空间两条直线之间的位置关系

合集下载

212空间中直线与直线之间的位置关系共31张PPT

212空间中直线与直线之间的位置关系共31张PPT
栏目 导引
第二章 点、直线、平面之间的位置关系
跟踪训练
3.如图,已知长方体ABCD-A1B1C1D1中,A1A=AB, E、F分别是BD1和AD中点,则异面直线CD1,EF所成的 角的大小为________.
栏目 导引
第二章 点、直线、平面之间的位置关系
解析:取 CD1 的中点 G,连接 EG,DG, ∵E 是 BD1 的中点,∴EG∥BC,EG=12BC.
栏目 导引
第二章 点、直线、平面之间的位置关系
做一做 3.若正方体ABCD-A1B1C1D1中∠BAE=25°, 则异面直线AE与B1C1所成的角的大小为________.
答案:65°
栏目 导引
第二章 点、直线、平面之间的位置关系
典题例证技法归纳
【题型探究】 题型一 直线位置关系的判定
例1 a,b,c是空间中的三条直线,下面给出的几 种说法:①若a∥b,b∥c,则a∥c; ②若a⊥b,b⊥c,则a∥c; ③若a与b相交,b与c相交,则a与c相交; ④若a,b与c成等角,则a∥b. 其中正确的是________(只填序号)
E,F
分别是另外两条对边
AD,BC
上的点,且AE=BF ED FC
=12,EF= 5,求 AB 和 CD 所成的角的大小.
栏目 导引
第二章 点、直线、平面之间的位置关系
解:如图,过 E 作 EO∥AB,交 BD 于点 O,连接 OF, ∴AEED=BOOD.又∵AEED=BFFC,∴BOOD=BFFC, ∴OF∥CD,∴∠EOF(或其补角)是 AB 和 CD 所成的角. 在△EOF 中,OE=23AB=2,OF=13CD=1. 又 EF= 5,∴EF2=OE2+OF2,∴∠EOF=90°, 即异面直线 AB 和 CD 所成的角为 90°.

【高中数学人教A版必修】22. 空间中直线与直线之间的位置关系课件

【高中数学人教A版必修】22. 空间中直线与直线之间的位置关系课件

一作(找):作(或找)平行线--单移、双 移
D1
二证:证明所作的角为所求的异 A1
面直线所成的角。
三求:在一恰当的三角形中求出角
常见的平行关系: 1.中位线原理 2.平行四边形 3.对应边成比例
D A
C1 B1
C B
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
4.异面直线所成的角
(1)复习回顾
O
在平面内,两条直线相交成四个角, 其中 不大于90度的角称为它们的夹角, 用以刻画 两直线的错开程何 找
出这个夹角?
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
3.异面直线的画法
为了表示异面直线 a,b不共面的特点,作图时, 通常用一个或两个平面衬托.
b
A
a
(1)
b
a
(2)
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件 高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
(2)直线BA′和CC′的夹角是多少? (3)哪些棱所在的直线与直线AA′垂直?
解:(1)由异面直线的定义可知, 与直线BA′成异面直线的有直线B′C′, AD,CC′,DD′,DC,D′C′. (2)由 BB / /C可C知, 为B异BA面 直线 与 的BA夹 角C,C BB=A45°所以,直线 与BA的夹C角C为45°.

