空间两条直线的位置关系
必修2-2.1.2空间两条直线之间的位置关系

β
a
b
α
α
a
思考2:分别在不同平面内的直线是异面直线吗?
2018/10/27
欢迎加微信交流:pzyandong
3
思考1:空间中的直线与直线之间有几种位置关系?它们各有什么特点? 相交直线: 同一平面内,1个公共点; 共面直线 平行直线: 同一平面内,0个公共点;
异面直线: 不同在任何一个平面内,0个公共点。
2018/10/27
欢迎加微信交流:pzyandong
12
2.异面直线 (1)定义:把不同在__________ 任何一个平面内的两条直线叫做异面直线. (2)画法:(通常用平面衬托)
2018/10/27
欢迎加微信交流:pzyandong
13
平面内一点与平面外一点连线和这个平面内直线的关系是__________. 答案:相交或异面
欢迎加微信交流:pzyandong
6
知识探究(三):等角定理
思考5:在平面上,如果一个角的两边与另一个角的两边分别平行,那么这两 个角的大小有什么关系?
定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. (两角相等:方向相同或相反)
2018/10/27 欢迎加微信交流:pzyandong 7
思考6:如图,在空间中AB// A′B′,AC// A′C′,你能证明∠BAC与 ∠B′A′C′ 相等吗?
A´ C A B C´ B´
2018/10/27
欢迎加微信交流:pzyandong
8
知识探究(四):异面直线所成的角
b
bˊ
( 0,
o
2
]
aˊ
a
相对倾斜度改变没有? 没改变
2.5.1两直线的相对位置

点、直线、平面两直线的相对位置目的和要求掌握由投影图判别两直线的相对位置关系。
两直线的相对位置两直线在空间的相对位置有三种:1. 两直线平行2. 两直线相交3. 两直线交叉 (异面直线)4. 两直线垂直(相交垂直、交叉垂直)两直线的相对位置1. 两直线平行空间两直线平行,则两直线各个同面投影也一定相互平行。
反之,若两直线的同面投影都两两平行,那么,两直线在空间也一定是相互平行的。
Xb 'aa 'd 'bbcc 'Xb 'a 'abdc 'd 'cA B C D两直线的相对位置1. 两直线平行若两直线同为某投影面的平行线时,用两面投影判断时,则须有平行面上的投影才能作出判断,否则须用三面投影才能判断。
当两直线是一般位置线时,只要二面体系中两对同面投影平行即可。
两直线的相对位置2. 两直线相交空间两直线相交,它们的同面投影也一定相交,且交点的投影符合点的投影规律。
b'X a' ab k'c'd'dckXBDACKbb'aa'c'cdd'k'ko两直线的相对位置当两直线是一般位置线时,用两面投影直接判断。
2. 两直线相交若有一根直线为某投影面的平行线时,已知投影必须包括平行投影面的投影才行,否则用三面投影才能判别。
两直线的相对位置3. 两直线交叉空间既不平行又不相交的两直线,称为交叉直线。
b 'Xa 'abc 'd 'dc11'(2')2XOBDA C b b 'aa 'c 'cdd '211'(2')21两直线的相对位置3. 两直线交叉可能有两组同面投影平行,但第三面投影绝不会平行;也可能有三组同面投影都相交,但三个交点绝不会符合点的投影规律。
3. 两直线交叉交叉两直线同面投影的“交点”,是两直线上对该投影面的重影点。
同一空间内两条直线的位置关系

同一空间内两条直线的位置关系
在同一空间内,两条直线的位置关系主要有三种:
1.平行:如果两条直线在同一平面内不相交,那么这两条直线就是平行的。
平行线在三维空间中不会相交,无论它们延伸到多远。
2.相交:如果两条直线在同一平面内有且仅有一个交点,那么这两条直线就
是相交的。
这意味着它们在某一点处相交,但在那一点之外,它们将继续沿各自的方向延伸。
3.异面:如果两条直线不在同一个平面内,那么它们就被称为异面直线。
异
面直线既不相交也不平行,它们处于不同的平面内,永远不会相交。
总结来说,两条直线的位置关系在三维空间中可以是平行的、相交的或异面的。
这些关系取决于它们是否在同一平面内以及是否有交点。
空间中两直线的位置关系

②两组对边分别相等的四边形是平行四边形;
B. 2个
D. 一个也不正确
5、空间两个角α、β, α与β的两边对应平行, 且α=600, 则β等( ) D A. 60° B. 120° C. 30° D. 60°或120° 6、若空间四边形的对角线相等,则以它的四 条边的中点为顶点的四边形是( B ) A.空间四边形 B.菱形 C.正方形 D.梯形
空间中两条直线的位置关系
高一数学 王培花
复习引入 平面内两条直线的位置关系
相交直线
a
平行直线
b
平行直线 (无公共点)
o
a b
相交直线 (有一个公共点)
四通八 达、错 落有致 的立交 桥
一、异面直线定义
讲授新知
我们把不同在任何一个平面内的两条直线叫做异面直线.
答:不一定:它们可能异面,可能相交,也可能平行。
A E B F G C H D
1 2
巩固练习
1. (1)一条直线与两条异面直线中的一条相交, D ) 那么它与另一条之间的位置关系是(
A.平行 C.异面 B.相交 D.可能平行、可能相交、可能异面
D ) (2)两条异面直线指的是( A.没有公共点的两条直线
B.分别位于两个不同平面的两条直线 C.某一平面内的一条直线和这个平面外的一条直线
BF
与GH
D1 A1
D
C1 (2)如图,已知四棱柱ABCDB1
C B
A1B1C1D1,底面ABCD是平行四 边形,则与棱AB所在直线异面 的棱共有4 条?
