支撑轴力监测记录表

支撑轴力监测记录表
支撑轴力监测记录表

观测员:记录员:检查员:

观测依据:《建筑基坑工程监测技术规范》GB50497-2009 仪器:轴力计工程名称:联星新港经济合作社社员住宅楼工程基坑监测

观测员:记录员:检查员:

观测依据:《建筑基坑工程监测技术规范》GB50497-2009 仪器:轴力计工程名称:联星新港经济合作社社员住宅楼工程基坑监测

深基坑监测总结报告

第一章工程概况 1.1工程概况 XX路隧道工程是XX路改造工程的一部分,XX路改造工程由XX路地下通道、两侧排水管道、西广场人行地下通道及雨水泵站组成。XX路地下通道由隧道和引道组成,全长约1000m。隧道为闭合框架结构,采用整板基础,跨度22m,长约540m;引道为钢筋混凝土U型槽或毛石混凝土挡土墙结构,拟采用整板基础,跨度22m,长约460m。排水管道沿道路两侧布置,雨水泵站基底尺寸约9m*8m。本监测项目为对XX路隧道工程深基坑开挖及施工过程进行监测。 1.2道路沿线基本情况 XX路现状道路宽约60m,道路中设有双向2车道高架桥(已于隧道施工前拆除),桥宽10m,全长900m,XX路两侧分布有几个较大的公共场站和车站,路西侧主要有航海长途客运站、XX路西侧公交枢纽;东侧分布有武昌火车站、宏基长途客运站。主要单位有武昌区千家街小学、WW市公共客运交通监察办公室第三管理站、九州饭店、中铁快运公司、七一九研究所等。 图1-1XX路隧道 XX路现为进出武昌火车站的唯一道路,其车流量极大,且车行、人行交错,

交通极为繁忙。 1.3管线现状 本工程范围内道路沿线现状地下管线较多,有给水、雨水、污水、电力、电信、燃气、有线电视、路灯及交通信号等管线。除电信、电力、部分给水管布置于现状人行道上外,大部分管线布置在车行道下。隧道开挖主要影响的管线有排水箱涵、煤气、给水。人防埋深约9m~12m,为钢筋混凝土结构,其净空尺寸为3m×2.55m,零散分布,隧道北敞口段东侧分布较多。 1.4场地自然地理概况及地形地貌特征 WW地区属于我国东南季风气候区,具有冬寒夏热,春湿秋旱,四季分明,降水充沛冬季少雪等特点,年平均气温16.3度,极端高温41.3度,极端低温-18.0度。地貌单元属长江冲积三级阶地,地区内地势较平坦,局部地段稍有起伏,地面标高在22.94m~29.05m之间变化。 1.5场地岩土构成及其岩性特征 根据地质报告,本场地主要分布地层有:人工填积(Q ml)和第四系湖(塘) 相沉积(Q l )层、第四系全新统冲积层(Q 4al)、第四系上更新统冲洪积层(Q 3 al+pl)、 志留系强风化泥岩、石英砂岩。各岩土层具体的分布埋藏条件、野外鉴别特征列于下表:

地铁站钢支撑轴力计算新(完整资料).doc

【最新整理,下载后即可编辑】 地铁站钢支撑轴力计算书 庆丰路站: 根据基坑施工方案图,考虑基坑两头45度处单根14.5米最长的钢支 撑 和对基坑垂直的钢支撑单根23.2米最长的钢支撑进行受力分析计 算,已 知单根钢支撑承受的最大轴心垂直压力设计值为1906KN,考虑基坑 两头 45度支撑处钢支撑所承受的轴向力N=1906√2=2695KN。 钢材为:Q235-B型钢。取1.2的安全系数。 一、单头活动端处受力计算: 由单头活动端结构受力图可知,受力面积最小的截面为A-A处截面。

查表得,单根槽钢28c的几何特性为: 截面面积A=51.234 cm2,Ix=268cm^4,Iy= 5500cm^4。 该截面f取205N/mm2,截面属于b类截面。 (一)、受力截面几何特性 截面积:A=51.234×2+4×30=222.5 cm2 截面惯性矩: Ix=2×268+30×43/6=856 cm^4 Iy=2×5500+4×303/6=29000 cm^4 回转半径: ix=√Ix/A=√856/222.5=1.96cm iy=√Iy/A=√29000/222.5=11.42cm (二)、截面验算 1.强度 σ=1.2N/A=(1.2×2695×103)/(222.5×102)=145.4N/mm2

混凝土支撑轴力监测分析

混凝土支撑轴力监测分 析精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

混凝土支撑轴力监测分析 摘要:结合广州地铁某基坑工程的设计和施工方案,对混凝土支撑轴力监测的原理进行介绍。在对基坑施工过程中轴力监测数据变化进行分析的基础上,对其形成原因进行了探讨,得到一些经验性规律,供类似工程参考。 关键词:钢筋混凝土;支撑轴力;监测;分析 引言 我国基础建设的快速发展,深基坑工程的建设也越来越多,在深基坑施工过程中,深基坑的支护起着举足轻重的作用。只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,支撑结构轴力的监测是基坑工程现场监测的主要内容之一。通过对轴力的监测,可准确掌握支护结构的受力状况,从而对基坑的安全性状进行分析,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计方案,从而保证基坑本身和周围建筑物、构筑物的安全,以确保工程的顺利进行。结合广州地铁某基坑工程的设计方案和监测数据,对基坑的混凝土支撑轴力变化进行初步分析。 1工程概况 该工程包括盾构始发井兼轨排井及后明挖段,设计为 1~3 跨的闭合框架结构,其中盾构始发井基坑开挖深度约为 m,明挖段基坑开挖深度约 m;基坑深度范围内大部分为砂层,以淤泥质粉细砂层为主,基坑底部几乎全部位于淤泥质粉细砂层。基坑设计采用 800 mm 厚的地下连续墙+内支撑的围护结构体系。内支撑采用 3 道支撑体系,第一道为具有一定刚度的冠梁,第二、三道为Ф 600、 t=14 的钢管,在

