混凝土支撑轴力监测分析

合集下载

钢筋混凝土支撑轴力监测相关问题的研究

钢筋混凝土支撑轴力监测相关问题的研究
… 0 ●00 ● 00● 00● 00 ● 0O● oO ●0 0● 00 ●00 ● oO● 0O ● oo● 0o ●0 0● oo● o0 ●o o●o 0● 0o ●00 ● 00● 00 ● 00● 00 ●0 O● 00● oo ● o0● 0O 仲 ● 00● oo ●o o● o0 ●o0 ● O0● 0 0● 0o● 00 ● o0● o 0● Oo◆ 00 ● oo● ( ,
后开始卸载 , 共 5级 卸载 , 第一 次卸 载 3 0 0 k N, 之 后每
级6 0 0 k N, 每次卸载后维持 2 0 a r i n , 直 至卸载至 0 。
表 1 传感器信息详细统计 表
再良 、 鲁智 明 均基于实 际人工 监测数据 , 引入“ 温 度补偿 系数 ” 考虑温度应力对支撑轴力 的影响 。
些 问题进行系统的试验研究。 1 试 验简介

图 3为进 口钢筋 应力计 的试 验结 果 图 , 图 中实 线 为所测的支撑轴力 , 虚线为对应 的温度 ( 温差 ) 变化 曲
本次试验 的钢筋 混 凝 土支 撑 长 5 m, 截 面 尺寸 为 8 0 0 m m× 8 0 0 m m, 对称配置 2 4根 2 5钢筋。在 两个截 面处布置 了不 同 厂家 的钢 筋应 力计 及混 凝 土应 变计 ( 图1 ) , 传感器的具体截面位 置见 图 2 , 各个传感 器的
[ 6 ] 李 志伟 . 软土地区深基坑开挖对 邻近建筑物影响 的三维有 限 元分析[ D ] . 天津 : 天津大学 , 2 0 1 1 .
[ 收稿 日期] 2 0 1 3 — 1 1 — 2 6 [ 作者简介] 高 超 ( 1 9 8 6一 ) , 男, 辽宁鞍 山人 , 硕 士研究 生 , 从事

基坑轴力监测

基坑轴力监测

基坑工程混凝土支撑轴力监测方法的讨论2014-01-18 13:52 来源:中国岩土网阅读:1060 通过现场试验,探讨混凝土支撑轴力监测过程中的问题及解决方法。

基坑工程混凝土支撑轴力监测方法的讨论1.混凝土支撑轴力监测的问题及现状国内明挖基坑工程的监测中,混凝土支撑系统的轴力监测结果异常(轴力监测值过大,但实际工程结构中并非内力过大或不稳定;如:一根C35 1m×1m截面的钢筋混凝土支撑,有时轴力监测值会达到20000~30000kN,而依然处于正常工作状态)问题普遍地存在着,时常会对监测结果分析及工程施工的进行造成不必要的阻碍。

如苏州轨道交通一号线广济路站基坑混凝土支撑轴力监测数据,在实际监测过程中发现随着基坑开挖深度的加深,基坑支撑的监测轴力值变化较快并远大于设计值,有的甚至好几倍,以标准段8-2道混凝土支撑轴力为例,最大监测轴力值接近15000kN,远远超过该段8700kN的设计值。

广州地铁五号线员村站基坑工程,在D101监测点处支撑横断面下表面钢筋所测应力为负值,即为拉应力,说明斜撑在土压力的作用下已向下弯曲,且下表面混凝土拉应力为2.51 MPa,超过了混凝土的设计抗拉强度,就现场观看支撑上表面有细微裂缝,而轴力平均值才达到1440.44 kN,还远未达到轴力设计报警值3000 kN。

广州某地铁基坑工程混凝土支撑系统的轴力监测结果起初均为负值,随着基坑的开挖轴力值持续增大,一直到基坑开挖结束,最大值达到设计允许值的6倍,而支撑系统一直处于正常工作的状态。