同一空间内两条直线的位置关系

同一空间内两条直线的位置关系

同一空间内两条直线的位置关系
在同一空间内,两条直线的位置关系主要有三种:
1.平行:如果两条直线在同一平面内不相交,那么这两条直线就是平行的。

平行线在三维空间中不会相交,无论它们延伸到多远。

2.相交:如果两条直线在同一平面内有且仅有一个交点,那么这两条直线就
是相交的。

这意味着它们在某一点处相交,但在那一点之外,它们将继续沿各自的方向延伸。

3.异面:如果两条直线不在同一个平面内,那么它们就被称为异面直线。


面直线既不相交也不平行,它们处于不同的平面内,永远不会相交。

总结来说,两条直线的位置关系在三维空间中可以是平行的、相交的或异面的。

这些关系取决于它们是否在同一平面内以及是否有交点。

空间直线与直线的位置关系市公开课获奖课件省名师示范课获奖课件

空间直线与直线的位置关系市公开课获奖课件省名师示范课获奖课件
2.1.2空间中直线与直线之间旳 位置关系
复习:平面内两条直线旳位置关系
a
o
b
相交直线 平行直线
a b
相交直线 (有一种公共点)
平行直线 (无公共点)
H E
D A
G
F
既不平行,又不相交
C B
1.异面直线旳定义:
不同在 任何 一种平面内旳两条直线叫 做异面直线
注1
两直线异面旳鉴别一 : 两条直线 既不相交、又不平行. 两直线异面旳鉴别二 : 两条直线不同在任何一种平面内.
H
G
E
2 2 3D
A
23
F C
B
作业
如图,在长方体中,已知AA1=AD=a, AB= 3 a,求AB1与BC1所成旳角旳余弦值
D1 A1
C1
B1 a
D
C
A
3a B a
两边分别平行,那么这两个角相等或互补 ”.空间中这一结
论是否依然成立呢?
观察 :如图所示,长方体ABCD-A1B1C1D1中, ∠ADC与∠A1D1C1 ,
∠ADC与∠A1B1C1两边分别相应平行,这两组角旳大小
关系怎样?
D1
C1
答:从图中可看出, ∠ADC=∠A1D1C1, ∠ADC +∠A1B1C1=180 O
平行直线 无 公 共 点 异面直线
3.异面直线旳画法
阐明: 画异面直线时 , 为了体现 它们不共面旳特点。常借 助一种或两个平面来烘托.
如图:
a
b
(2)
b
A
a
(1)
a
b
(3)
Hale Waihona Puke 思索:如图是一种正方体旳展开图,假如将它还原为正方体, 那么 AB , CD , EF , GH 这四条线段所在直线是异面直线旳有 对?

高中数学 点、直线、平面之间的位置关系

高中数学 点、直线、平面之间的位置关系

点、直线、平面之间的位置关系知识回顾1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.空间两条直线的位置关系(1)空间两条直线的位置关系有且只有三种:相交、平行、异面.(2)异面直线的定义:不同在任何一个平面内的两条直线叫做异面直线.(3)异面直线所成的角:直线a,b是异面直线,经过空间任一点O,作直线a′,b′,使a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).3. 线面、面面的位置关系1.一条直线a和一个平面α有且仅有a⊂α,a∩α=A或a∥α三种位置关系.(用符号语言表示)2.两平面α与β有且仅有α∥β或α∩β=l两种位置关系(用符号语言表示).题型讲解题型一概念例1、下列命题:①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚;③有一个平面的长是50 M,宽是20 M;④平面是绝对的平、无厚度,可以无限延展的抽象数学概念.其中正确命题的个数为()A.1 B.2 C.3 D.4答案:A例2、若点M在直线b上,b在平面β内,则M、b、β之间的关系可记作()A.M∈b∈β B.M∈b⊂βC.M⊂b⊂β D.M⊂b∈β答案:B例3、如图所示正方体ABCD-A1B1C1D1中,E、F分别为CC1和AA1的中点,画出平面BED1F和平面ABCD的交线.解析:如图所示,在平面ADD1A1内延长D1F与DA,交于一点P,则P∈平面BED1F,∵DA⊂平面ABCD,∴P∈平面ABCD,∴P是平面ABCD与平面BED1F的一个公共点,又B是两平面的一个公共点,∴PB为两平面的交线.例4、空间四边形ABCD的两条对角线AC、BD相互垂直,顺次连接四边中点的四边形一定是()A.空间四边形 B.矩形C.菱形 D.正方形答案:B题型二异面直线例5、已知正方体ABCD—A′B′C′D′中:(1)BC′与CD′所成的角为________;(2)AD与BC′所成的角为________.答案:(1)60°(2)45°解析连接BA′,则BA′∥CD′,连接A′C′,则∠A′BC′就是BC′与CD′所成的角.由△A′BC′为正三角形,知∠A′BC′=60°,由AD∥BC,知AD与BC′所成的角就是∠C′BC.易知∠C′BC=45°.例6、一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论中正确结论的序号为________.答案:①③解析把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.题型三线面关系例7、已知直线a∥平面α,直线b⊂α,则a与b的位置关系是()A.相交 B.平行C.异面 D.平行或异面答案:D例8、三个互不重合的平面把空间分成6部分时,它们的交线有()A .1条B .2条C .3条D .1条或2条 答案:D例9、平面α∥β,且a ⊂α,下列四个结论: ①a 和β内的所有直线平行; ②a 和β内的无数条直线平行; ③a 和β内的任何直线都不平行; ④a 和β无公共点. 其中正确的个数为( )A .0B .1C .2D .3 答案:C跟踪训练1. 文字语言叙述“平面内有一条直线,则这条直线上的一点必在这个平面内”用符号表述是( )A .⎭⎪⎬⎪⎫A ⊂αA ⊂a ⇒A ⊂α B .⎭⎪⎬⎪⎫a ⊂αA ∈a ⇒A ∈α C .⎭⎪⎬⎪⎫a ∈αA ⊂a ⇒A ∈α D .⎭⎪⎬⎪⎫a ∈αA ∈a ⇒A ⊂α 答案:B2. 若直线a 、b 与直线l 相交且所成的角相等,则a 、b 的位置关系是( ) A .异面 B .平行C .相交D .三种关系都有可能答案:D3.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD)B .MN ≤12(AC +BD)C .MN =12(AC +BD)D .MN<12(AC +BD)答案:D4.正方体AC 1中,E 、F 分别是面A 1B 1C 1D 1和AA 1DD 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .90° 答案:B5.已知a 是一条直线,过a 作平面β,使β∥平面α,这样的β( ) A .只能作一个 B .至少有一个 C .不存在 D .至多有一个答案:D6.正方体ABCD -A 1B 1C 1D 1中,平面BA 1C 1和平面ACD 1的交线与棱CC 1的位置关系是________,截面BA 1C 1和直线AC 的位置关系是________.答案:平行 平行 解析:如图所示,。