地铁基坑监测总结

天津地铁6号线土建施工第八合同段施工监测 总结报告 编制: 审核: 审批: 2015年10月

1.总体概述 (1) 1.1工程位置 (1) 1.2工程简况 (1) 1.3 沿线周边环境 (1) 1.4 工程地质与水文地质 (1) 2.编制依据 (3) 3.监测范围及内容 (3) 4.车站基坑监测点位(孔)布设情况 (4) 4.1围护墙顶水平位移、沉降点位布设情况 (4) 4.2 围护结构变形布设情况 (4) 4.3 地面沉降点位布设 (4) 4.4地下水位点位布设 (4) 4.5 支撑轴力点位布设 (4) 4.6建筑物沉降监测点布设 (5) 4.7 管线监测点位布设 (5) 5.监测控制值 (6) 6.车站主体部分变形监测数据分析 (7) 6.1 基坑周围建筑物沉降监测数据 (7) 6.2 地下管线沉降监测 (7) 6.3 围护体顶部水平位移监测 (8) 6.4 围护体顶部垂直位移监测 (9) 6.5 地表沉降监测 (10) 6.6地下水位监测 (10)

6.7支撑轴力监测 (11) 6.8围护体、土体内部水平位移观测数据 (12) 7.结论 (16) 8.致谢 (17) 9.监测测点布置图 (17)

1.总体概述 1.1工程位置 车站位于中山北路路中,横跨养鱼池路,中山北路交通翻交至北侧导行,导行路距离基坑10m。养鱼池路交通导改至车站盖板上方。车站主体基坑西南侧距十四中学教学楼(四层、浅基础)16.9m。 1.2工程简况 基坑总长286.8m,其中:标准段基坑长256m,净宽21.1m,开挖深度17.5m;两端头井基坑长15.4m,净宽24.9m,开挖深度19.2m。围护结构采用800mm厚地下连续墙,地下连续墙长31.4m。地下连续墙与主体结构内衬墙组成复合结构,车站采用明挖顺筑法施工(局部采用盖挖顺筑法施工)。基坑监测等级为一级。 1.3 沿线周边环境 十四中教学楼(位于车站西南侧,距离端头井16.9m,条基,四层框架结构)。天津泰嘉热力管理中心中山北路供热站辅助房(位于车站西南侧,距离端头井9.7m,条基,一层砖混)。河北饭店(位于车站西南侧,距离端头井25m,条基,四层砖混)。 中山北路管线均距离基坑较远,养鱼池路横跨车站逆做顶板上方管线中DN1000铸铁水管与Φ1000钢筋砼雨水管为二级风险源,设计变形控制参考值为20mm。 1.4 工程地质与水文地质 1.4.1 工程地质

地铁站钢支撑轴力计算新

地铁站钢支撑轴力计算 新 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

地铁站钢支撑轴力计算书 庆丰路站: 根据基坑施工方案图,考虑基坑两头45度处单根米最长的钢支撑 和对基坑垂直的钢支撑单根米最长的钢支撑进行受力分析计算,已 知单根钢支撑承受的最大轴心垂直压力设计值为1906KN,考虑基坑两头45度支撑处钢支撑所承受的轴向力N=1906√2=2695KN。 钢材为:Q235-B型钢。取的安全系数。 一、单头活动端处受力计算: 由单头活动端结构受力图可知,受力面积最小的截面为A-A处截面。查表得,单根槽钢28c的几何特性为: 截面面积A= cm2, Ix=268cm^4, Iy= 5500cm^4。 该截面f取205N/mm2,截面属于b类截面。 (一)、受力截面几何特性 截面积:A=×2+4×30= cm2 截面惯性矩: Ix=2×268+30×43/6=856 cm^4 Iy=2×5500+4×303/6=29000 cm^4 回转半径: ix=√Ix/A=√856/= iy=√Iy/A=√29000/= (二)、截面验算 1.强度