A
分别是 :A1D1、DD1、 B1C1、CC1
五、平行直线
初中所学平行公里:过直线外一点有且只有 一条直线和已知直线平行
空间两条直线的位置关系

空间两条直线的位置关系Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】空间两条直线的位置关系知识点一空间两条直线的位置关系1.异面直线⑴定义:不同在任何一个平面内的两直线叫做异面直线。
⑵特点:既不相交,也不平行。
⑶理解:①“不同在任何一个平面内”,指这两条直线永不具备确定平面的条件,因此,异面直线既不相交,也不平行,要注意把握异面直线的不共面性。
②“不同在任……”也可以理解为“任何一个平面都不可能同时经过这两条直线”。
③不能把异面直线误解为分别在不同平面内的两条直线为异面直线.也就是说,在两个不同平面内的直线,它们既可以是平行直线,也可以是相交直线.2.空间两条直线的位置关系⑴相交——在同一平面内,有且只有一个公共点;⑵平行——在同一平面内,没有公共点;⑶异面——不同在任何个平面内,没有公共点.例1、正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________.(注:把你认为正确的结论的序号都填上)答案:③④例2、异面直线是指____.①空间中两条不相交的直线;②分别位于两个不同平面内的两条直线;③平面内的一条直线与平面外的一条直线;④不同在任何一个平面内的两条直线.变式1、一个正方体中共有对异面直线.知识点二平行直线了,千万不能画成(2)的图形。
画平面衬托时,通常画成下图中的情形。
2、异面直线的判定⑴异面直线判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线.⑵判定两条直线为异面直线的常用方法有:①定义法:不同在任一平面内的两条直线.②定理法:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线为异面直线.③推论法:一条异面直线上两点与另一条异面直线上两点所连成的两条直线为异面直线.④反证法:反证法是证明立体几何问题的一种重要方法,证明步骤有三步:一是提出与结论相反的假设;二是由此假设推出与题目条件或某一公理、定理或某一已被证明是正确的命题相矛盾结果;三是推翻假设,从而肯定与假设相反的结论,即命题的结论成立,3、异面直线所成的角a 与b 是异面直线,经过空间任意一点O ,作直线a′∥a ,b ′θθ将这个角放入某个三角形中计算这个角的大小,若该三角形是直角三角形、等腰三角形等特殊三角形,便易求此角的大小.(3)我们规定:两条平行直线所成的角为0°角,两条相交直线所成的角为这两条相交直线所成的四个角中的锐角(或直角),因此在空间中的两条直线所成的角的范围为(0°,90°];特别地,若两异面直线所成角为90°,则称两异面直线互相垂直;(4)求异面直线所成角的一般步骤是:①构造 恰当地选择一个点,用平移法构造异面直线所成的角. ②证明 证明①中所作出的角就是所求异面直线所成的角,③计算 通过解三角形(常用余弦定理)等知识,求①中所构造的角的大小,④结论 假如所构造的角的大小为α,若0°<α≤90°,则α即为所求异面直线所成角的大小;若90°<α<180°,则180°-α即为所求。
空间两条直线之间的位置关系

3. 如图,已知长方体ABCD-EFGH中,
AB = 2 3 , AD = 2 3 , AE = 2
(1)求BC 和EG 所成的角是多少度? (2)求AE 和BG 所成的角是多少度?
(1)∵GF∥BC H E 2 A
2 3 D 2 3
G F C B
∴∠EGF(或其补角)为所求.
a与b是异面直线
a与b是相交直线
a与b是平行直线
4.空间直线与直线之间的位置关系
相交直线 同在一个平面内 按是否在 同一平面内分 平行直线
不同在任何一个平面内: 异面直线 有一个公共点: 相交直线 按公共点个数分 无公共点 平行直线 异面直线
(1)在如图所示的正方体中,指出哪些 棱所在的直线与直线BA1是异面直线?