立体几何——两条直线之间的位置关系(一)

立体几何——两条直线之间的位置关系(一)

立体几何——两条直线之间的位置关系(一)一、知识导学1.平面的基本性质. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线. 公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论1:经过一条直线和这条直线外的一点,,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.空间两条直线的位置关系,包括:相交、平行、异面.3.公理4:平行于同一条直线的两条直线平行. 定理4:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.4.异面直线. 异面直线所成的角;两条异面直线互相垂直的概念;异面直线的公垂线及距离.5.反证法.会用反证法证明一些简单的问题.二、疑难知识导析1.异面直线是指不同在任何一个平面内,没有公共点.强调任何一个平面.2.异面直线所成的角是指经过空间任意一点作两条分别和异面的两条直线平行的直线所成的锐角(或直角).一般通过平移后转化到三角形中求角,注意角的范围.3.异面直线的公垂线要求和两条异面直线垂直并且相交,4.异面直线的距离是指夹在两异面直线之间公垂线段的长度.求两条异面直线的距离关键是找到它们的公垂线.5.异面直线的证明一般用反证法、异面直线的判定方法:如图,如果b,A且A,a,则a与b异面.三、经典例题导讲[例1]在正方体ABCD-A B C D中,O是底面ABCD的中心,M、N分别是棱DD、D C的中点,则直线OM( ).A .是AC和MN的公垂线.B .垂直于AC但不垂直于MN.C .垂直于MN,但不垂直于AC.D .与AC、MN都不垂直.错解:B.错因:学生观察能力较差,找不出三垂线定理中的射影.正解:A.[例2]如图,已知在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且,求证:直线EG,FH,AC相交于一点.错解:证明:、F分别是AB,AD的中点,∥BD,EF=BD,又, GH∥BD,GH=BD,四边形EFGH是梯形,设两腰EG,FH相交于一点T,,F分别是AD.AC与FH交于一点.直线EG,FH,AC相交于一点正解:证明:、F分别是AB,AD的中点,∥BD,EF=BD, 又,GH∥BD,GH=BD,四边形EFGH是梯形,设两腰EG,FH相交于一点T,平面ABC,FH平面ACD,T面ABC,且T面ACD,又平面ABC平面ACD=AC,,直线EG,FH,AC相交于一点T.[例3]判断:若a,b是两条异面直线,P为空间任意一点,则过P点有且仅有一个平面与a,b 都平行.错解:认为正确.错因:空间想像力不够.忽略P在其中一条线上,或a与P确定平面恰好与b平行,此时就不能过P作平面与a平行.正解:假命题.[例4]如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线(在同一条直线上).分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线.证明∵ AB//CD, AB,CD确定一个平面β.又∵AB ∩α=E,ABβ, Eα,Eβ,即 E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴ E,F,G,H四点必定共线.点评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.[例5]如图,已知平面α,β,且α∩β=.设梯形ABCD中,AD∥BC,且ABα,CDβ,求证:AB,CD,共点(相交于一点).分析:AB,CD是梯形ABCD的两条腰,必定相交于一点M,只要证明M在上,而是两个平面α,β的交线,因此,只要证明M∈α,且M∈β即可.证明:∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴ AB,CD必定相交于一点,设 AB ∩CD=M.又∵ ABα,CDβ,∴ M∈α,且M∈β.∴ M∈α∩β.又∵α∩β=,∴ M∈,即 AB,CD,共点.点评:证明多条直线共点时,与证明多点共线是一样的.[例6]已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面.分析:弄清楚四条直线不共点且两两相交的含义:四条直线不共点,包括有三条直线共点的情况;两两相交是指任何两条直线都相交.在此基础上,根据平面的性质,确定一个平面,再证明所有的直线都在这个平面内.证明 1?若当四条直线中有三条相交于一点,不妨设a,b,c相交于一点 A ∴直线d和A确定一个平面α.又设直线d与a,b,c分别相交于E,F,G,则 A,E,F,G∈α.∵ A,E∈α,A,E∈a,∴ aα.同理可证 bα,cα.∴ a,b,c,d在同一平面α内.2?当四条直线中任何三条都不共点时,如图.∵这四条直线两两相交,则设相交直线a,b确定一个平面α.设直线c与a,b分别交于点H,K,则 H,K∈α.又∵ H,K∈c,∴ cα.同理可证 dα.∴ a,b,c,d四条直线在同一平面α内.点评:证明若干条线(或若干个点)共面的一般步骤是:首先由题给条件中的部分线(或点)确定一个平面,然后再证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义.[例7]在立方体ABCD-A1B1C1D1中,(1)找出平面AC的斜线BD1在平面AC内的射影;(2)直线BD1和直线AC的位置关系如何?(3)直线BD1和直线AC所成的角是多少度?解:(1)连结BD, 交AC于点O .(2)BD1和AC是异面直线.(3)过O作BD1的平行线交DD1于点M,连结MA、MC,则∠MOA或其补角即为异面直线AC和BD1所成的角.不难得到MA=MC,而O为AC的中点,因此MO⊥AC,即∠MOA=90°,∴异面直线BD1与AC所成的角为90°.[例8] 已知:在直角三角形ABC中,A为直角,PA⊥平面ABC,BD⊥PC,垂足为D,求证:AD⊥PC证明:∵PA ⊥平面ABC∴PA⊥BA又∵BA⊥AC ∴BA⊥平面PAC∴AD是BD在平面PAC内的射影又∵BD⊥PC∴AD⊥PC.(三垂线定理的逆定理)四、典型习题导练1.如图, P是△ABC所在平面外一点,连结PA、PB、PC后,在包括AB、BC、CA的六条棱所在的直线中,异面直线的对数为( )A.2对B.3对C.4对D.6对2. 两个正方形ABCD、ABEF所在的平面互相垂直,则异面直线AC和BF所成角的大小为.3. 在棱长为a的正方体ABCD-A1B1C1D1中,体对角线DB1与面对角线BC1所成的角是,它们的距离是 .4.长方体中,则所成角的大小为_ ___.5.关于直角AOB在定平面α内的射影有如下判断:①可能是0°的角;②可能是锐角;③可能是直角;④可能是钝角;⑤可能是180°的角. 其中正确判断的序号是_____.(注:把你认为正确的序号都填上).6.在空间四边形ABCD中,AB⊥CD,AH⊥平面BCD,求证:BH⊥CD7.如图正四面体中,D、E是棱PC上不重合的两点;F、H分别是棱PA、PB上的点,且与P 点不重合.求证:EF和DH是异面直线.。

