.5m AB AC BC =+=+=.. 故选A .【点睛】本题考查相似三角形的应用,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;熟练掌握相似三角形的判定定理是解题关键.熟练掌握相似三角形的判定定理是解题关键.二、填空题(本题包括8个小题)13.如图,在菱形c 中,,,E P Q 分别是边AB ,对角线BD 与边AD 上的动点,连接,EP PQ ,若60,6ABC AB ∠=︒=,则EP PQ +的最小值是___.【答案】33【分析】作点Q 关于BD 对称的对称点Q’,连接PQ ,根据两平行线之间垂线段最短,即有当E 、P 、Q’在同一直线上且'EQ AB ⊥ 时,'EP PQ +的值最小,再利用菱形的面积公式,求出EP PQ +的最小值.【详解】作点Q 关于BD 对称的对称点Q’,连接PQ .∵四边形ABCD 为菱形∴'PQ PQ = ,//AB CD∴'EP PQ EP PQ +=+当E 、P 、Q’在同一直线上时,'EP PQ +的值最小∵ 两平行线之间垂线段最短∴当'EQ AB ⊥ 时,'EP PQ +的值最小∵60,6ABC AB ∠=︒=∴6AC = ,2cos306=63BD =⨯︒⨯ ∴11832S ABCD AC BD =⨯= ∵'6'S ABCD AB EQ EQ =⨯= ∴6'183EQ =解得'33EQ =∴EP PQ +的最小值是33 . 故答案为:33.【点睛】本题考查了菱形的综合应用题,掌握菱形的面积公式以及两平行线之间垂线段最短是解题的关键. 14.如图在Rt △OAB 中∠AOB =20°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB =____.【答案】80°.【分析】由将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,可求得∠A 1OA 的度数,继而求得答案.【详解】∵将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,∴∠A 1OA =100°,∵∠AOB =20°,∴∠A 1OB =∠A 1OA ﹣∠AOB =80°.故答案为:80°.。

广东省揭阳市九年级上学期数学期末考试试卷

广东省揭阳市九年级上学期数学期末考试试卷

广东省揭阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2019·东台模拟) 如图,由5个完全相同的小正方体组合成的几何体,它的俯视图为()A .B .C .D .2. (2分) (2020九上·来宾期末) 已知反比例函数y= ,则其图象在平面直角坐标系中可能是()A .B .C .D .3. (2分) (2018九上·西安月考) 如图,直线l1∥l2∥l3 ,另两条直线分别交l1 , l2 , l3于点A,B,C及点D,E,F,且AB=3,DE=4,EF=2,则()A . BC∶DE=1∶2B . BC∶DE=2∶3C . BC·DE=8D . BC·DE=64. (2分)如图,矩形ABCD中,BE、CF分别平分∠ABC和∠DCB,点E、F都在AD上,下列结论不正确的是()A . △ABE≌△DCFB . △ABE和△DCF都是等腰直角三角形C . 四边形BCFE是等腰梯形D . E、F是AD的三等分点5. (2分)根据下列表格的对应值:x0.000.250.500.75 1.00x2+5x﹣3﹣3.00﹣1.69﹣0.25 1.31 3.00可得方程x2+5x﹣3=0一个解x的范围是()A . 0<x<25B . 0.25<x<0.50C . 0.50<x<0.75D . 0.75<x<16. (2分)下列命题中正确的是()A . 对角线相等的四边形是菱形B . 对角线互相垂直的四边形是菱形C . 对角线相等的平行四边形是菱形D . 对角线互相垂直的平行四边形是菱形7. (2分)(2019·武汉模拟) 如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为()A . 0.33B . 0.34C . 0.20D . 0.358. (2分)如图,ΔABC中,∠C=90°,CD⊥AB,DE⊥AC,则图中与ΔABC相似的三角形有()A . 4个B . 3个C . 2个D . 1个9. (2分)一等腰三角形的两边长是方程x2-5x+6=0的两根,则这等腰三角形的周长为()A . 7B . 8C . 7或8D . 不能确定10. (2分)(2017·成武模拟) 如图,四边形EFGH与四边形ABCD均为矩形,点E,F,G,H分别在边AB,BC,CD,DA上,且EF=3HE,AB=2BC,则tan∠AHE=()A .B .C .D .11. (2分) (2018九上·和平期末) 某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为()A . 25(1+x)2=64B . 25(1﹣x)2=64C . 64(1+x)2=25D . 64(1﹣x)2=2512. (2分) (2016八上·重庆期中) 已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A . ∠A与∠D互为余角B . ∠A=∠2C . △ABC≌△CEDD . ∠1=∠2二、填空题 (共4题;共4分)13. (1分) (2016八下·江汉期中) 矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为________ cm.14. (1分)(2017·眉山) 已知反比例函数y= ,当x<﹣1时,y的取值范围为________.15. (1分)如图,在梯形ABCD中,DC∥AB,AC与BD相交于O点,且,S△COD=12,则△ABC 的面积是________ .16. (1分) (2016八下·云梦期中) 如图,以菱形AOBC的顶点O为原点,对角线OC所在直线为x轴建立平面直角坐标系,若OB=5,点C的坐标为(8,0),则点A的坐标为________三、解答题 (共7题;共53分)17. (10分)用公式法解方程:(1);(2)(3)(4)18. (10分)(2016九上·仙游期末) 在平面直角坐标系中,的三个顶点坐标分别为A(2,-4),B(3,-2), C(6,-3).①画出△ABC关于轴对称的△A1B1C1;②以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2 ,使△A2B2C2与△A1B1C1的相似比为2︰1.19. (10分) (2018九上·北京月考) 已知关于x的方程x2-(m+2)x+(2m-1)=0。