Rt△EFG中,求得∠EGF = 45 (2) ∵BF∥AE ∴∠FBG(或其补角)为所求, Rt△BFG中,求得∠FBG = 60o
o
6.小结:
异面直线的定义: 不同在 任何 一个平面内的两条直线叫做异面直线. 相交直线 空间两直线的位置关系 平行直线 异面直线 异面直线的画法 异面直线所成的角 辅助平面衬托法 平移,转化为相交直线所成的角
温故知新
判断下列命题对错: 1.如果一条直线上有一个点在一个平面上,则这 条直线上的所有点都在这个平面内。( ) 2.将书的一角接触课桌面,这时书所在平面和课 桌所在平面只有一个公共点。 () 3.四个点中如果有三个点在同一条直线上,那么 这四个点必在同一个平面内。 ( ) 4.一条直线和一个点可以确定一个平面。( ) 5.如果一条直线和另两条直线都相交,那么这三 条直线可以确定一个平面。 ( )
高一年级数学知识重点:空间两直线的位置关系

2019年高一年级数学学问重点:空间两直线的位置关系学习是一个边学新学问边巩固的过程,对学学问肯定要多加安排,这样才能进步。
因此,为大家整理了2019年高一年级数学学问重点,供大家参考。
空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面重视复习和总结:1、刚好做好复习. 听完课的当天,必需做好当天的复习。
复习的有效方法不是一遍遍地看书或笔记,而是实行回忆式的复习:先把书、笔记合起来,回忆上课时老师讲的内容,分析问题的思路、方法等(也可边想边在草稿本上写一写),尽量想得完整些。
然后打开笔记与书本,比照一下还有哪些没记清的,把它补起来,就能使当天上课内容巩固下来,同时也检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
2、做好单元复习。
学习一个单元后应进行阶段复习,复习方法同刚好复习一样,实行回忆式复习,而后与书、笔记相比照,使其内容完善,而后应做好单元小节。
3、做好单元小结。
单元小结内容应包括以下部分:(1)本单元(章)的学问网络;(2)本章的基本思想与方法(应以典型例题形式将其表达出来);(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其缘由及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
做适量的有不少同学把提高数学成果的希望寄予在大量做题上,这是不妥当的。
空间中直线与直线之间的位置关系

2.1.2空间中直线与直线之间的位置关系一、空间两直线的位置关系 1.异面直线(1)异面直线的定义:我们把不同在 的两条直线叫做异面直线. 即若a ,b 是异面直线,则不存在平面α,使a ⊂α且b ⊂α.(2)异面直线的画法:为了表示异面直线不共面的特点,通常用一个或两个平面衬托,如图:2.空间两直线的位置关系空间两条直线的位置关系有且只有三种:相交、平行和异面. (1) ——同一平面内,有且只有一个公共点; (2) ——同一平面内,没有公共点;学!科网 (3) ——不同在任何一个平面内,没有公共点. 3. 空间中两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线 (2)从是否共面的角度分类:⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线二、公理4与等角定理 1.公理4(1)自然语言:平行于同一条直线的两条直线互相 .(2)符号语言:a ,b ,c 是三条不同的直线, a ∥b ,b ∥c . (3)作用:判断或证明空间中两条直线平行. 公理4表述的性质也通常叫做空间平行线的传递性.用公理4证明空间两条直线,a c 平行的步骤(1)找到直线b ; (2)证明∥a b ,∥b c ; (3)得到∥a c .2.等角定理(1)自然语言:空间中如果两个角的两边分别对应平行,那么这两个角 . (2)符号语言:如图(1)(2)所示,在∠AOB 与∠A ′O ′B ′中,OA ∥O ′A ′,OB ∥O ′ B ′,则∠AOB =∠A ′O ′B ′或∠AOB +∠A ′O ′B ′=180°.图(1) 图(2)三、异面直线所成的角1.两条异面直线所成的角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的 叫做异面直线a 与b 所成的角(或夹角).(1)在定义中,空间一点O 是任取的,根据等角定理,可以判定a ′,b ′所成的角的大小与点O 的位置无关.为了简便,点O 常取在两条异面直线中的一条上.(2)研究异面直线所成的角,就是通过平移把异面直线转化为相交直线,即把求空间角问题转化为求平面角问题,这是研究空间图形的一种基本思路.2.异面直线所成的角的范围异面直线所成的角必须是锐角或直角,则这个角α的取值范围为 . 3.两条异面直线垂直的定义如果两条异面直线所成的角是 ,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .4.构造异面直线所成角的方法(1)过其中一条直线上的已知点(往往是特殊点)作另一条直线的平行线;(2)当异面直线依附于某几何体,且直接平移异面直线有困难时,可利用该几何体的特殊点,将两条异面直线分别平移相交于该点;(3)构造辅助平面、辅助几何体来平移直线.注意,若求得的角为钝角,则两异面直线所成的角应为其补角.学科*网5.求两条异面直线所成的角的步骤(1)平移:选择适当的点,平移异面直线中的一条或两条,使其成为相交直线; (2)证明:证明作出的角就是要求的角; (3)计算:求角度(常利用三角形的有关知识);(4)结论:若求出的角是锐角或直角,则它就是所求异面直线所成的角;若求出的角是钝角,则它的补角就是所求异面直线所成的角.K 知识参考答案:一、1.(1)任何一个平面内2.(1)相交直线 (2)平行直线 (3)异面直线 二、1.(1)平行 (2)a ∥c 2.(1)相等或互补 三、1.锐角(或直角) 2.090α<≤ 3.直角K—重点掌握公理4及等角定理,异面直线及其所成的角K—难点理解两异面直线所成角的定义,并会求两异面直线所成的角K—易错忽略异面直线所成的角的范围致误1.空间两直线的位置关系的判断空间两直线的位置关系有平行、相交、异面三种情形,因此对于空间两直线位置关系的判断,应由题意认真分析,进而确定它们的位置关系.