空间中直线与直线之间的位置关系

空间中直线与直线之间的位置关系

2.1.2空间中直线与直线之间的位置关系一、空间两直线的位置关系 1.异面直线(1)异面直线的定义:我们把不同在 的两条直线叫做异面直线. 即若a ,b 是异面直线,则不存在平面α,使a ⊂α且b ⊂α.(2)异面直线的画法:为了表示异面直线不共面的特点,通常用一个或两个平面衬托,如图:2.空间两直线的位置关系空间两条直线的位置关系有且只有三种:相交、平行和异面. (1) ——同一平面内,有且只有一个公共点; (2) ——同一平面内,没有公共点;学!科网 (3) ——不同在任何一个平面内,没有公共点. 3. 空间中两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线 (2)从是否共面的角度分类:⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线二、公理4与等角定理 1.公理4(1)自然语言:平行于同一条直线的两条直线互相 .(2)符号语言:a ,b ,c 是三条不同的直线, a ∥b ,b ∥c . (3)作用:判断或证明空间中两条直线平行. 公理4表述的性质也通常叫做空间平行线的传递性.用公理4证明空间两条直线,a c 平行的步骤(1)找到直线b ; (2)证明∥a b ,∥b c ; (3)得到∥a c .2.等角定理(1)自然语言:空间中如果两个角的两边分别对应平行,那么这两个角 . (2)符号语言:如图(1)(2)所示,在∠AOB 与∠A ′O ′B ′中,OA ∥O ′A ′,OB ∥O ′ B ′,则∠AOB =∠A ′O ′B ′或∠AOB +∠A ′O ′B ′=180°.图(1) 图(2)三、异面直线所成的角1.两条异面直线所成的角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的 叫做异面直线a 与b 所成的角(或夹角).(1)在定义中,空间一点O 是任取的,根据等角定理,可以判定a ′,b ′所成的角的大小与点O 的位置无关.为了简便,点O 常取在两条异面直线中的一条上.(2)研究异面直线所成的角,就是通过平移把异面直线转化为相交直线,即把求空间角问题转化为求平面角问题,这是研究空间图形的一种基本思路.2.异面直线所成的角的范围异面直线所成的角必须是锐角或直角,则这个角α的取值范围为 . 3.两条异面直线垂直的定义如果两条异面直线所成的角是 ,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .4.构造异面直线所成角的方法(1)过其中一条直线上的已知点(往往是特殊点)作另一条直线的平行线;(2)当异面直线依附于某几何体,且直接平移异面直线有困难时,可利用该几何体的特殊点,将两条异面直线分别平移相交于该点;(3)构造辅助平面、辅助几何体来平移直线.注意,若求得的角为钝角,则两异面直线所成的角应为其补角.学科*网5.求两条异面直线所成的角的步骤(1)平移:选择适当的点,平移异面直线中的一条或两条,使其成为相交直线; (2)证明:证明作出的角就是要求的角; (3)计算:求角度(常利用三角形的有关知识);(4)结论:若求出的角是锐角或直角,则它就是所求异面直线所成的角;若求出的角是钝角,则它的补角就是所求异面直线所成的角.K 知识参考答案:一、1.(1)任何一个平面内2.(1)相交直线 (2)平行直线 (3)异面直线 二、1.(1)平行 (2)a ∥c 2.(1)相等或互补 三、1.锐角(或直角) 2.090α<≤ 3.直角K—重点掌握公理4及等角定理,异面直线及其所成的角K—难点理解两异面直线所成角的定义,并会求两异面直线所成的角K—易错忽略异面直线所成的角的范围致误1.空间两直线的位置关系的判断空间两直线的位置关系有平行、相交、异面三种情形,因此对于空间两直线位置关系的判断,应由题意认真分析,进而确定它们的位置关系.【例1】如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM 与DD1是异面直线.其中正确的结论为A.③④B.①②C.①③D.②④【答案】A【解析】∵A、M、C、C1四点不共面,∴直线AM与CC1是异面直线,故①错误;同理,直线AM与BN也是异面直线,故②错误.同理,直线BN与MB1是异面直线,故③正确;同理,直线AM与DD1是异面直线,故④正确.故选A.【方法技巧】判定或证明两直线异面的常用方法:1.定义法:不同在任何一个平面内的两条直线.2.定理法:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.3.推论法:一条直线上两点与另一条与它异面的直线上两点所连成的两条直线为异面直线.4.反证法:证明立体几何问题的一种重要方法. 证明步骤有三步:第一步是提出与结论相反的假设;第二步是由此假设推出与已知条件或某一公理、定理或某一已被证明是正确的命题相矛盾的结果;第三步是推翻假设,从而原命题成立. 