σ=A=(×2695×103)/(×102)=mm2

支撑轴力特点及支承轴力监测方案

第一部分轴力支持方案特点及发展 随着高层建筑数量和高度的增加,基础埋深也随着增加。进入90年代后,我国经济的迅速发展,城市地价不断上涨,空间利用率随之提高,出现了众多的超高层建筑,使有些地下室埋深达20米以上,对基坑开挖技术提出更高、更严的要求,即不仅要确保边坡的稳定,而且要满足变形控制的要求,以确保基坑周围的建筑物、地下管线、道路等安全。同时,为了适应建筑市场日趋激烈的竞争,还要考虑提高土方挖运的机械化程度、缩短土方工期、降低工程成本、提高经济效益等方面的因素。我公司自1994年以来,先后在佛山国际商业中心,中山六福广场、广州文化娱乐广场、广州博成大厦等基坑施工中,采用了大跨度钢筋混凝土内支撑梁或圆环拱形钢筋混凝土内支撑支护,由于它们具有在计算方面的正确性、土方施工的经济性和施工实践的安全可靠性,所以在施工中越来越多地应用,并通过广东省建筑工程总公司及有关专家的鉴定,获得科技进步奖三等奖,得到推广和应用。 1.特点 .发挥材料的优点。深基坑土方施工中,基坑深度往往较大,挡土结构的水平压力也较大,因此,钢筋混凝土支撑表现为水平受压为主,由于钢筋混凝土支撑与钢支撑不同,它具有变形小的特点,加上采用配筋和加大支撑截面的方法,可以提高钢筋混凝土支撑的强度,用以作为支撑的混凝土能充分发挥材料的刚度大和变形小的受力特性,它能确保地下室施工和基础施工以及周边邻近建筑物、道路和地下管线等公共设施的安全,因此,它是作为深基坑支护技术的新形式和新材料。 .加快土方挖运速度。在软地基深基坑施工时采用钢筋混凝土支撑,由于它的跨度大,尤其是采用圆环拱形钢筋混凝土内支撑形式,基坑内的平面形成大面积无支撑的空旷,空旷面积可达到整个基坑面积的65%~75%,形成开阔的工作面,满足挖土机械回转半径的要求,有利于多台大型挖土机械自如运转作业,在基坑内可以留坡道让运土车直接驶入基坑装土,并采用逐层开挖或留岛形式开挖,这样,最后剩余小量土方用吊土机吊起即可。挖土速度可以提高三倍以上,达到缩短土方施工工期的目的,同时有利于基坑挡土结构变形的时效控制和缩短基坑内的降水时间,保证邻近建筑物的安全。 .降低工程造价。采用了大跨度钢筋混凝土内支撑梁或圆环拱形钢筋混凝土内支撑形式,材料便宜,节省了其它支撑结构(如钢结构)一次性投入的大笔资金。

基坑监测报告

XXX市XXXX 基坑工程 监测报告 XXXXXX(单位) 2012年X月

XXX市XXXXX基坑工程 监测报告 工程名称:XXX市XXXXX基坑工程 监测容:基坑支护结构及周边建(构)建筑物安全工程地点:XXXXX 监测日期:2010年X月X日~2012年X月X日 XXXXXXXXXXXXX 2012年X月

委托单位: 建设单位: 勘察单位: 设计单位: 施工单位: 监理单位: 监测单位: 项目负责人: 试验人员: 报告编写: 审核: 审定: 报告总页数:x页

目录 一、工程概况 (1) 二、监测依据 (1) 三、监测容...................................................................................... 1 四、监测点布置和监测方法.............................................................. 2 五、监测工序和测点保护.................................................................. 4 六、报警值.......................................................................................... 5 七、监测时长和频率.......................................................................... 5 八、监测成果及分析.......................................................................... 6 九、附表、附图 (11)

基坑轴力监测

基坑工程混凝土支撑轴力监测方法的讨论 2014-01-18 13:52 来源:中国岩土网阅读:1060 通过现场试验,探讨混凝土支撑轴力监测过程中的问题及解决方法。 基坑工程混凝土支撑轴力监测方法的讨论 1.混凝土支撑轴力监测的问题及现状 国内明挖基坑工程的监测中,混凝土支撑系统的轴力监测结果异常(轴力监测值过大,但实际工程结构中并非内力过大或不稳定;如:一根C35 1m×1m截面的钢筋混凝土支撑,有时轴力监测值会达到20000~30000kN,而依然处于正常工作状态)问题普遍地存在着,时常会对监测结果分析及工程施工的进行造成不必要的阻碍。如苏州轨道交通一号线广济路站基坑混凝土支撑轴力监测数据,在实际监测过程中发现随着基坑开挖深度的加深,基坑支撑的监测轴力值变化较快并远大于设计值,有的甚至好几倍,以标准段8-2道混凝土支撑轴力为例,最大监测轴力值接近15000kN,远远超过该段8700kN的设计值。广州地铁五号线员村站基坑工程,在D101监测点处支撑横断面下表面钢筋所测应力为负值,即为拉应力,说明斜撑在土压力的作用下已向下弯曲,且下表面混凝土拉应力为 2.51 MPa,超过了混凝土的设计抗拉强度,就现场观看支撑上表面有细微裂缝,而轴力平均值才达到1440.44 kN,还远未达到轴力设计报警值3000 kN。广州某地铁基坑工程混凝土支撑系统的轴力监测结果起初均为负值,随着基坑的开挖轴力值持续增大,一直到基坑开挖结束,最大值达到设计允许值的6倍,而支撑系统一直处于正常工作的状态。天津某轨道换乘中心⑩轴~⑩轴工程截至2009年8月6日,⑦轴轴力值为18247 kN,占设计值204%;⑦轴轴力值为18994 kN,占设计值213%;已大大超过支撑的安全报警值,但支撑一直安全工作,未出现裂缝等不安全、失稳迹象。上海虹桥国际商城基坑开挖深度13.70m,3道混凝土支撑,第2道支撑(C351200mm×l000mm)轴力监测值最大处曾达到30500kN,已大大超过支撑的安全报警值,但支撑一直安全工作,未出现裂缝等不安全、失稳迹象,直至支撑拆除;南京地铁指挥中心基坑开挖深度15.40m,4道钢筋混凝土支撑,施工过程中第3道支撑(C35 1200mm×1000mm)轴力监测值最大处达到21000kN,已超出轴力安全报警值,但并未出现不安全工作的迹象,直至支撑拆除。南京鼓楼峨眉路北侧某基坑工程混凝土轴力的设计值为2000kN,但是实际监测值基本上都超过2000kN,最大值5139kN,超过了设计值的2.5倍。青岛地铁一期工程火车北站A区基坑第一层混凝土支撑轴力采用混凝土应变计进行监测,期间日变化量波动很大,范围在-1140kN~1560kN之间,甚至一天内上下午监测数据变化达800kN。可以看出,国内各基坑工程混凝土支撑轴力监测过程中,该监测异常的现象比较普遍。 本人参建扬州某大型市政工程,其基坑工程第一层多为混凝土支撑,现场监测采用钢筋应力计进行混凝土支撑轴力的量测,自2012年3月6日,大部分混凝土支撑轴力监测值超过5000kN,有的甚至超过10000kN,远大于设计轴力及设计所提控制值,现场就此事讨论激烈。 2.混凝土支撑轴力的主要监测方法