【例1】如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM 与DD1是异面直线.其中正确的结论为A.③④B.①②C.①③D.②④【答案】A【解析】∵A、M、C、C1四点不共面,∴直线AM与CC1是异面直线,故①错误;同理,直线AM与BN也是异面直线,故②错误.同理,直线BN与MB1是异面直线,故③正确;同理,直线AM与DD1是异面直线,故④正确.故选A.【方法技巧】判定或证明两直线异面的常用方法:1.定义法:不同在任何一个平面内的两条直线.2.定理法:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.3.推论法:一条直线上两点与另一条与它异面的直线上两点所连成的两条直线为异面直线.4.反证法:证明立体几何问题的一种重要方法. 证明步骤有三步:第一步是提出与结论相反的假设;第二步是由此假设推出与已知条件或某一公理、定理或某一已被证明是正确的命题相矛盾的结果;第三步是推翻假设,从而原命题成立. 2.公理4的应用证明两条直线平行的方法: (1)平行线的定义;(2)利用平面几何的知识,如三角形与梯形的中位线、平行四边形的性质、平行线分线段成比例定理等; (3)利用公理4.【例2】如图,△ABC 的各边对应平行于111△A B C 的各边,点E ,F 分别在边AB ,AC 上,且1,3AE AB AF ==13AC ,试判断EF 与的位置关系,并说明理由.【解析】平行.理由如下: ∵11,33AE AB AF AC ==,∴∥EF BC . 又11∥B C BC ,∴11∥B C EF . 3.等角定理利用等角定理解题的关键是不要漏掉两个角互补的这种情况. 【例3】空间两个角α,β的两边分别对应平行,且α=60°,则β为 A .60° B .120° C .30°D .60°或120°【答案】D【解析】∵空间两个角α,β的两边对应平行,∴这两个角相等或互补,∵α=60°,∴β=60°或120°.故选D . 【名师点睛】根据公理4知道当空间两个角α与β的两边对应平行时,得到这两个角相等或互补,根据所给的角的度数,即可得到β的度数.【例4】如图所示,已知棱长为a 的正方体中,M ,N 分别是棱的中点.(1)求证:四边形是梯形; (2)求证:(2)由(1)知MN ∥A 1C 1,又∵ND ∥A 1D 1,∴∠DNM 与∠D 1A 1C 1相等或互补,而∠DNM 与∠D 1A 1C 1均是直角三角形的锐角,∴∠DNM =∠D 1A 1C 1. 4.两异面直线所成的角通过平移直线至相交位置求两条异面直线所成的角,是数学中转化思想的运用,也是立体几何问题的一个难点.【例5】如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=,2BC AD =,PAB △和PAD △都是等边三角形,则异面直线CD 和PB 所成角的大小为A.90B.75C.60D.45【答案】A【方法点睛】本题主要考查了空间几何体的结构特征及空间中异面直线所成角的求解,其中根据空间几,放置在三角形中,利用何体的结构特征,把空间中异面直线CD和PB所成的角转化为平面角AEF解三角形的知识求解是解答本题的关键,着重考查了转化与化归思想和学生的推理、运算能力,试题属于基础题.5.忽略异面直线所成的角的范围致误【例6】如图,已知空间四边形ABCD中,AD=BC,M,N分别为AB,CD的中点,且直线BC与MN所成的角为30°,求BC与AD所成的角.【错因分析】在未判断出∠MEN 是锐角或直角还是钝角之前,不能断定它就是两异面直线所成的角,因为异面直线所成的角α的取值范围是090α<≤,如果∠MEN 为钝角,那么它的补角才是异面直线所成的角. 学#科网【正解】以上同错解,求得∠MEN =120°,即BC 与AD 所成的角为60°.【误区警示】求异面直线所成的角的时候,要注意异面直线所成的角α的取值范围是090α<≤.1.若,a b 为异面直线,直线c a ∥,则c 与b 的位置关系是 A .相交 B .异面 C .平行 D .异面或相交 2.已知∥AB PQ ,∥BC QR ,∠ABC =30°,则∠PQR 等于 A .30° B .30°或150° C .150° D .以上结论都不对 3.已知异面直线,a b 分别在平面,αβ内,且c αβ=,那么直线c 一定A .与a b ,都相交B .只能与a b ,中的一条相交C .至少与a b ,中的一条相交D .与a b ,都平行 4.如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有A .2对B .3对C .4对D .6对5.如图,四面体ABCD 中,AD BC =,且AD BC ⊥,E F 、分别是AB CD 、的中点,则EF 与BC 所成的角为A .30B .45C .60D .906.如果OA //O A '',OB //O B '',那么AOB ∠和A O B '''∠的关系为 . 7.下列命题中不正确的是________.(填序号)①没有公共点的两条直线是异面直线; ②分别和两条异面直线都相交的两直线异面;③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行; ④一条直线和两条异面直线都相交,则它们可以确定两个平面.8.如图所示,两个三角形ABC 和A'B'C'的对应顶点的连线AA',BB',CC'交于同一点O , 且AO BO COOA OB OC =='''.求证:△∽△ABC A B C '''.9.空间四边形ABCD中,AB=CD且AB与CD所成的角为60°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.10.分别和两条异面直线相交的两条不同直线的位置关系是A.相交B.异面C.异面或相交D.平行11.如图是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为A.相交B.平行C .异面而且垂直D .异面但不垂直12.如图,正四棱锥ABCD P 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于_________.ECDPAB13.