2.公理4的应用证明两条直线平行的方法: (1)平行线的定义;(2)利用平面几何的知识,如三角形与梯形的中位线、平行四边形的性质、平行线分线段成比例定理等; (3)利用公理4.【例2】如图,△ABC 的各边对应平行于111△A B C 的各边,点E ,F 分别在边AB ,AC 上,且1,3AE AB AF ==13AC ,试判断EF 与的位置关系,并说明理由.【解析】平行.理由如下: ∵11,33AE AB AF AC ==,∴∥EF BC . 又11∥B C BC ,∴11∥B C EF . 3.等角定理利用等角定理解题的关键是不要漏掉两个角互补的这种情况. 【例3】空间两个角α,β的两边分别对应平行,且α=60°,则β为 A .60° B .120° C .30°D .60°或120°【答案】D【解析】∵空间两个角α,β的两边对应平行,∴这两个角相等或互补,∵α=60°,∴β=60°或120°.故选D . 【名师点睛】根据公理4知道当空间两个角α与β的两边对应平行时,得到这两个角相等或互补,根据所给的角的度数,即可得到β的度数.【例4】如图所示,已知棱长为a 的正方体中,M ,N 分别是棱的中点.(1)求证:四边形是梯形; (2)求证:(2)由(1)知MN ∥A 1C 1,又∵ND ∥A 1D 1,∴∠DNM 与∠D 1A 1C 1相等或互补,而∠DNM 与∠D 1A 1C 1均是直角三角形的锐角,∴∠DNM =∠D 1A 1C 1. 4.两异面直线所成的角通过平移直线至相交位置求两条异面直线所成的角,是数学中转化思想的运用,也是立体几何问题的一个难点.【例5】如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=,2BC AD =,PAB △和PAD △都是等边三角形,则异面直线CD 和PB 所成角的大小为A.90B.75C.60D.45【答案】A【方法点睛】本题主要考查了空间几何体的结构特征及空间中异面直线所成角的求解,其中根据空间几,放置在三角形中,利用何体的结构特征,把空间中异面直线CD和PB所成的角转化为平面角AEF解三角形的知识求解是解答本题的关键,着重考查了转化与化归思想和学生的推理、运算能力,试题属于基础题.5.忽略异面直线所成的角的范围致误【例6】如图,已知空间四边形ABCD中,AD=BC,M,N分别为AB,CD的中点,且直线BC与MN所成的角为30°,求BC与AD所成的角.【错因分析】在未判断出∠MEN 是锐角或直角还是钝角之前,不能断定它就是两异面直线所成的角,因为异面直线所成的角α的取值范围是090α<≤,如果∠MEN 为钝角,那么它的补角才是异面直线所成的角. 学#科网【正解】以上同错解,求得∠MEN =120°,即BC 与AD 所成的角为60°.【误区警示】求异面直线所成的角的时候,要注意异面直线所成的角α的取值范围是090α<≤.1.若,a b 为异面直线,直线c a ∥,则c 与b 的位置关系是 A .相交 B .异面 C .平行 D .异面或相交 2.已知∥AB PQ ,∥BC QR ,∠ABC =30°,则∠PQR 等于 A .30° B .30°或150° C .150° D .以上结论都不对 3.已知异面直线,a b 分别在平面,αβ内,且c αβ=,那么直线c 一定A .与a b ,都相交B .只能与a b ,中的一条相交C .至少与a b ,中的一条相交D .与a b ,都平行 4.如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有A .2对B .3对C .4对D .6对5.如图,四面体ABCD 中,AD BC =,且AD BC ⊥,E F 、分别是AB CD 、的中点,则EF 与BC 所成的角为A .30B .45C .60D .906.如果OA //O A '',OB //O B '',那么AOB ∠和A O B '''∠的关系为 . 7.下列命题中不正确的是________.(填序号)①没有公共点的两条直线是异面直线; ②分别和两条异面直线都相交的两直线异面;③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行; ④一条直线和两条异面直线都相交,则它们可以确定两个平面.8.如图所示,两个三角形ABC 和A'B'C'的对应顶点的连线AA',BB',CC'交于同一点O , 且AO BO COOA OB OC =='''.求证:△∽△ABC A B C '''.9.空间四边形ABCD中,AB=CD且AB与CD所成的角为60°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.10.分别和两条异面直线相交的两条不同直线的位置关系是A.相交B.异面C.异面或相交D.平行11.如图是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为A.