第三方监测交底报告

哈尔滨西站站 第三方监测技术交底报告 哈尔滨地铁测量监测项目部 2010年6月12日

1各区段施工工法概况 1.1 监测目的 (1)判定地铁结构工程在施工期间的安全性及施工对周边环境的影响,验证基坑开挖方案和环境保护方案的正确性,并对可能发生的危险及环境安全的隐患或事故提供及时、准确的预报,以便及时采取有效措施,避免事故的发生。 (2)将监测结果用于优化设计,为设计提供更符合工程实际情况的数据依据。基坑工程设计方案的定量化预测计算是否真正反映了工程实际状况,只有在方案实施过程中才能获得最终的答案,其中现场监测是确定上述数据的重要手段。由于各个场地地质条件不同、施工工艺不同和周边环境不同,设计计算中未曾计入的各种复杂因素,都可能体现在支护施工过程和支护结构的稳定性结果中,表现形式为安全和不安全,通过对现场的监测结果进行分析、研究,可以对不安全的情况加以局部的修改、补充和完善。 (3)通过对周边环境的监测,评估工程施工对建(构)筑物安全及正常使用的影响程度,指导土建方采取正确的施工方法和对出现隐患的建(构)筑物采取保护措施,并为可能的法律纠纷提供的依据。 (4)作为第三方公正性监测,所提供的数据和资料可成为业主处理工程合同纠纷的重要依据,防止承包方提供虚假的资料和数据隐瞒工程安全和质量真相,为业主提供确凿的索赔证据。 1.2监测范围及监测内容 哈尔滨市轨道交通哈尔滨西站站第三方监测项目监测范围包括: 1、哈尔滨西站站5号线部分里程范围:SK2+752.271~ SK2+972.671; 2、哈尔滨西站站4号线部分里程范围:CK5+014.347~ CK5+348.497; 3、哈尔滨地铁4号线区间部分里程范围:CK4+870.297~ CK5+014.347。 第三方监测的内容包括: (1)支护结构桩(墙)顶水平位移; (2)支护结构桩(墙)顶沉降监测; (3)支护结构变形; (4)支撑轴力/锚索拉力; (5)地表沉降(或隆陷); (6)地下水位。

地铁站钢支撑轴力计算新

地铁站钢支撑轴力计算书 庆丰路站: 根据基坑施工方案图,考虑基坑两头45度处单根14.5米最长的钢支撑和对基坑垂直的钢支撑单根23.2米最长的钢支撑进行受力分析计算,已知单根钢支撑承受的最大轴心垂直压力设计值为1906KN,考虑基坑两头45度支撑处钢支撑所承受的轴向力N=1906√2=2695KN。 钢材为:Q235-B型钢。取1.2的安全系数。 一、单头活动端处受力计算: 由单头活动端结构受力图可知,受力面积最小的截面为A-A处截面。

查表得,单根槽钢28c的几何特性为: 截面面积A=51.234 cm2, Ix=268cm^4, Iy= 5500cm^4。 该截面f取205N/mm2,截面属于b类截面。 (一)、受力截面几何特性 截面积:A=51.234×2+4×30=222.5 cm2 截面惯性矩: Ix=2×268+30×43/6=856 cm^4 Iy=2×5500+4×303/6=29000 cm^4 回转半径: ix=√Ix/A=√856/222.5=1.96cm iy=√Iy/A=√29000/222.5=11.42cm (二)、截面验算 1.强度 σ=1.2N/A=(1.2×2695×103)/(222.5×102) =145.4N/mm2

1.2N/φA=(1.2×2695×103)/(0.791×22 2.5×10 2)=183.7N/mm2

混凝土支撑轴力监测分析

混凝土支撑轴力监测分析 摘要:结合广州地铁某基坑工程的设计和施工方案,对混凝土支撑轴力监测的原理进行介绍。在对基坑施工过程中轴力监测数据变化进行分析的基础上,对其形成原因进行了探讨,得到一些经验性规律,供类似工程参考。 关键词:钢筋混凝土;支撑轴力;监测;分析 引言 我国基础建设的快速发展,深基坑工程的建设也越来越多,在深基坑施工过程中,深基坑的支护起着举足轻重的作用。只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,支撑结构轴力的监测是基坑工程现场监测的主要内容之一。通过对轴力的监测,可准确掌握支护结构的受力状况,从而对基坑的安全性状进行分析,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计方案,从而保证基坑本身和周围建筑物、构筑物的安全,以确保工程的顺利进行。结合广州地铁某基坑工程的设计方案和监测数据,对基坑的混凝土支撑轴力变化进行初步分析。 1工程概况 该工程包括盾构始发井兼轨排井及后明挖段,设计为 1~3 跨的闭合框架结构,其中盾构始发井基坑开挖深度约为 18.9 m,明挖段基坑开挖深度约17.5 m;基坑深度范围内大部分为砂层,以淤泥质粉细砂层为主,基坑底部几乎全部位于淤泥质粉细砂层。基坑设计采用 800 mm 厚的地下连续墙+内支撑的围护结构体系。内支撑采用 3 道支撑体系,第一道为具有一定刚度的冠梁,第二、三道为Ф 600、 t=14 的钢管,在灌梁和斜撑上共埋设 13 个钢筋混凝土支撑轴力监测点。基坑监测点平面位置见图1。