如图,若P 是△ABC 所在平面外一点,PA ≠PB ,PN ⊥AB ,N 为垂足,M 为AB 的中点,求证:PN 与MC 为异面直线.14.(2016上海)如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是BC D E F A B 11D 1A .直线AA 1B .直线A 1B 1C .直线A 1D 1 D .直线B 1C 115.(2015广东)若直线l 1与l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是 A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交16.(2015浙江)如图,直三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB =AC =AA 1=1,BC =2,则异面直线A 1C 与B 1C 1所成的角为A .30°B .45°C .60°D .90°17.(2014广东)若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定1 2 3 4 5 10 11 14 15 16 17 DBCBBCDDDCD1.【答案】D【解析】c a ∥,a b ,为异面直线,所以c 与b 的位置关系是异面或相交.4.【答案】B【解析】根据异面直线的定义观察图形,可知有三对异面直线,分别是PB 与AC 、P A 与BC 、PC 与AB ,故选B. 5.【答案】B【解析】如图,设G 为AC 的中点,连接,EG FG .由中位线可知,∥∥EG BC GF AD ,所以GEF ∠就是EF 与BC 所成的角,且三角形GEF 为等腰直角三角形,所以45GEF ∠=.6.【答案】相等或互补【解析】根据等角定理的概念可知AOB ∠和A O B '''∠的关系为相等或互补. 7.【答案】①②8.【解析】∵AA'与BB'交于点O ,且AO BOOA OB='',∴AB ∥A'B'.同理,AC ∥A'C'.又∠BAC 与∠B'A'C'两边的方向相反,∴∠BAC =∠B'A'C'. 同理,∠ABC =∠A'B'C'. 因此,△∽△ABC A B C '''.9.【解析】如图,取AC 的中点G ,连接EG 、FG ,则EG ∥AB ,GF ∥CD ,且由AB =CD 知EG =FG ,∴∠GEF (或它的补角)为EF 与AB 所成的角,∠EGF (或它的补角)为AB 与CD 所成的角. ∵AB 与CD 所成的角为60°,∴∠EGF =60°或120°. 由EG =FG 知△EFG 为等腰三角形, 当∠EGF =60°时,∠GEF =60°;当∠EGF =120°时,∠GEF =30°.学@科网 故EF 与AB 所成的角为60°或30°.10.【答案】C【解析】(1)若两条直线与两异面直线的交点有4个,如图(1),两条直线异面;(2)若两条直线与两异面直线的交点有3个,如图(2),两条直线相交.故选C.(1) (2)【误区警示】在判断两直线的位置关系时,要全面思考问题,可通过画出相关图形帮助分析,从而防止遗漏.本题中,没有明确指出直线交点的个数,两条直线分别与两异面直线相交,交点可能有4个,此时两条直线异面,也可能有3个,此时两条直线相交.11.【答案】D【解析】将展开图还原为正方体,如图所示.AB与CD所成的角为60°,故选D.13.【解析】假设PN与MC不是异面直线,则存在一个平面α,使得PN⊂α,MC⊂α,于是P∈α,C∈α,N∈α,M∈α.∵PA≠PB,PN⊥AB,N为垂足,M是AB的中点,∴M,N不重合.∵M∈α,N∈α,∴直线MN⊂α.∵A∈MN,B∈MN,∴A∈α,B∈α.即A,B,C,P四点均在平面α内,这与点P在平面ABC外相矛盾.∴假设不成立,则PN与MC是异面直线.16.【答案】C【解析】根据题意,得BC∥B1C1,故异面直线A1C与B1C1所成的角即BC与A1C所成的角.如图,连接A 1B ,在△A 1BC 中,BC =A 1C =A 1B =2,故∠A 1CB =60°,即异面直线A 1C 与B 1C 1所成的角为60°.故选C.17.【答案】D【解析】如下图所示,在正方体1111ABCD A B C D -中,取1AA 为2l ,1BB 为3l ,取AD 为1l ,BC 为4l ,则14l l ∥;取AD 为1l ,AB 为4l ,则14l l ⊥;取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此14,l l 的位置关系不确定,故选D.D 1C 1B 1A 1DCBA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间两条直线的位置关系知识点一空间两条直线的位置关系1.异面直线⑴定义:不同在任何一个平面内的两直线叫做异面直线。
⑵特点:既不相交,也不平行。
⑶理解:①“不同在任何一个平面内”,指这两条直线永不具备确定平面的条件,因此,异面直线既不相交,也不平行,要注意把握异面直线的不共面性。
②“不同在任……”也可以理解为“任何一个平面都不可能同时经过这两条直线”。
③不能把异面直线误解为分别在不同平面内的两条直线为异面直线.也就是说,在两个不同平面内的直线,它们既可以是平行直线,也可以是相交直线.2.空间两条直线的位置关系⑴相交——在同一平面内,有且只有一个公共点;⑵平行——在同一平面内,没有公共点;⑶异面——不同在任何个平面内,没有公共点.例1、正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________.(注:把你认为正确的结论的序号都填上)答案:③④例2、异面直线是指____.①空间中两条不相交的直线;②分别位于两个不同平面内的两条直线;③平面内的一条直线与平面外的一条直线;④不同在任何一个平面内的两条直线.变式1、一个正方体中共有对异面直线.知识点二平行直线1.公理4 :平行于同一条直线的两条直线互相平行.符号表示:2.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.例3、如图在长方体ABCD-A1B1C1D1中,已知E、F分别为AB、BC的中点,求证:EF∥A1C1.a∥bb∥ca∥cCDBA1CB1DCD变式1、如图E、F、G、H是平面四边形ABCD四边中点,四边形EFGH的形状是平行四边形吗?为什么?如果将ABCD沿着对角线BD折起就形成空间四边形ABCD,那么四边形EFGH 的形状还是平行四边形吗?例4、如图在正方体ABCD-A1B1C1D1中,已知E1、E分别为A1D1、AD的中点,求证:∠C1E1B1=∠CEB.知识点三异面直线1、异面直线的画法:为了充分显示出它们既不平行又不相交的特点,常常需要以辅助平面作为衬托,以加强直观性,如下图(l),若画成如下图(2)的情形,就分不开了,千万不能画成(2)的图形。