广东省揭阳市揭西县2018届九年级中考模拟考试数学试卷(含答案)

广东省揭阳市揭西县2018届九年级中考模拟考试数学试卷(含答案)

广东省揭阳市揭西县2018届九年级中考模拟考试数学试卷(含答案)九年级数学试题注意:请把答案写在答卷相应题号的位置上。

本试卷满分:120分,考试时间:100分钟一、选择题(每小题3分,共30分)1、下面左图中所示几何体的左视图是( )2.下列方程中是一元二次方程的是( )A.2)3)(2(x x x =-+B.62=yC.51322=+-x x D.132=+y x 3.已知点(3,﹣4)在反比例函数xk y =的图象上,则下列各点也在该反比例函数图象上的是( ) A .(3,4) B .(-3,-4) C .(-2,6)D .(2,6) 4.已知三角形的两边长分别是3和4,第三边是方程035122=+-x x 的一个根,则此三角形的周长是( )A.12B.14 C .15 D .12或145.有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、等腰梯形四个图案,卡片背面完全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( )A . 41B .21C .43D . 16.下列说法中,不正确的是( )A .两组对边分别平行的四边形是平行四边形B.对角线互相平分且垂直的四边形是菱形C.一组对边平行另外一组对边相等的四边形是平行四边形D.有一组邻边相等的矩形是正方形7.如果ab=cd ,且abcd ≠0,则下列比例式不正确的是( ) A.d c b a = B.b d c a = C.a c d b = D.ca b d = 8.已知一次函数b kx y +=的图象经过第一、三、四象限,则反比例函数xkb y =的图象在( ) A .一、二象限 B .一、三象限 C .三、四象限 D .二、四象限9.关于x 的一元二次方程0242=-+x kx 有实数根,则k 的取值范围是( )A .2-≥kB .0k 2≠->且kC .02≠-≥k k 且D .2-≤k10.如图,在矩形ABCD 中,AB=4,BC=3,点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( ) A.2 B.25 C.5 D.825二.填空题:(每小题4分,共24分)11.如图,直线l 1//l 2//l 3且与直线a 、b 相交于点A 、B 、C 、D 、E 、F ,若AB=1,BC=2,DE=1.5,则DF= .12.在一个不透明的袋子中有50个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为36%,估计袋中白球有 个.13.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x 人,则根据题意可列方程为 .14.反比例函数xk y =(k>0)图象上有两点),(11y x 与),(22y x ,且210x x <<,则1y 2y (填“>”或“=”或“<”).15.如图,在等边三角形ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且∠ADF=∠BED=∠CFE=90°,则△DEF 与△ABC 的面积之比为 .16. 如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 在OC 上一点(不与点O 、C 重合),AF ⊥BE 于点F ,AF交BD 于点G ,则下述结论:①BCE ABG ∆≅∆、②AG=BE 、③∠DAG=∠BGF 、④AE =DG 中,一定成立的有 . 三、解答题(一)(每小题6分,共18分)17、解方程:)2(4)2(3x x x -=-18. 如图,点O 是平面直角坐标系的原点,点A 、B 、C 的坐标分别是(1,-1)、(2,1)、(1,1).(1)作图:以点O 为位似中心在y 轴的左侧把原来的四边形OABC 放大两倍(不要求写出作图过程);(2)直接写出点A 、B 、C 对应点A ’、B ’、C ’的坐标.19.布袋里有四个小球,球表面分别标有2、3、4、6四个数字,它们的材质、形状、大小完全相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017--2018学年度第一学期期末教学质量检查 九年级数学试题 注意:请把答案写在答卷相应题号的位置上。 本试卷满分:120分,考试时间:100分钟 一、选择题(每小题3分,共30分)