天津某轨道换乘中心⑩轴~⑩轴工程截至2009年8月6日,⑦轴轴力值为18247 kN,占设计值204%;⑦轴轴力值为18994 kN,占设计值213%;已大大超过支撑的安全报警值,但支撑一直安全工作,未出现裂缝等不安全、失稳迹象。

上海虹桥国际商城基坑开挖深度13.70m,3道混凝土支撑,第2道支撑(C351200mm×l000mm)轴力监测值最大处曾达到30500kN,已大大超过支撑的安全报警值,但支撑一直安全工作,未出现裂缝等不安全、失稳迹象,直至支撑拆除;南京地铁指挥中心基坑开挖深度15.40m,4道钢筋混凝土支撑,施工过程中第3道支撑(C35 1200mm×1000mm)轴力监测值最大处达到21000kN,已超出轴力安全报警值,但并未出现不安全工作的迹象,直至支撑拆除。

深基坑混凝土支撑轴力监测探讨

深基坑混凝土支撑轴力监测探讨

深基坑混凝土支撑轴力监测探讨摘要:深基坑轴力监测是一项很重要的监测项目,但其受混凝土收缩、徐变、温度及初始值选取等因素的影响较大,我们可以通过一些手段减少一些误差,使轴力监测结果更为可靠,为工程安全提供参考,更需要结合其他监测手段,对整个工程安全进行评估,保证工程安全可控。

关键词:深基坑监测;支撑轴力;误差分析前言随社会经济快速发展,大城市人口剧增,土地资源紧张,为解决这些问题,现代建筑越来越注重对地下空间的开发利用,于是出现了很多深基坑工程。

在市中心区、软土地区,为控制基坑开挖过程中水平位移,保证深基坑工程安全性,往往会设计混凝土支撑,并对混凝土支撑进行轴力监测。

但在笔者经历的几个基坑工程监测项目中,支撑轴力均超过了其设计值,其中最大支撑轴力峰值接近于设计值的两倍。

然而混凝土支撑却未发现严重变形,其他的监测项目如水平位移、沉降位移、深层水平位移等仍在控制值内。

由此可见测试的混凝土支撑轴力应当是比实际受力偏高。

本文就混凝土支撑轴力监测中一些问题进行探讨,希望能对同行有所启发。

1.混凝土支撑轴力监测方法目前对混凝土支撑轴力的测量采用的是间接法测量,即通过测量支撑内混凝土或钢筋微应变,利用钢筋、混凝土弹性模量及面积,推定支撑轴力。

其中钢筋、混凝土的弹性模量和面积可查阅相关资料获得,故支撑轴力测量实际上就是变形测量。

目前运用的最多的混凝土应变计和钢筋应变计,前者是安装于混凝土内部,测量混凝土微应变,后者安装于支撑主筋上,测量主筋微应变。

由于混凝土应变计相对于钢筋应变计安装方便,笔者所经历的几个基坑监测项目均为混凝土应变计。

2.混凝土支撑轴力监测主要误差分析由轴力监测方法可知其误差主要来源是混凝土的形变测量,在混凝土支撑轴力计算中,我们假定测定的应变是由于支撑受力而引起的,但实际上我们测定的应变除了支撑受力外还有其他因素,结合笔者的一些工程实践及其他同行的一些相关研究,大体上认为支撑轴力测量误差主要来源于下面几个方面:2.1混凝土收缩及徐变混凝土在凝结硬化过程中会发生体积缩小的现象,其包含了塑性收缩、温度收缩、碳化收缩、干燥收缩自生收缩等,对混凝土支撑来说其主要应变来源于混凝土的干燥收缩。

基坑监测中混凝土支撑轴力测量实验探究

基坑监测中混凝土支撑轴力测量实验探究

基坑监测中混凝土支撑轴力测量实验探究摘要:混凝土支撑轴力是基坑工程常用监测指标,通过测量数据可以判断基坑工程质量。

为此,首先阐述了基坑混凝土支撑轴力测量实验流程,其次以某城市轨道车站主体施工工程为例,分析了混凝土支撑轴力变化、混凝土支撑轴力测量误差原因及实验质量控制措施,以期为混凝土支撑轴力测量实验顺利进行提供保障。