由于基坑开挖深度较大且附近有一级公路高架桥和铁路双线桥,属于一级基坑,必须通过监测随时掌握土层和支护结构的内力变化情况,将监测数据与设计预估值进行分析对比,以判断前一步施工工艺和施工参数是否符合预期值,以确定优化下一步施工参数,以此达到信息化施工的目的,确保工程安全。 2轴力监测的原理 对于混凝土支撑,目前实际工程采用较多的是钢弦式应力计方法测量钢筋的应力,其基本原理是利用振动频率与其应力之间的关系建立的。受力后,钢筋两端固定点的距离发生变化,钢弦的振动频率也发生变化,根据所测得的钢弦振动频率变化即可求得弦内应力的变化值。其计算公式如下: Pg=K ( ) + b ⑴ Pg 平均= (P1+P2+P3+P4+…+Pn) /n ⑵ δg=Pg 平均/Sg ⑶ P混凝土=δg·S混凝土·E混凝土/Eg ⑷ 式中 Pg———钢筋计轴力; Pg 平均———钢筋计荷载平均值;δg———钢筋计应力值; Sg———钢筋计截面积; P混凝土———混凝土桩荷载值; E混凝土———混凝土弹性模量; Eg———钢筋弹性模量;S混凝土———混凝土桩横截面积。 在监测中由于内外部温差变化以及混凝土徐变特性会使钢筋应力计产生一定的伸缩变形,引起其自振动频率变化,因此必须采取必要的修正参数进行温差改正,以

基坑钢支撑计算实例

基坑钢支撑计算实例 本车站主体围护结构基坑内竖向设四道钢支撑斜撑。其中第三道、第四道的第四排和第五排为两根钢管并放。主要材料为φ=529、t=12mm(第四道为φ630、t=12mm)的钢管。本计算只对斜撑跨度最大的一跨(跨度取20m)进行了验算, 跨度为支撑两端钢围檩之间净距,其它各跨斜撑的截面尺寸和所用材料与该跨相同。 1、活动端肋板焊缝计算: .为保证φ529(630)钢管均匀受力且不在钢板上有丝毫位移,所以在钢管与钢板间用四块三角内肋板焊接(左右每边各二块),钢板厚度为20mm, 钢支撑厚度为t=12mm,钢支撑活动端千斤顶承压肋板厚度20mm,焊缝厚度按规范1.5×t1/2≤h f≤1.2t(t=12mm) 即5.2≤h f≤14.4,施工图纸上规定焊缝厚度为10mm 故焊缝厚度取10mm 按照设计最大轴力为3600KN,四块外肋板承担1/3 设计轴力(1200 KN),故分配到每块内肋板上的力为600KN 查表的直角焊缝的强度设计值f t w=160N/mm2 考虑到肋板上部焊缝承受一定轴力则有 N‘’=0.7×h f×∑L’w×βf×f t w=0.7×0.01×0.02×2×1.22×1.6×108=54656N N=N‘- N‘’=600-54.656=545.344KN l w=N/(2×0.7 ×h f×f t w)= 545.344 ×103/(2×0.7×0.01×1.6×108)+0.01=0.244m 故需要肋板的长度为25cm. 2、稳定性计、验算: 主体结构西北角、东北角、东南角和盾构上方设有钢支撑,其中西北、东北、东南角采用φ529(630)钢管钢支撑,盾构上方采用双工28b工字钢支撑。钢材全部为A3钢 应力σcr=200MPa;极限值为235MPa;标准值为215MPa 根据公式λp=(π2E/σp)1/2=100 首先根据公式:λ=μl/i 其中钢支撑的长度为20m, i为回转半径,查表得系数μ=1.0 钢支撑计算:

周例会监测数据汇报

土建03表周例会施工方监测汇报材料 土建03标施工方监测情况汇报如下: 7月20日至7月26日期间金华南站共提交日报14份;金塘区间提交日报14份,二金区间提交日报3份(从7月4日开始降频为1次/3d); 1、金塘区间 截至2018年7月26日,金塘区间周边地表竖向位移最大点为DBC09-02,累计值为-68.22mm;坡顶竖向位移累计最大点为ZQC09-02,累计值为-38.99mm;坡顶水平位移累计最大点为ZQS09-02,累计值为50.14mm;地下水位累计最大点为DSW-12,累计值为-5.17m,土体测斜累计最大点为TST-01/16.5m,累计值为 -2.66mm,加密坡顶水平位移累计最大点为JMS04,累计值为5.55mm。

截至2018年7月26日,金华南站周边地表竖向位移最大点为DBC20-01,累计值为-10.33mm;管线竖向位移累计最大点为JSGXC17,累计值为-6.48;桩顶竖向位移累计最大点为ZQC-23,累计值为3.57mm;桩顶水平位移累计最大点为ZQS-35,累计值为5.72mm;地下水位累计最大点为DSW-11,累计值为-10.66m;建筑物裂缝宽度累计最大点为JGF11-03,累计值为-0.70mm,建筑物竖向位移累计最大点为JGC03-40,累计值为-5.57mm;砼支撑轴力累计最大值点为ZCL-06,累计值为8011.87KN,桩体水平位移累计最大孔为TST-13,最大位移点位于14.5m 位置,累计值为-7.47mm;钢支撑轴力累计最大值点为ZCL-11-03,累计值为904.13KN。

截至2018年7月26日,二金区间周边地表竖向位移最大点为DBC10-01,累计值为-15.87mm;管线竖向位移累计最大点为YSGXC05,累计值为-5.81mm;桩(坡)顶竖向位移累计最大点为ZQC-34,累计值为-3.72mm;桩(坡)顶水平位移累计最大点为ZQS29,累计值为1.69mm;地下水位累计最大点为DSW-02,累计值为-6.4m;砼支撑轴力累计最大值点为ZCL-04,累计值为4174.37KN;桩体水平位移累计最大孔为ZQT-38,最大位移点位于12m位置,累计值为6.08mm;钢支撑轴力累计最大值点为ZCL-01,累计值为393.01KN。