1、下面左图中所示几何体的左视图是( )

2.下列方程中是一元二次方程的是( ) A.2)3)(2(xxx B.62y C.51322xx D.132yx

3.已知点(3,﹣4)在反比例函数xky的图象上,则下列各点也在该反比例函数图象上的是( ) A.(3,4) B.(-3,-4) C.(-2,6) D.(2,6) 4.已知三角形的两边长分别是3和4,第三边是方程035122xx的一个根,则此三角形的周长是( ) A.12 B.14 C.15 D.12或14 5.有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、等腰梯形四个图案,卡片背面完全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( )

A. 41 B.21 C.43 D. 1 6.下列说法中,不正确的是( ) A.两组对边分别平行的四边形是平行四边形 B.对角线互相平分且垂直的四边形是菱形 C.一组对边平行另外一组对边相等的四边形是平行四边形 D.有一组邻边相等的矩形是正方形

7.如果ab=cd,且abcd≠0,则下列比例式不正确的是( ) A.dcba B.bdca C.acdb D.cabd 8.已知一次函数bkxy的图象经过第一、三、四象限,则反比例函数xkby的图象在( ) A.一、二象限 B.一、三象限 C.三、四象限 D.二、四象限

9.关于x的一元二次方程0242xkx有实数根,则k的取值范围是( ) A.2k B.0k2且k C.02kk且 D.2k 10.如图,在矩形ABCD中,AB=4,BC=3,点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )

A.2 B. 25 C.5 D.8

25

二.填空题:(每小题4分,共24分) 11.如图,直线l1//l2//l3且与直线a、b相交于点A、B、C、D、E、F,若AB=1,BC=2,DE=1.5,则DF= . 12.在一个不透明的袋子中有50个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为36%,估计袋中白球 有 个. 13.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题

意可列方程为 . 14.反比例函数xky(k>0)图象上有两点),(11yx与),(22yx,且210xx,则1y 2y(填“”或“”或“”). 15.如图,在等边三角形ABC中,点D、E、F分别在边AB、BC、CA上,且∠ADF=∠BED=∠CFE=90°,则△DEF与△ABC的面积之比为 .

16. 如图,在正方形ABCD中,对角线AC与BD相交于点O, 点E在OC上一点(不与点O、C重合),AF⊥BE于点F,AF 交BD于点G,则下述结论:①BCEABG、②AG=BE、 ③∠DAG=∠BGF、④AE=DG中,一定成立的有 . 三、解答题(一)(每小题6分,共18分) 17、解方程:)2(4)2(3xxx 18. 如图,点O是平面直角坐标系的原点,点A、B、C的坐标分别是(1,-1)、(2,1)、(1,1). (1)作图:以点O为位似中心在y轴的左侧把原来的四边形OABC放大两倍(不要求写出作图过程); (2)直接写出点A、B、C对应点A’、B’、C’的坐标.

19.布袋里有四个小球,球表面分别标有2、3、4、6四个数字,它们的材质、形状、大小完全相同。从中随机摸出一个小球记下数字为x,再从剩下的三个球中随机摸出一个球记下数字为y,点A的坐标为(x,y).运用画树状图或列表的方法,写出A点所有可能的坐标,并

求出点A在反比例函数xy12图象上的概率. 四、解答题(二)(每小题7分,共21分) 20.如图,为测量旗杆的高度,身高1.6m的小明在阳光下的影长为1.4m,同一时刻旗杆在太阳光下的影子一部分落在地面上,一部分落墙上,测量发现落在地面上的影长BC=9.2m,落在墙上的影长CD=1.5m,请你计算旗杆AB的高度.(结果精确到1m)

21.如图,在等边三角形ABC中,D是BC的中点,以AD为边向左侧作等边三角形ADE. (1)求∠CAE的度数. (2)取AB的中点F,连接CF、EF.试证明四边形CDEF是平行四边形.