关键词:基坑监测;测量实验;混凝土支撑轴力引言:在基坑监测过程中,如果测量得到的混凝土支撑轴力超过了设计值,表示基坑支护结构可能出现失稳、被破坏等问题,施工团队需要在问题发生前采取必要处理措施。

如果测量得到的混凝土支撑轴力与实际混凝土支撑轴力存在较为明显的误差,表示施工团队需要及时调整混凝土支撑轴力测量实验方法及流程。

1.基坑混凝土支撑轴力测量实验流程1.1埋设混凝土支撑轴力测量点在基坑工程中,一般选择通过钢筋计直接测量得到钢筋应力,随后再通过钢筋与混凝土的变形协调条件计算混凝土支撑轴力[1]。

可见,埋设混凝土支撑轴力测量点指的是埋设钢筋应力测量点。

具体来讲,钢筋应力测量点一般埋设在混凝土支撑1/3位置处,不能埋设在主筋节点位置,通过4条边或4个角形成监测截面。

钢筋计一般通过搭接焊接方式与受力主筋连接,并且保持受力主筋与钢筋计的轴心相对[2]。

搭接焊接温度较高,可能会对传感器正常运行造成不利影响,因此需要采取如下预防措施:将安装钢筋计位置处的主筋截下一段且长度需要超过传感器长度,在被测量主筋上焊接连上连杆的钢筋计,钢筋计连杆长度需要满足搭接焊缝长度需求;在搭接焊接过程中,用湿布包裹传感器并且不断泼洒冷水,一直到钢筋温度冷却到合适值为止;在搭接焊接过程中,不断检测传感器运行频率,确保其运行频率处于正常水平。

在基坑工程实际条件允许的情况下,需要优先搭接焊接连杆和受力钢筋,随后在其上旋上钢筋计,这种方式能够有效规避搭接焊接温度问题,但是很多基坑工程的实际情况并不支撑完成此项操作。

1.2计算混凝土支撑轴力混凝土支撑轴力计算公式为:。

某基坑钢筋混凝土支撑轴力监测实例分析

某基坑钢筋混凝土支撑轴力监测实例分析

- 102 -第38卷某基坑钢筋混凝土支撑轴力监测实例分析刘雄鹰,杨清灵,侯海清(珠海市建设工程质量监测站,广东 珠海 519015) 【摘要】 通过工程实例分析,分别采用钢筋应力计和混凝土应变计监测的方法,对支撑轴力的变化进行监测,分析钢筋应力计与混凝土应变计实测值间存在差异的影响因素及实测力值的应用。

【关键词】 钢筋混凝土支撑;现场监测;钢筋计;混凝土应变计 【中图分类号】 TU753 【文献标志码】 A 【文章编号】 1671-3702(2020)05-0102-040 引言城市深基坑工程近年来发展迅猛,由于地下工程设计与施工的地质条件、工况等差异,深基坑支护监测项目中内力监测尤为重要。

目前相关研究成果不能完全满足实际需求,工程各方对内力监测成果分析利用方法有不同意见。

本文以珠海某口岸工程基坑钢筋混凝土支撑监测为例,通过在现场分别安装钢筋计和应变计,对其轴力变化进行监测,分析钢筋计与应变计实测值差异的影响因素及实测力值的应用。

1 工程概况珠海某口岸工程场地地形复杂,地质条件较差,有较厚的淤泥层;基坑外围支护桩周长为1546m ,基坑开挖面积约 11.5 万 m 2,基坑周边大部分绝对标高约为 3.5 m ,基坑坑底绝对标高为 -5.7~-9.7 m ,基坑深度约 9.2~13.2 m 。