相交B.平行C .异面而且垂直D .异面但不垂直12.如图,正四棱锥ABCD P 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于_________.ECDPAB13.如图,若P 是△ABC 所在平面外一点,PA ≠PB ,PN ⊥AB ,N 为垂足,M 为AB 的中点,求证:PN 与MC 为异面直线.14.(2016上海)如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是BC D E F A B 11D 1A .直线AA 1B .直线A 1B 1C .直线A 1D 1 D .直线B 1C 115.(2015广东)若直线l 1与l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是 A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交16.(2015浙江)如图,直三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB =AC =AA 1=1,BC =2,则异面直线A 1C 与B 1C 1所成的角为A .30°B .45°C .60°D .90°17.(2014广东)若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定1 2 3 4 5 10 11 14 15 16 17 DBCBBCDDDCD1.【答案】D【解析】c a ∥,a b ,为异面直线,所以c 与b 的位置关系是异面或相交.4.【答案】B【解析】根据异面直线的定义观察图形,可知有三对异面直线,分别是PB 与AC 、P A 与BC 、PC 与AB ,故选B. 5.【答案】B【解析】如图,设G 为AC 的中点,连接,EG FG .由中位线可知,∥∥EG BC GF AD ,所以GEF ∠就是EF 与BC 所成的角,且三角形GEF 为等腰直角三角形,所以45GEF ∠=.6.【答案】相等或互补【解析】根据等角定理的概念可知AOB ∠和A O B '''∠的关系为相等或互补. 7.【答案】①②8.【解析】∵AA'与BB'交于点O ,且AO BOOA OB='',∴AB ∥A'B'.同理,AC ∥A'C'.又∠BAC 与∠B'A'C'两边的方向相反,∴∠BAC =∠B'A'C'. 同理,∠ABC =∠A'B'C'. 因此,△∽△ABC A B C '''.9.【解析】如图,取AC 的中点G ,连接EG 、FG ,则EG ∥AB ,GF ∥CD ,且由AB =CD 知EG =FG ,∴∠GEF (或它的补角)为EF 与AB 所成的角,∠EGF (或它的补角)为AB 与CD 所成的角. ∵AB 与CD 所成的角为60°,∴∠EGF =60°或120°. 由EG =FG 知△EFG 为等腰三角形, 当∠EGF =60°时,∠GEF =60°;当∠EGF =120°时,∠GEF =30°.学@科网 故EF 与AB 所成的角为60°或30°.10.【答案】C【解析】(1)若两条直线与两异面直线的交点有4个,如图(1),两条直线异面;(2)若两条直线与两异面直线的交点有3个,如图(2),两条直线相交.故选C.(1) (2)【误区警示】在判断两直线的位置关系时,要全面思考问题,可通过画出相关图形帮助分析,从而防止遗漏.本题中,没有明确指出直线交点的个数,两条直线分别与两异面直线相交,交点可能有4个,此时两条直线异面,也可能有3个,此时两条直线相交.11.【答案】D【解析】将展开图还原为正方体,如图所示.AB与CD所成的角为60°,故选D.13.【解析】假设PN与MC不是异面直线,则存在一个平面α,使得PN⊂α,MC⊂α,于是P∈α,C∈α,N∈α,M∈α.∵PA≠PB,PN⊥AB,N为垂足,M是AB的中点,∴M,N不重合.∵M∈α,N∈α,∴直线MN⊂α.∵A∈MN,B∈MN,∴A∈α,B∈α.即A,B,C,P四点均在平面α内,这与点P在平面ABC外相矛盾.∴假设不成立,则PN与MC是异面直线.16.【答案】C【解析】根据题意,得BC∥B1C1,故异面直线A1C与B1C1所成的角即BC与A1C所成的角.如图,连接A 1B ,在△A 1BC 中,BC =A 1C =A 1B =2,故∠A 1CB =60°,即异面直线A 1C 与B 1C 1所成的角为60°.故选C.17.【答案】D【解析】如下图所示,在正方体1111ABCD A B C D -中,取1AA 为2l ,1BB 为3l ,取AD 为1l ,BC 为4l ,则14l l ∥;取AD 为1l ,AB 为4l ,则14l l ⊥;取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此14,l l 的位置关系不确定,故选D.D 1C 1B 1A 1DCBA。