画平面衬托时,通常画成下图中的情形。
2、异面直线的判定⑴异面直线判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线.⑵判定两条直线为异面直线的常用方法有:①定义法:不同在任一平面内的两条直线.②定理法:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线为异面直线.③推论法:一条异面直线上两点与另一条异面直线上两点所连成的两条直线为异面直线.④反证法:反证法是证明立体几何问题的一种重要方法,证明步骤有三步:一是提出与结论相反的假设;二是由此假设推出与题目条件或某一公理、定理或某一已被证明是正确的命题相矛盾结果;三是推翻假设,从而肯定与假设相反的结论,即命题的结论成立,ABCDEF GHABCDEF GH 折EEACBDCD3、异面直线所成的角a 与b 是异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′//b ,直线a ′和b ′所成的锐角(或直角)叫做异面直线a ,b 所成的角.如下图所示.⑴异面直线所成角θ的范围是0°<θ≤90°;(2)为了求异面直线a ,b 所成的角,可以在空间中任取一点O ,为了简便,点O 常常取这里的点通常选择特殊位置的点,如线段的中点或端点或异面直线连线中点,也可以是异面直线中某一条上的一个特殊点. 将这个角放入某个三角形中计算这个角的大小,若该三角形是直角三角形、等腰三角形等特殊三角形,便易求此角的大小.(3)我们规定:两条平行直线所成的角为0°角,两条相交直线所成的角为这两条相交直线所成的四个角中的锐角(或直角),因此在空间中的两条直线所成的角的范围为(0°,90°];特别地,若两异面直线所成角为90°,则称两异面直线互相垂直;(4)求异面直线所成角的一般步骤是:①构造 恰当地选择一个点,用平移法构造异面直线所成的角.②证明 证明①中所作出的角就是所求异面直线所成的角,③计算 通过解三角形(常用余弦定理)等知识,求①中所构造的角的大小,④结论 假如所构造的角的大小为α,若0°<α≤90°,则α即为所求异面直线所成角的大小;若90°<α<180°,则180°-α即为所求。
例5、已知平面l =βα ,直线,,P l a a =⊂ α直线l b b //,β⊂,求证:直线a 和b 是异面直线.例6、如图所示,正方体ABCD -A1B1C1D1中,M 、N 分别是A1B1、B1C1的中点,问:(1)AM 和CN 是否是异面直线?说明理由;(2)D1B 和CC1是否是异面直线?说明理由.解:(1)不是异面直线.理由如下:∵M 、N 分别是A1B1、B1C1的中点,∴MN ∥A1C1.又∵A1A D1D ,而D1D C1C ,∴A1A C1C ,A1ACC1为平行四边形,∴A1C1∥AC,得到MN∥AC,∴A,M,N,C在同一个平面内,故AM和CN不是异面直线.(2)是异面直线.理由如下:假设D1B与CC1在同一个平面D1CC1内,则B∈平面CC1D1,C∈平面CC1D1,∴BC⊂平面CC1D1,这与BC是正方体的棱相矛盾,∴假例7、如图2.1.2—18,已知不共面的三条直线a,b,c相交于点P,A∈a,B∈a,C∈b,D∈c,求证:AD和BC是异面直线.证法一:(反证法):假设AD和BC共面,所确定的平面为α,那么点P、A、B、C、D都在平面α内,∴直线a、b、c都在平面α内,与已知条件a、b、c不共面相矛盾.∴AD与BC是异面直线.证法二:(直接用判定定理):∵a∩c=P,∴a和c确定一个平面,设为β,巳知C∉平面β,B∈平面β,AD⊂平面β,B∉AD,∴AD和BC是异面直线.变式1、如图2.1.2—19,a,b是异面直线,A、B∈a,C、D∈b,E、F分别为线段AC 和BD的中点,判断直线EF和a的位置关系,并证明你的结论.答案:EF和a是异面直线,可用反证法证明.例8、正方体AC l中,E,F分别是A1B1,B1Cl的中点,求异面直线DB1与EF所成角的大小。
变式1、空间四边形ABCD中,E、F分别是对角线BD、AC的中点,若BC=AD=2EF,求直线EF与直线AD所成的角。
例9、直三棱柱中,若,,则异面直线与所成的角等于A.30°B.45°C.60°D.90°解:C变式1、已知空间四边形ABCD各边长相等,求异面直线AB和CD所成的角的大小.解:∴异面直线AB、CD成90°角.巩固练习:一、判断题1. 若三条直线两两平行,则这三条直线必共面.( )2. 互不平行的两条直线是异面直线.( )二、单选题1. 关于异面直线,有下列3个命题:①分别在两个不同平面内的两直线是异面直线②平面内的一直线与平面外的一直线是异面直线③都不在某一平面内的两条直线是异面直线其中真命题的个数是A.0 B.1 C.2 D.32. 直线a、b是两条异面直线,A、B与C、D分别为直线a、b上不同的点,则直线AC与BD的关系是A.可能相交B.可能平行C.异面D.相交或异面3. 两条异面直线指的是A.在空间不相交的两条直线B.分别位于两个不同平面内的两条直线C.一个平面内的一条直线和这个平面外的一条直线D.不同在任何一个平面内的两条直线4. 下列命题中,真命题的是A.两两相交的三条直线共面B.两两相交且不共点的四条直线共面C.不共面的四点中可以有三点共线D.边长相等的四边形一定是菱形5. 空间两条互相平行的直线,指的是A.在空间没有公共点的两条直线B.分别在两个平行平面内的两条直线C.位于同一平面内且没有公共点的两条直线D.分别与第三条直线成等角的两条直线6. 平面M、N相交于EF,分别在平面M、N内作∠EAC=∠FBD,则AC和BD的关系是A.异面B.平行C.相交D.不确定7. 