支撑轴力

深基坑钢支撑轴力作用指导书 随着城市建设的迅猛发展,城市中心深基坑工程也越来越多,深基坑支护体系的结构计算和现场测试信息化施工也显示出其重要的意义。钢支撑轴力监测则是反映支撑结构计算成果与施工工况的差距是否合理。同时也是深基坑开挖施工过程中预警的一个最直观的方法。 测量目的: 基坑围护支撑体系处于动态平衡之中,随着基坑施工工况的变化建立新的平衡。通过支撑轴力监测,可及时了解钢支撑受力及其变化情况,准确判断基坑围护支撑体系稳定情况和安全性,以指导基坑施工程序、方法,确保基坑施工安全。 测量原理: 通过设置在仪器内部的振弦,感知仪器轴向应变,通过其自身频率的变化反映出来的,他们之间的差别主要就是在于安装及费用方面。 观测方法: 使用FX-180型多功能读数仪进行测量,一般情况下轴力计的电缆线分为红色和黑色,先打开读数仪,将仪器模式切切换到F模式下,测量时将读数仪的鳄鱼夹红色的夹子夹到轴力计红色的电缆线上,黑色的夹子夹到黑色的电缆线上,读取读数仪显示屏上F值并做好记录。计算方法: 将现场记录的数据检查时间、观测员、记录员是否准确、清晰。在将

检查合格的数据输入电脑,计算出刚支撑的受力p,计算公式如下: P=K(f02-fi2) P:应力(单位KN); f0:初始频率; fi:本次频率; k:标定系数; 将计算出的受力整理成表、画出曲线图。做好分析报告,上报有关单位。 报警应急措施: 支撑轴力计是随基坑开挖围护结构变形或位移直接影响支撑受力的。当支撑受力达到报警时,分析报警的原因及因素,做好书面报告。及时通知各有关单位,特别是施工单位,采取相应措施,以保证基坑的安全性和稳定性。 注意事项: 装有轴力计的基坑一般为深基坑,在观测时必须做好安全三宝(安全帽、安全绳、安全网),雨天观测注意仪器的保护。我们使用的仪器都是电子仪器,雷雨天最好别进行观测,以防雷击。

基坑项目第三方监测报告(模板2018)

基坑监测工程第三方监测成果报告 (2018年XX月XX日) 公司2018年XX月XX日

目录 一、工点现况及监测情况说明 (2) (一)、工程概况及施工进度情况 (2) (二)、监测情况说明 (2) (三)、结论 (3) (四)、存在问题 (3) (五)、合理化建议 (3) 二、监测成果表 (4) 表1、周边建筑物沉降监测成果表及曲线图 (4) 表2、周边地表沉降监测成果表及曲线图 (4) 表3、周边管线沉降监测成果表及曲线图 (5) 表4、地下水位监测成果表及曲线图 (7) 表5、立柱沉降监测成果表及曲线图 (8) 表6、支撑轴力监测成果表及曲线图 (10) 表7、桩顶水平位移监测成果表及曲线图 (12) 表8、桩顶沉降监测成果表及曲线图 (13) 表9、桩身应力监测成果表及曲线图 (14) 表10、桩体深层水平位移监测成果表及曲线图 (14) 三、监测点布置示意图 (15)

一、工点现况及监测情况说明 (一)、工程概况及施工进度情况 拟建项目位于 地块地下室地下室顶板标高为m(m),地下室底板厚度m,素混凝土垫层厚m,碎石垫层厚度m,综合确定地下室开挖标高为m,基坑开挖深度约为m,基坑开挖周长m,基坑开挖面积m2; 基坑南北侧及中部地下管线密集。综合确定基坑安全等级为一级。 (二)、监测情况说明 本次监测时间为2018年10月14日下午15时00分,监测情况详见下表。

(三)、结论 从本次的监测结果来看,周边地表、建筑物、管线沉降、地下水位、支撑轴力、桩顶沉降、桩顶位移、立柱沉降、桩身应力及桩体测斜监测数据变化均不大,目前各监测项目累计变形量均在控制值范围之内。 (四)、存在问题 无。 (五)、合理化建议 为保证监测数据的准确性和连续性,施工方在施工时保护好各监测测点,并对现场施工人员进行针对性教育。

监测反力计使用说明书

JYFLJ-400振弦式反力计(轴力计) 1、用途和特点 JYFLJ-400振弦式反力计,又称轴力计,是一种振弦式载重传感器,具有分辨力高、抗干扰性能强,对集中载荷反应灵敏、测值可靠和稳定性好等优点,能长期测量基础对上部结构的反力,对钢支撑轴力及静压桩试验时的载荷,并可同步测量埋设点的温度. 2、主要技术指标 规格:50、100、150、200、250、300、400、500、600 测量范围:500、1000、1500、2000、2500、3000、4000、5000、6000KN 分辨力:≤0.08%F·S 综合误差:≤2.0%F·S 工作温度:-25℃~+60℃ 工作温度精度:±0.5℃ 3、埋设与安装 轴力计的使用场合较多,仪器的工作及施工条件也不完全一样,需要时可及时与我厂联系,,下面主要针对支撑轴力测量的安装情况进行叙述: 3.1由我厂配套提供的轴力计安装架(另购),安装架圆形钢筒上没有开槽的一端面与支撑的牛腿(活络头)上的钢板电焊焊接牢固,电焊时必须与钢支撑中心轴线与安装中心点对齐. 3.2待冷却后,把轴力计推入焊好的安装架圆形钢筒内并用圆形筒上的4个M10螺丝把轴力计牢固地固定在安装架内,使支撑吊装时,不会把轴力计滑落下来即可. 3.3测量一下轴力计的初频,是否与出厂时的初频相符合(≤±20HZ),然后把轴力计的电缆妥善地绑在安装架的两翅膀内侧,使钢支撑在吊装过程中不会损伤电缆为准. 3.4 钢支撑吊装到位后,即安装架的另一端(空缺的那一端)与围护墙体上的钢板对上,轴力计与墙体钢板间最好再增加一块钢板250㎜×250㎜×25㎜,防止钢支撑受力后轴力计陷入墙体内,造成测值不准等情况发生. 3.5 在施加钢支撑预应力前,把轴力计的电缆引至方便正常测量时为止,并进行轴力计的初频率的测量,必须记录在案.