第63课 空间两条直线

第63课 空间两条直线
A. EMBED Equation.3 B. EMBED Equation.3 C. EMBED Equation.3 D. EMBED Equation.3
9.在四面体ABCD中,AB=8,CD=6,M、N分别是BC、AD的中点,且MN=5,则AB
A.1 B.2 C.3 D.4
6.空间四边形两条对角线互相垂直,则顺次连结各边中点的四边形是 ( )
A.空间四边形 B.矩形 C.菱形 D.正方形
7.如图所示,在正方体ABCD—A1B1C1D1中,M、N分别为棱AA1和BB1的中点,则异面直线CM与D1N所成的角的正弦值为 ( )
第2课 空间两条直线习题解答
1.D 解这种题简单、省时的方法是在草稿纸上作如下记录,然后对照选项判断①√②×③×④×⑤√.
2.D 若射影为两个点,则两条直线与平面垂直,可知两直线平行,与异面相矛盾.
3.B 在a,b所确定的平面外作与a,b都成60°角的直线有两条.
4.D 12×2=24.
∴∠A1BC1(或它的补角)是异面直线A1B与AD1所成的角.
设AA1=a,∵∠ABA1=45°,∠A1AD1=60°
∴在△AA1D1与△A1AB中,AB=AA1=a,A1B= EMBED Equation.3 a,AD1=BC1=2a,A1D1= EMBED Equation.3 a,
【解前点津】 判定两条直线平行,首先考虑把两直线放在同一
平面内,利用平面图形的性质实施证明,若图形中这样的平面不好找,
可以考虑实施转化,利用平行公理(或后继将要学习的直线与平面平行
的性质定理、向量知识等)实施证明.
【规范解答】 证明:连结BC1、AD1,因为ABCD-A1B1C1D1是正
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公理4: 在空间平行于同一条直线的两条直线互相平行. 等角定理: 空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补.
A1
M
B1
C1
N
D A
B
C
平行公理 公理4 平行于同一条直线的两条直线互相平行.
a//b 即:a、b、c为直线,则 a // c c//b 注:
1.直线a,b,c 两两平行,可记为a // b // c . 2.公理4所表述的性质,叫做空间平行线的传递性. 3.证明空间两直线平行 的方法:
相交
只有一个 没有
共面 共面
平行
异面
没有
不共面
2.异面直线的画法
说它们不共面的特点。常借
助一个或两个平面来衬托.
A