直线a和b是异面直线,直线c∥a,那么b与cA.异面B.不异面C.相交D.异面或相交8. 如果一条直线和两条异面直线都相交,那么它们可确定A.4个平面B.3个平面C.2个平面D.1个平面9. 若m和n是异面直线,n和l也是异面直线,则A.当m∩l=φ时,m与l异面B.m∩l=φC.当m与l共面时,m∥l D.m与l相交、异面、平行都可能10.若P是两条异面直线l、m外的任意一点,则( )A.过点P有且仅有一条直线与l、m都平行B.过点P有且仅有一条直线与l、m都垂直C.过点P有且仅有一条直线与l、m都相交D.过点P有且仅有一条直线与l、m都异面11.过正方体ABCD-A1B1C1D1的顶点A作直线l,使l与棱AB,AD,AA1所成的角都相等,这样的直线l可以作( )A.1条B.2条C.3条D.4条三、填空题1. “直线a、b异面”的否定说法是“__________”.2. 不平行的两条直线的位置关系是_________.3. “直线a、b相交”的否定说法是“__________________________”.4. 过已知直线外一点,可以作_____条直线与已知直线垂直.5. 分别在两个平面内的两条直线的位置关系是_____________________.6. 已知直线a和b是异面直线,直线c和a平行而不和b相交,则c和b的位置关系是_________.7. 直线a、b确定一个平面,则a、b的位置关系是________________.8. “直线a、b异面”还可以说成“直线a、b既不______,又不______”.9. 空间有三条直线a、b、c,如果b⊥a,c⊥a,那么直线b、c的位置关系是_________________.10. 和两条异面直线中的一条相交的直线与另一条直线的位置关系是______________.11. 已知直线a、b、c满足a∥b,b与c是异面直线,则a与c的位置关系是____________.12. 正方体ABCD─A1B1C1D1中,与侧面对角线AD1成异面直线的棱共有_____条,它们分别是___________________________.13. 正方体ABCD─A1B1C1D1中,与棱AB成异面直线的棱共有_____条,它们分别是____________________.14. 正方体的12条棱中,互为异面直线的有________对.答案一、判断题1. ×2. ×二、单选题1. A2. C3. D4. B5. C6. D7. D8. C9. D 10.B 11.D三、填空题1. a、b共面2. 相交或异面3. a、b不相交或a、b无公共点4. 无数5. 平行或相交或异面6. 异面7. 相交或平行8. 相交,平行9. 平行或相交或异面10. 相交或平行或异面11. 相交或异面12. 6;BC,B1C1,BB1,CC1,DC,A1B1 13. 4;A1D1,B1C1,CC1,DD114. 24空间两条直线的位置关系1. 已知直线b a ,都在平面α外, 则下列推断错误的是( )A .αα////,//a b b a ⇒B .αα//,a b b a ⇒⊥⊥C .b a b a ////,//⇒ααD .b a b a //,⇒⊥⊥αα【答案】C2. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内 【答案】B3. 下列命题正确的是( )A .若两条直线与同一个平面所成的角相等,则这两条直线平行B .若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行【答案】C4. 下列四个条件中,能确定一个平面的是( )A. 一条直线和一个点B.空间两条直线C. 空间任意三点D.两条平行直线【答案】D5. 在平整的地面上任意放一根笔直的钢管,则在地面上必存在直线与钢管所在的直线() A.平行 B.相交 C.异面 D.垂直【答案】D6. 平行于同一平面的两条直线的位置关系( )A .平行B .相交C .异面D .平行、相交或异面【答案】D7. 下列命题中,错误的是( )A .三角形的两条边平行一个平面,则第三边也平行于这个平面.B .平面 α∥平面β,a ⊂α,过β内的一点B 有惟一的一条直线b ,使b ∥a .C .α∥β,γ∥δ,α、β、γ、δ的交线为a 、b 、c 、d ,则a ∥b ∥c ∥d .D .一条直线与两个平面所成角相等,则这两个平面平行.【答案】D8. 直线m 不平行于平面α,且m α⊄,则下列结论成立的是( )A .α内所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一的直线与m 平行D .α内的直线与m 都相交【答案】B9. 正三棱锥P-ABC 的高为2,侧棱与底面所成的角为450,则点A 到侧面PBC 的距离是() A.5 B. 22 C.2 D.556【答案】D10. 在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A .23B .1010C .53D .52【答案】D11. 已知直线,l m ,平面,αβ,且l α⊥,m β⊂,给出下列四个命题:①若α∥β,则l m ⊥;②若l m ⊥,则α∥β;③若αβ⊥,则l ∥m ;④若l ∥m ,则αβ⊥.其中真命题的个数为( )A .1B .2C .3D .4【答案】B12. 设m 、n 是两条不同的直线,α、β是两个不重合的平面,给定下列四个命题: ①若m n ⊥,n α⊂,则m α⊥; ②若a α⊥,a β⊂,则αβ⊥;③若m α⊥,n α⊥,则//m n ; ④若m α⊂,n β⊂,//αβ则//m n .其中真命题的是( )A .①和②B .②和③C .③和④D .②和④【答案】B13. 如图,在正四棱柱1111ABCD A B C D -中,E F ,分别是1AB ,1BC 的中点,则以下结论中不成立...的是( )A .EF 与1BB 垂直B .EF 与BD 垂直C .EF 与CD 异面 D .EF 与11A C 异面 A B C 1A 1C1D1B DEF【答案】D14. 异面直线a 、b ,a ⊥b ,c 与a 成30°角,则c 与b 成角的范围是( )A.B. C.D. 【答案】A15. 在正方体A 1B 1C 1D 1—ABCD 中,AC 与B 1D 所成的角的大小( )A .6π B .4π C .3π D .2π 【答案】D16. 