基坑外围采用直径 1.5 m 的旋挖桩作为围护墙,设置两~三道钢筋混凝土内支撑;上述项目为重点工程项目。

本文所选钢筋混凝土支撑轴力监测分别为某阳角处第二道斜撑和相邻处的第二道对撑梁。

对撑梁截面尺寸为 1 500 mm ×1 200 mm ,长度为 144 m ;角撑梁截面支撑尺寸为 1 200 mm ×1 200 mm ,长度为 21 m 。

上述混凝土标号为 C 40,第二道支撑内力设计报警值分别为24000 kN 、19250 kN (按构件承载力设计值的 70 % 确定)。

2 支撑轴力监测方法支撑内力监测是利用与矩形支撑梁四根主筋绑扎连接的混凝土应变计或钢筋应力计两种钢弦式传感器,获得所绑扎连接的主筋应变或应力;再推算每截面四作者简介:刘雄鹰,女,高级工程师,研究方向为建材检测、建设工程检测及工程质量管理。

深基坑混凝土支撑轴力监测精确性研究

深基坑混凝土支撑轴力监测精确性研究

深基坑混凝土支撑轴力监测精确性研究摘要:随着我国施工技术的不断成熟,深基坑支护体系被研发出来。

深基坑支护体系中常采用混凝土支撑,为了掌握基坑开挖过程中支撑体系安全情况,需要对支撑受力情况进行监测来判断其安全性,但在监测过程中,一些因素会导致支撑轴力实测值和轴力真实值存在一定的偏差。

关键词:深基坑;混凝土;支撑轴力引言目前,国内很多城市为了有效利用地下的土地资源,基坑工程越来越多,并随着现代施工技术的不断提高,基坑面积和深度逐渐增大,使得基坑工程施工的安全性备受人们关注。

基坑工程属于隐蔽工程,具有自身的不确定性,在施工前期,常常很难全面掌握其岩土工程特性。

加之岩土体结构的多样性、施工的隐蔽性、周边环境的复杂性等,基坑垮塌、周边管线爆裂、周边建筑物倾斜或开裂等情况时有发生,造成巨大损失,对社会造成负面影响。

1目前基坑监测普遍存在的问题目前基坑混凝土支撑轴力监测中,大多采用埋设振弦式钢筋应力计,通过手持式数显频率仪现场测试传感器频率,再换算成支撑轴力。

由于受仪器制造精度、安装工艺水平、自然温差等客观敏感因素影响,钢筋应力计测得的数据未必是真实的支撑轴力值。

1.1测量困难对于埋设钢筋应力计的混凝土支撑轴力初始值的测取方法,《建筑基坑工程监测技术标准》(GB50497—2019)第6.7.5条规定:“内力监测宜取土方开挖前连续3d获得的稳定测试数据的平均值作为初始值”。

《标准》虽有规定,但在实际监测操作上尚不统一,还是存在一些理解偏差或争议。

该标准只规定“土方开挖前连续3d获得的稳定测试数据”的单一初始值测取前置条件,笔者认为不够全面明确,没有涉及支撑混凝土的具体强度控制要求。

因为应力计测得的初始值大小与混凝土支撑的浇筑完成时长有着密切关系。

支撑混凝土在前期硬化收缩变形过程中,产生的压应力逐渐增大,混凝土固化稳定前测取获得的支撑轴力,一般都偏大,故初始值测取时间的选择非常重要。

1.2支撑轴控制问题一般设计提供的支撑轴力控制值或报警值存在“模板化、格式化、通用化”,未能真正做到“一井一值”。

【支撑】支撑轴力特点及支承轴力监测方案

【支撑】支撑轴力特点及支承轴力监测方案

【关键字】支撑第一部分轴力支持方案特点及发展随着高层建筑数量和高度的增加,基础埋深也随着增加。

进入90年代后,我国经济的迅速发展,城市地价不断上涨,空间利用率随之提高,出现了众多的超高层建筑,使有些地下室埋深达以上,对基坑开挖技术提出更高、更严的要求,即不仅要确保边坡的稳定,而且要满足变形控制的要求,以确保基坑周围的建筑物、地下管线、道路等安全。