22.如图,某养猪户想用30米长的围栏设计一个矩形的养猪圈,其中猪圈一边靠墙MN,另外三边用围栏围住,MN的长度为15m,为了让围成的猪圈(矩形ABCD)面积达到112m2,请你帮忙计算一下猪圈的长与宽分别是多少?

五、解答题(三)(每小题9分,共27分) 23.如图,一次函数)13(kxy和反比例函数xky的图象相交于点A与点B.过A点作AC⊥x轴于点C,6AOCS.

(1)求反比例函数和一次函数的解析式; (2)求点A与点B的坐标; (3)求△AOB的面积.

24.如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts. (1) 当t为何值时,四边形ABQP是矩形; (2) 当t为何值时,四边形AQCP是菱形; (3) 分别求出(2)中菱形AQCP的周长和面积.

25.如图1,在Rt△ABC中,∠BAC=90º.AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E. (1) 求证:△ABF∽△COE;

(2) 当O为AC边中点,且2ABAC时,如图2,求OEOF的值; (3) 当O为AC边中点,且nABAC时,直接写出OEOF的值. 九年级数学参考解答 一、选择题(每小题3分,共30分) 1.B 2.B 3.C 4.A 5.B 6.C 7.A 8.D 9.C 10.D 二、填空题(每小题4分,共24分) 11.4.5 12.18 13.110)1(xx 14. > 15.31 16.①②④ 三、解答题(一)(每小题6分,共18分) 17.2,3421xx 18.解:(1)如图,四边形OA’B’C’为所求. (2)A’(-2,2),B’(-4,-2),C’(-2,-2) 19.解:依题意列表得: x y 2 3 4 6

2 (2,3) (2,4) (2,6) 3 (3,2) (3,4) (3,6) 4 (4,2) (4,3) (4,6) 6 (6,2) (6,3) (6,4) 由上表可得,点A的坐标共有12种结果,其中点A在反比例函数xy12上的有4种: (2,6)、(3,4)、(4,3)、(6,2),∴点A在反比例函数xy12上的概率为12431. 四、解答题(二)(每小题7分,共21分) 20.(1)解:如图,过点D作DE⊥AB交AB于E, ∵∠B=∠BCD=90º ∴即四边形BCDE为矩形 ∴BE=CD=1.5,ED=BC=9.2 由已知可得4.16.1EDAE ∴5.104.16.12.94.16.1DEAE ∴AB=AE+BE=10.5+1.5=12(m) 因此,旗杆AB的高度为12m. 21.解:(1)∵△ABC与△ADE为等边三角形 ∴∠BAC=∠DAE=60º ∵D是BC的中点 ∴∠CAD=∠DAB=2160º=30º ∴∠CAE=∠CAD+∠DAE=30º+60º=90º (2)在等边△ABC中,D、F分别是BC、AB的中点 ∴AD=CF,∠FCB=2160º=30º,AD⊥BC 在等边△ADE中,AD=DE,∠ADE=60º ∴CF=AD=DE,∠EDB=90º-60º=30º=∠FCB ∴CF∥DE ∴四边形CDEF是平行四边形. 22. 解:设猪圈靠墙的一边长为x米,依题意得:112)230(xx

即:056152xx 解得:8,721xx 当7x时,x23030-7×2=16>15,不合题意,舍去. 当8x时,x23030-8×2=14<15,符合题意. 答:猪圈的长是14m,宽是8m. 五、解答题(三)(每小题9分,共27分) 23.解:(1)设A点坐标为),(yx,

∵A点在反比例函数xky图象上,∴kxy ∵622xyACOCSAOC ∴12xyxy=-12,即12k ∴反比例函数的解析式为xy12,一次函数解析式为1xy

(2)由(1)可得112xyxy,解得3411yx,4322yx ∴A(-3,4),B(4,-3) (3)过点B作BD⊥x轴于点D ∵A(-3,4),B(4,-3) ∴ AC=4,BD=3

相关文档
最新文档