已知空间直角坐标系中,O 为原点,A (0,0,3),B (0,4,0),C (5,0,0)则经过O 、A 、B 、C 四点的球的体积为 ( )A .π50B .π32125C .π321000D .π425 【答案】B17. 设m,n 是两条不同直线,βα,是两个不同的平面,给出下列四个命题①若n m n m //,//,则αα⊂②βαβα⊥⊥⊥⊥则,,,n m n m③若,//,//,//n m n m m αβαβ⋂=则且④若βαβα//,,则⊥⊥m m 其中正确的命题是( )A.①B.②C.③④D.②④【答案】D18. 已知直线l 和平面βα,,( )A .若l ∥α,βα⊥,则β⊥lB .若l ∥α,α∥β,则l ∥βC .若l ∥α,β⊂l ,则α∥βD .若l ⊥α,β⊂l ,则βα⊥【答案】D 19. 在下列条件下,可判断平面α与平面β平行的是( )A. α、β都垂直于平面γB. α内不共线的三个点到β的距离相等C. l,m 是α内两条直线且l ∥β,m ∥βD. l,m是异面直线,且l∥α,m∥α,l∥β,m∥β【答案】D20. 设,m n是空间两条不同直线,,αβ是空间两个不同平面,当,m nαβ⊂⊂≠≠时,下列命题正确的是A.若m n,则αβB.若m n⊥,则αβ⊥C.若mβ⊥,则m n⊥D.若nα⊥,则mβ⊥【答案】C21. 已知直线、,平面,则下列命题中:①.若,,则②.若,,则③.若,,则④.若,, ,则,其中真命题有()A.0个B.1个C.2个D.3个【答案】B22. 如图1所示,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图2所示,那么,在四面体AEFH中必有( ).A.AH⊥△EFH所在平面B.AG⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面【答案】A23. 如图,平行四边形ABCD中,AB⊥BD,沿BD将△ABD折起,使面ABD⊥面BCD,连接AC,则在四面体ABCD的四个面中,互相垂直的平面的对数为()A.1 B.2 C.3 D.4【答案】C24. 棱长为1的正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN,给出以下结论:l mβα、βα//α⊂lβ//lβα⊥α⊥lβ//lα//lα⊂m ml//βα⊥l=⋂βαlm⊥β⊥m①AA 1⊥MN ②异面直线AB 1,BC 1所成的角为60°③四面体B 1-D 1CA 的体积为13④A 1C ⊥AB 1,A 1C ⊥BC 1,其中正确的结论的个数为 ( )A .4 B]3 C .2 D .1【答案】A25. 已知一平面平行于两条异面直线,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是( )A .平行B .垂直C .斜交D .不能确定【答案】B26. 已知两个不重合的平面,αβ,给定以下条件:①α内不共线的三点到β的距离相等;②,l m 是α内的两条直线,且//,//l m ββ;③,l m 是两条异面直线,且//,//,//,//l l m m αβαβ;其中可以判定//αβ的是 ( )A .①B .②C .①③D .③【答案】D27. 如图所示,在空间四边形ABCD 中,AB =BC ,CD =DA ,E 、F 、G 分别为CD 、DA 和AC的中点.求证:平面BEF ⊥平面BGD .【答案】∵AB =BC ,CD =AD ,G 是AC 的中点,∴BG ⊥AC ,DG ⊥AC .∴AC ⊥平面BGD .又EF ∥AC ,∴EF ⊥平面BGD .又EF ?平面BEF ,∴平面BDG ⊥平面BEF .28. 已知三条不重合的直线,,m n l ,两个不重合的平面,αβ,有下列命题:①若//,//l m αβ,且//αβ,则//l m ②若,l m αβ⊥⊥,且//l m ,则//αβ③若,m n αα⊆⊆,//,//m n ββ,则//αβ ④若,,,m n n m αβαββ⊥=⊆⊥,则n α⊥其中真命题的个数是( )A .4B .3C .2D .1【答案】C29. 若M 、N 分别是△ABC 边AB 、AC 的中点,MN 与过直线BC 的平面β的位置关 系是( )A.MN ∥βB.MN 与β相交或MN ⊂≠βC. MN ∥β或MN ⊂≠βD. MN ∥β或MN 与β相交或MN ⊂≠β【答案】C30. 空间三条直线互相平行,由每两条平行线确定一个平面,则可确定平面的个数为( )A .3B .1或2C .1或3D .2或3【答案】C31. 已知两个不同的平面α,和两条不重合的直线m,n ,则下列四种说法正确的为( )A 、若m ∥n,n α,则m ∥αB 、若m ⊥n,m ⊥α,则n ∥αC 、若m α,n ,α∥,则m,n 为异面直线D 、若α⊥,m ⊥α,n ⊥,则m ⊥n【答案】D32. 直径为32的球的内接正方体的棱长为( )A .2B .2C . 3D . 5【答案】B33. 在△ABC 中,∠C =90°,∠B =30°,AC=1,M 为 AB 中点,将△ACM 沿 CM 折起,使( )A .B 间的距离为则 M 到面 ABC 的距离为( )A .12 BC .1D .32【答案】A【答案】由已知得AB=2,AM=MB=MC=1,BC=由△AMC 为等边三角形,取CM 中点,则AD ⊥CM,AD 交BC 于E,β⊂⊂⊂ββββ则AD=. 折起后,由BC 2=AC 2+AB 2,知∠BAC=90°,又cos ∠ECA=∴AE 2=CA 2+CE 2-2CA •CEcos ∠ECA=23, 于是AC 2=AE 2+CE 2.∴∠AEC=90°.∵AD 2=AE 2+ED 2,∴AE ⊥平面BCM,即AE 是三棱锥A-BCM 的高,AE=3 设点M 到面ABC 的距离为h,∵S △B C M=4,∴由V A-B C M =V M -A BC , 可得13⨯13⨯12××1×h,∴h=12.故选A . 34. 设m,n 是异面直线,则(1)一定存在平面α,使m α,且n ∥α;(2)一定存在平面α,使m α,且n ⊥α;(3)一定存在平面γ,使得m,n 到平面γ距离相等;(4)一定存在无数对平面α和β,使m α,n β且α⊥β。