同时,为了适应建筑市场日趋激烈的竞争,还要考虑提高土方挖运的机械化程度、缩短土方工期、降低工程成本、提高经济效益等方面的因素。

我公司自1994年以来,先后在佛山国际商业中心,中山六福广场、广州文化娱乐广场、广州博成大厦等基坑施工中,采用了大跨度钢筋混凝土内支撑梁或圆环拱形钢筋混凝土内支撑支护,由于它们具有在计算方面的正确性、土方施工的经济性和施工实践的安全可靠性,所以在施工中越来越多地应用,并通过广东省建筑工程总公司及有关专家的鉴定,获得科技进步奖三等奖,得到推广和应用。

1.特点1.1.发挥材料的优点。

深基坑土方施工中,基坑深度往往较大,挡土结构的水平压力也较大,因此,钢筋混凝土支撑表现为水平受压为主,由于钢筋混凝土支撑与钢支撑不同,它具有变形小的特点,加上采用配筋和加大支撑截面的方法,可以提高钢筋混凝土支撑的强度,用以作为支撑的混凝土能充分发挥材料的刚度大和变形小的受力特性,它能确保地下室施工和基础施工以及周边邻近建筑物、道路和地下管线等公共设施的安全,因此,它是作为深基坑支护技术的新形式和新材料。

1.2.加快土方挖运速度。

在软地基深基坑施工时采用钢筋混凝土支撑,由于它的跨度大,尤其是采用圆环拱形钢筋混凝土内支撑形式,基坑内的平面形成大面积无支撑的空旷,空旷面积可达到整个基坑面积的65%~75%,形成开阔的工作面,满足挖土机械回转半径的要求,有利于多台大型挖土机械自如运转作业,在基坑内可以留坡道让运土车直接驶入基坑装土,并采用逐层开挖或留岛形式开挖,这样,最后剩余小量土方用吊土机吊起即可。

支撑轴力的监测_new

支撑轴力的监测_new

1.1支撑轴力监测点的布设测试元件选择:本站支撑轴力监测采用振弦式钢筋应力计和轴力计。

钢筋计埋设应与钢筋规格相匹配,轴力计量程选择应大于设计极限值的2倍。

监测点布设:孔浦站主体结构砼支撑布置10个监测断面,间距约为30m,钢支撑布置11个监测断面,间距约为25m。

共计布设钢筋计40只,轴力计48只。

考虑到监测点的相互验证和综合分析,轴力监测点位置选在靠近测斜孔的位置。

埋设方法:⑴支撑钢筋计:在绑扎支撑钢筋的同时将支撑四个角位置处的主筋切断,并将钢筋应力计焊接在切断部位,在浇筑支撑砼的同时将应力计上的电线引出至合适位置以便今后测试时使用。

图错误!文档中没有指定样式的文字。

-1 砼支撑轴力布设示意图⑵钢支撑轴力计:支撑轴力计在安装前,要进行各项技术指标及标定系数的检验。

轴力计有一套安装配件:两块400*400*20mm的钢板,一只直径为15cm 的圆形钢筒,钢筒外翼状对称焊接有4片与钢筒等长的钢板。

安装时,一块钢板与圆钢筒一端焊接,并焊接在钢支撑一端的固定端头上;轴力计一端安放在钢筒中,并随钢支撑的安装一起撑在围护墙的围檩上。

图 错误!文档中没有指定样式的文字。

-2 轴力计安装示意图监测点保护:轴力计安装好后,须注意传感线的保护,禁止乱牵,并分股做好标志;钢筋计焊接过程中须用湿布包裹钢筋计,避免高温导致内部元件失灵,安装完毕后应注意日常监测过程中的传感线的保护,并分股做好标志。