基坑监测方案

洪山体育馆主馆维修及辅助训练馆建设 项目基坑监测方案 编号:LC-CLFA2018-016 编制人: 审核人: 湖北陆诚建设工程质量检测有限公司 2018年03月15日

目录 一、工程概况 (3) 二、工程概况监测目的和范围 (3) 三、监测依据 (4) 四、监测内容及方法 (5) 五、监测频率 (7) 六、报警值 (8) 七、本项目仪器设备 (9) 八、监测工作流程 (9) 九、监测组织管理 (11) 十、其他 (12) 十一、监测点位平面布置图 (12)

洪山体育馆主馆维修及辅助训练馆建设项目 基坑监测方案 一、工程概况 1、基本情况 拟建场地位于武汉市武昌区洪山广场西侧,是洪山体育馆主馆的副馆。本工程地上1层,地下1层(含夹层)。本基坑设计计算深度为12-14.6m,基坑周长约295m,面积约5523.5m2。 2、水文地质条件 根据埋藏条件、水利性质判定,本场地地下水分为上层滞水、基岩裂隙水。上层滞水主要赋存在(1)层杂填土中,接受大气降水补给,其受大气降水及地表水的渗透影响,水量小,水位受季节性控制,本次勘察期间测得上层滞水及稳定水位为地下0.80~1.50m,绝对标高33.96m~35.53m。基岩裂隙水主要赋存在(7)层灰岩中,其补给源主要为裂隙径向补充,水量贫乏,该层地下水对拟建基坑影响较小,本次勘察过程中未测得该层水位。 二、监测目的和范围 1、监测目的 在基坑支护及地下室施工过程中,提出支护结构及周边环境的安全信息:支护结构变形、地下管线变化、周边建筑物及地表变化;并就其变化情况进行及时综合分析,根据分析结果,设计人员可及时更改原设计以达到安全且经济之最终目的,施工单位可掌握工程的安全性,并可针对施工过程中的缺失加以改进,以监测信息指导施工的速度、顺序等,即以监测的信息指导施工。 2、监测原则 可靠性原则;多层次原则;重点监测关键区原则;方便实用原则及经济合理原则。 ※可靠性:监测系统应能真实地反映被监测对象的变形情况,以使所获得的信息可靠,故拟采用多层次监测。

基坑施工监控与监测方案

第十章基坑施工监控与监测方案 10.1 监控与监测目的 基坑开挖施工过程中,基坑边坡土体应力状态发生变化,边坡土体和支护结构不可避免产生侧向位移、沉降。如果变形过大,或变形速率明显加快,超过了限值,会影响周围建筑物、管线的正常使用。基坑监测是基坑工程中重要的组成部分,尤其超深、周边环境复杂的基坑,监测工作是必不可少的,在施工过程中,对支护结构、周围建筑物必须进行监测,根据观测数据及时调整开挖速度和支护措施,确保基坑工程顺利进行。没有基坑监测就不能及时发现基坑的安全隐患。实践证明,忽视基坑监测造成的后果是灾难性的,因此,必需对基坑监测引起足够重视。该基坑工程基坑深度超过11m,5#楼基础深度超过15m,难度大、技术含量高。鉴于基坑工程的复杂性、不确定性因素,该工程必需采用信息化施工,通过监测,及时分析反馈监测结果,掌握基坑支护结构及周边环境的情况,确保基坑安全。概括而言,本次监测工作的主要目的如下: (1)及时为基坑工程施工反馈变形信息,施工方可随时根据监测资料调整施工程序,消除安全隐患,是工程信息化施工的重要组成部分,是判断基坑安全和环境安全的重要依据; (2)为修正设计和施工参数、预估发展趋势、确保工程质量及周边管线的安全运营提供实测数据,是设计和施工的重要补充手段; (3)为各相关单位优化施工方案提供信息。 10.2 监控与监测内容 10.2.1监测原则 (1)以该工程基坑施工区域周围3倍基坑开挖深度范围内地下管线、周边土体和基坑围护结构本身作为本工程监测及保护的对象; (2)基坑周边3倍开挖深度范围内的土体地面沉降比较明显地反映出基坑围护结构的变形情况和周边环境受基坑影响变形趋势。故基坑周围垂直基坑走向要布设若干组地表沉降监测断面; (3)设置的监测内容和监测点必须满足本工程设计和符合有关规范规程的要求,并能全面反映本工程施工过程中周围环境和基坑围护体系的变化情况; (4)监测过程中,采用的监测方法、监测仪器及监测频率符合设计和规范要求,能及时、准确地提供数据,满足信息化施工的要求; (5)监测数据的整理和提交满足现场施工及建设单位的要求。 157