如图:
a


b
(3)
a

b
(2)
思考
分别在两个平面内的两条直线是否一定异面?
答:不一定:它们可能异面,可能相交,也可能平行。
b
a
a
M
b
a
空间中的平行关系
广饶一中 吴兴昌
判断下列命题对错: 1.如果一条直线上有一个点在一个平面上,则这 条直线上的所有点都在这个平面内。( ) 2.将书的一角接触课桌面,这时书所在平面和课 桌所在平面只有一个公共点。 () 3.四个点中如果有三个点在同一条直线上,那么 这四个点必在同一个平面内。 ( ) 4.一条直线和一个点可以确定一个平面。( ) 5.如果一条直线和另两条直线都相交,那么这三 条直线可以确定一个平面。 ( )
(1) 定义法:一要证两直线在同一平面内;二要证 两直线没有公共点(反证法) (2) 公理法
例1 如图,空间四边行ABCD中,E,F,G,H 分别是AB,BC,CD,DA的中点.求证:四边 A 形EFGH是平行四边形.
证明: 连结BD
∵ EH是△ABD的中位线 1 E ∴EH ∥BD且EH = 2 BD D 1 同理,FG ∥BD且FG = BD 2 G ∴EH ∥FG且EH =FG C F ∴EFGH是一个平行四边形 B 立体问题平面化是解立体几何时最主要、最 常用的一种方法。 变式:如果再加上条件AC=BD,那么四边形 EFGH是什么图形?
H
等角定理
等角定理1:如果一个角的两边和另 一个角的两边分别对应平行,那么这 两个角相等或互补.
D
A B
E
C
A1
D1 E1 C1
B1
推论:如果一个角的两边和另一个角的两边 分别平行且方向相同,那么这两个角相等.
小结:
异面直线的定义: 不同在 任何 一个平面内的两条直线叫做异面直线. 相交直线 空间两直线的位置关系 平行直线 异面直线 异面直线的画法 辅助平面衬托法
温故知新
观察实例
复习:平面内两条直线的位置关系 相交直线 平行直线
a o b
a b
平行直线 (无公共点)
相交直线 (有一个公共点)
D
B
A
两路相交
C
立交桥
立交桥中, 两条路线AB, CD
既不平行,又不相交
1.异面直线的定义
不同在任何一个平面内的两 条直线叫做异面直线。
位置关系 公共点个数 是否共面
·
A
a 已知:
, A , B , B a

a
B
求证: 直线AB和a是异面直线
(1)在如图所示的正方体中,指出哪些 棱所在的直线与直线BA1是异面直线?
D1 A1 B1 C1
D A
C
B
⑵已知M、N分别是长方体的棱C1D1与CC1 上的点,那么MN与AB所在的直线相交吗?
D1
b






a与b是异面直线
a与b是相交直线
a与b是平行直线
空间直线与直线之间的位置关系
相交直线 同在一个平面内 按是否在 同一平面内分 平行直线
不同在任何一个平面内: 异面直线 有一个公共点: 相交直线 按公共点个数分 无公共点 平行直线 异面直线
3.异面直线的判定方法: (1)定义法:由定义判定两直线不可能在 同一平面内.(借助反证法) (2)判定定理:过平面外一点与平面内一点 的直线,和平面内不经过该点的直线是异 面直线
相关文档
最新文档