受损修复:混凝土支撑轴力中的钢筋计坏了可以在混凝土支撑梁的外侧粘上应变片测量混凝土的应变量来计算支撑的轴力;钢支撑轴力监测计的损坏一般不在施工中更换,本工程中可以在所测钢支撑上焊接钢管表面应变计测量钢支撑的应变量来计算钢支撑的受力。

1.2 支撑轴力监测测试方法:目前工程中常用的是手持式数显频率仪现场测试传感器频率。

测试前,调试仪器,测得各测点初始频率值和环境温度,读数稳定,方可投入正常运行。

具体操作方法为:接通频率仪电源,将频率仪两根测试导线分别接在传感器的导线上,按频率仪测试按钮,频率仪数显窗口会出现数据(传感器频率),反复测试几次,观测数据是否稳定,如果几次测试的数据变化量在 1Hz 以内,可以认为测试数据稳定,取平均值作为测试值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混凝土支撑轴力监测分析摘要:结合广州地铁某基坑工程的设计和施工方案,对混凝土支撑轴力监测的原理进行介绍。

在对基坑施工过程中轴力监测数据变化进行分析的基础上,对其形成原因进行了探讨,得到一些经验性规律,供类似工程参考。

关键词:钢筋混凝土;支撑轴力;监测;分析引言我国基础建设的快速发展,深基坑工程的建设也越来越多,在深基坑施工过程中,深基坑的支护起着举足轻重的作用。

只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,支撑结构轴力的监测是基坑工程现场监测的主要内容之一。

通过对轴力的监测,可准确掌握支护结构的受力状况,从而对基坑的安全性状进行分析,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计方案,从而保证基坑本身和周围建筑物、构筑物的安全,以确保工程的顺利进行。

结合广州地铁某基坑工程的设计方案和监测数据,对基坑的混凝土支撑轴力变化进行初步分析。

1工程概况该工程包括盾构始发井兼轨排井及后明挖段,设计为 1~3 跨的闭合框架结构,其中盾构始发井基坑开挖深度约为 18.9 m,明挖段基坑开挖深度约17.5 m;基坑深度范围内大部分为砂层,以淤泥质粉细砂层为主,基坑底部几乎全部位于淤泥质粉细砂层。

基坑设计采用 800 mm 厚的地下连续墙+内支撑的围护结构体系。

内支撑采用 3 道支撑体系,第一道为具有一定刚度的冠梁,第二、三道为Ф 600、 t=14 的钢管,在灌梁和斜撑上共埋设 13 个钢筋混凝土支撑轴力监测点。

基坑监测点平面位置见图1。

由于基坑开挖深度较大且附近有一级公路高架桥和铁路双线桥,属于一级基坑,必须通过监测随时掌握土层和支护结构的内力变化情况,将监测数据与设计预估值进行分析对比,以判断前一步施工工艺和施工参数是否符合预期值,以确定优化下一步施工参数,以此达到信息化施工的目的,确保工程安全。

2轴力监测的原理对于混凝土支撑,目前实际工程采用较多的是钢弦式应力计方法测量钢筋的应力,其基本原理是利用振动频率与其应力之间的关系建立的。

受力后,钢筋两端固定点的距离发生变化,钢弦的振动频率也发生变化,根据所测得的钢弦振动频率变化即可求得弦内应力的变化值。

其计算公式如下:Pg=K ( ) + b ⑴Pg 平均= (P1+P2+P3+P4+…+Pn) /n ⑵δg=Pg 平均/Sg⑶P混凝土=δg·S混凝土·E混凝土/Eg ⑷式中 Pg———钢筋计轴力; Pg 平均———钢筋计荷载平均值;δg———钢筋计应力值; Sg———钢筋计截面积; P混凝土———混凝土桩荷载值; E混凝土———混凝土弹性模量; Eg———钢筋弹性模量;S混凝土———混凝土桩横截面积。

在监测中由于内外部温差变化以及混凝土徐变特性会使钢筋应力计产生一定的伸缩变形,引起其自振动频率变化,因此必须采取必要的修正参数进行温差改正,以提高监测结果的可靠性。