深基坑内支撑体系轴力监测探讨

深基坑内支撑体系轴力监测探讨【内容提要】针对武汉市轨道交通二号线一期工程循礼门站地铁车站土建工程的基坑支撑体系的轴力监测情况。在以下本人简单的介绍一下在施工过程中遇到的问题解决办法. 【关键词】钢支撑、混凝土支撑、轴力计、应力计 1.工程概况 循礼门车站为标准地下两层车站,地下一层为站厅层;地下二层为站台层。外包总长182m,标准段外包宽29m.站台为地下两层岛式站台,主体建筑面积为10191.1m2,出入口通道、风道(风亭)建筑面积为3272.2m2,车站主体建筑面积13463.3m2。 车站主体结构采用明挖法施工,在跨越京汉大道段采用盖挖顺作法施工。沿车站长度方向(由解放大道向京汉大道方向)依次分别开挖施工。车站主体结构采用钢筋混凝土箱型结构,围护结构采用地下连续墙加内支撑,围护结构与主体结构采用复合墙的连接方式。车站主体设全外包防水层。盖挖段基坑底部采用旋喷被动区土体加固,加固厚度为坑底3米。 本站位于汉口解放大道与京汉大道之间的江汉路正下方,平行于江汉路布设。基坑东南侧为房地产开发商和记黄埔用地;基坑周边主要建(构)筑物有:基坑西侧的循礼门地下通道、基坑东侧的京汉大道上轻轨1号线桥梁区间、基坑西南侧大润发商场、基坑西北侧30层武汉船舶工业公司大楼、基坑东北28层的世纪大厦大楼。 2.设计背景 本车站位于武汉市解放大道与京汉大道之间的江汉路上,江汉路北侧为武汉船舶工业公司用地,后面是一栋30层的高层建筑,南侧为地面3层、地下1层砼框架结构的大润发超市,已建成的轻轨一号线江汉路站位于站位的东北角。车站所处的位置以北为解放大道,以南为京汉大道,车流量大。 由于该工程基坑所在位置处于闹市区,基坑西南侧大润发商场和轻轨桥墩距离基坑2-3m,周围的高大建筑物距离基坑较近,所以基坑的支撑体系采用了围护结构与内支撑共同作用的体系。所以在后续的开挖和主体施工过程中,内支撑体系的轴力监测是非常重要的一项内容,尤其是开挖阶段的轴力监测,会为后阶段的施工起到一定的指导作用。 3.轴力监测方案及实施 3.1混凝土支撑: (1)采用振弦式钢筋应力计进行轴力监测。 (2)根据围护结构施工图纸中的设计,在11个断面安装钢筋计,所以在实际安装过程中,依次将22个钢筋应力计安装在了11道混凝土支撑内,且安装在同一截面,该截面上下侧各安装1支。 (3)钢筋应力计应安装在截断支撑主筋的部位,并与两端进行搭接焊。但由于现场的条件限制,

基坑钢支撑轴力应力伺服自动补偿系统技术的原理和应用

基坑钢支撑轴力应力伺服自动补偿系统技术的原理和应用 针对上海绿地恒滨置业集团龙华路1960地块项目紧邻地铁深基坑开挖具体情况,运用钢支撑轴力应力伺服系统,减少钢支撑轴力损失。并对基坑临近地铁侧变形最大位置点进行监测,使基坑邻地铁侧围护地下连续墙的变形控制在20mm之内,地铁沉降控制在5mm以内,确保了周边居民建筑的安全和地铁运行安全。 Key words:deep pit;steel support;stresses servo system;envelope underground continuous wall;deformation control 本工程地下室与7#线共用地下连续墙,为了确保7#线地铁正常运营安全,申通地铁公司对紧邻地铁基坑工程基坑变形提出了更高标准和更严要求,变形控制在20mm之内,工期由5个月改为3个月,施工难度逐渐加大。为确保基坑及地铁安全,基坑施工过程中必须运用有效的控制变形工具、施工工艺及相关控制措施。 本文介绍了钢支撑轴力应力伺服系统的原理和施工应用,并结合基坑、地铁围护变形数据的整理分析,总结应力伺服系统在施工中基坑地铁变形曲线趋势,为钢支撑轴力应力伺服系统应用提供现场依据,从而确保基坑施工与地铁正常运营安全。 1.应力伺服自适应支撑系统介绍 应力伺服自适应支撑系统是结合了现代机电液一体化自动控制技术、计算机信息处理技术以及可视化监控系统等高新技术手段,对支撑轴力进行全天候不间断监测,并根据高精度传感器所测参数值对支撑轴力进行适时的自动或手动补偿来达到控制基坑变形目的的支撑系统。运用自适应支撑系统,实现了对钢支撑轴力的实时监测和控制,解决常规施工方法无法控制的苛刻变形要求和技术难题,使工程始终处于可控和可知的状态,具有良好的社会效益、经济效益和环境保护效益。 2.应力伺服系统施工原理 钢支撑轴力应力伺服系统主要分为4部分:PC人机交流系统,DCS控制系统,油压泵压力系统和钢支撑系统(见图1),其中DCS控制系统为整个系统的控制枢纽,连接其他3大系统。DCS将数据反映至PC系统,显示给监测人员;控制油压泵开启或关闭,增压保压;接收钢支撑端部千斤顶轴力数据,与设计数据进行比较。PC系统将设计数据输入,转换成视觉可操作平面,油压泵提供支撑轴力支持,支撑直接进行压力输出(施予地下连续墙),同时通过传感器将实时轴力数据反馈给DCS控制系统。当反馈数据低于设计轴力数据范围时,DCS 控制系统输出信号驱动油压泵系统开启工作,油压泵不断输送给钢支撑千斤顶压力,待传感器传回数据在一段时间(一般5~10min)稳定在设计数据之上时,

相关文档
最新文档