3 监测方案3.1 测点的布置本工程混凝土支撑设计强度等级为 C30,弯曲抗压强度为 16 MPa,抗拉力为1.75 MPa,采用钢弦式钢筋计进行轴力监测。

监测点位埋设在混凝土支撑中部位置,应力计安装位置如图 2 所示,分别对应所在的支撑编号后加编 1、 2、 3、 4 予以区分。

3.2 监测方法和要求由于混凝土初期浇筑会产生水化热,为了减少温度的影响,在混凝土浇筑 24 h 以后进行量测,在以后的几天内混凝土散热渐次进行,可认为混凝土的收缩是产生应力计中应力的主要来源。

现场条件下,为了控制无外荷条件,在混凝土浇筑后 4~7 d 内,未进行挖土的条件下,连续测得应力计读数与时间的关系,读得应力计读数基本稳定时的值,作为修正后应力计值,以此作为初始值进行应力量测。

3.3 支撑轴力测试与计算支撑轴力的测试是了解围护结构受力特性、监测结构物安全性的重要依据。

在监测过程中首先通过采集钢筋计的读数,按照上述公式编制相应的程序进行轴力结果自动计算,然后在支撑浇筑初期计入混凝土龄期对弹性模量的影响。

在室外温度变化幅度较大的季节,通过相应的温度改正,避免暴冷暴热温差对测试结果的干扰影响测试精度。

图 3 是部分支撑轴力测试值随时间的变化曲线图。

总的来看,从 6 月初期基坑开挖施工开始,随着基坑逐步分区域开挖的进行与开挖深度的加大,支撑结构的支撑轴力逐渐加大,到 8 月底开挖至坑底时,支撑轴力逐渐趋于稳定。

图 3 中盾构始发井和轨排井所在区域的监测点E101 最终支撑轴力接近8 500 kN, E102 最终支撑轴力接近7 000 kN,E103 最终支撑轴力接近 6 500 kN,E104 最终支撑轴力接近6 000 kN, E105最终支撑轴力接近5 500 kN, E106 最终支撑轴力接近 5 000 kN,都远远大于其所在混凝土支撑设计值 1 600 kN,明挖段的监测点 E107、 E108、 E109 最终支撑轴力接近3 000 kN,也都远远大于设计值 1 100 kN 的2 倍。

E103 和 E104、 E105 和 E106 等两个位置相邻的测点监测结果曲线基本一致,所有的混凝土支撑曲线形状基本类似,只是处于盾构始发井钢筋混凝土支撑的最终轴力比明挖段的最终轴力大,可以认为是由于开挖深度不同导致。

4监测数据分析4.1 监测数据异常分析监测初期, E104、 E105 和 E106 测点的支撑轴力实测值为负值,随开挖深度的加大,支撑轴力由负变正,即由理论上的轴向拉力变为轴向压。

出现负值的原因,笔者认为是埋设在支撑上的钢筋计、应变计等元件所测到的钢筋或混凝土应力并非全部是由荷载产生的,还有多种非荷载因素产生的附加应力,而引起非荷载应力的主要原因有混凝土的干缩、湿胀、徐变和构件温度变化等。

混凝土支撑系统的轴力监测在基坑开挖 6 月 9日至 25 日期间, E101、 E102、E103、 E104 已经超过设计允许值。

随着开挖的进行,到 8 月底,轴力监测值最大监测点 E101 处达到 8 500 kN,其余几个监测点的轴力监测值也已大大超过支撑的设计安全值 1 600 kN,但支撑一直安全工作,未出现裂缝等不安全、失稳迹象。

同步监测的支护结构墙(桩)顶水平位移和沉降、支护结构(墙体)侧向位移也没有突然变化加大的趋势,一直处于变形比较稳定的状态。

由于基坑场地范围砂质地层厚度大,砂层含水丰富、渗透性强,为了确保基坑安全施工,基坑安全应急处理专家在 7 月 2日采取停止基坑开挖和加强监测频率的应急预案。

通过后来连续 3 天的监测结果表明基坑各项变形暂时比较缓慢,观察支撑未出现裂缝等不安全、失稳迹象。

通过检查验证监测方法和监测数据的计算后,综合分析同步监测的支护结构墙(桩)顶水平位移和沉降、支护结构(墙体)侧向位移监测数据,基坑安全应急处理专家小组集体判断认为基坑暂时处于安全状态。

混凝土支撑系统的轴力监测结果普遍异常一直到基坑开挖结束,最大值达到设计允许值的 6 倍,而支撑系统一直处于正常的工作状态。

4.2 原因分析在实际工程施工过程中,出现混凝土轴力监测异常的原因是多方面的,主要有以下几个:a)由于基坑工程设置于力学性质相当复杂的地层中,基坑围护结构支撑的空间受力是三维的,而在基坑围护结构设计和变形预估时,一方面,基坑围护体系所承受的土压力等荷载存在着较大的不确定性;另一方面,对地层和围护结构支撑一般都作了较多的简化和假定,与工程实际有一定的差异。

因此现阶段在基坑工程设计时,对结构内力计算以及结构和土体变形的预估与工程实际情况有较大的差异,并在相当程度上仍依靠经验。

b)在钢筋混凝土支撑开始受荷进入工作状态后,有两个方面应该引起注意:①混凝土材料本身的复杂性。

混凝土是存在微裂缝及空隙的多相材料,不是理想的弹性材料,弹性模量等力学参数随时间而变化,存在徐变、松弛、热胀冷缩、湿胀干缩等现象,骨料分离可能导致的不均匀性等。

②混凝土一直存在体积收缩和徐变,收缩和徐变的发生都会增大结构的变形,也都会使混凝土的弹性模量降低,同时造成结构内力重分布,即产生次内力。

钢筋不发生收缩,但存在徐变,其徐变速率不及混凝土,当轴力荷载作用在钢筋混凝土杆件时,由于收缩和徐变的发生,混凝土轴向变形速率高于钢筋,钢筋的变形和轴力在混凝土与钢筋间的粘结力的作用下会明显地增加,导致发生更大的弹性压缩,尤其是在混凝土徐变和收缩发展较快的初期。

因此,钢筋混凝土支撑中存在的这两个现象,导致混凝土在荷载下的变形比在理论上进行分析、计算、设计时要大。

c)在监测中测量轴力的应力计正是通过量测钢筋的变形,认为钢筋与混凝土的弹性变形是完全协调同步,从而反算支撑内力的,所以测得过大的钢筋变形,必然反算而得到过大的支撑内力。

5 结束语通过实例分析,在混凝土收缩和徐变发展速度较快的相当长一段时间内,测得的钢筋混凝土支撑内力大于实际内力,实际内力并非有监测得到的异常结果那么大。

而且大量的工程实践也支持着这一结论:例如广州地铁六号线大坦沙站基坑开挖深度20.5 m, 2 道混凝土支撑,第 2 道支撑(C30 800 mm × 800 mm) 轴力监测值最大处曾达到12 010 kN,已大大超过支撑的安全报警值,但支撑一直安全工作,未出现裂缝等不安全、失稳迹象,直至施工封顶完成;广州地铁二、八号线凤凰新村站基坑开挖深度22.3 m, 3 道钢筋混凝土支撑,施工过程中第 3 道支撑(C30 1 200 mm ×1 000 mm)轴力监测值最大处达到 13 500 kN,已超出轴力安全报警值,但并未出现不安全工作的迹象,直至支撑拆除。

在实际工程中,大部分出现此类情况的基坑支撑系统是处于安全状态的。

经过以上的分析监测结果,得出以下几个方面的结论:a)根据工程经验对现有的监测方法得到的监测结果进行合理的修正。

b)由于目前缺乏能直接观测混凝土应力的有效实用仪器,在监测中主要利用应变计观测混凝土的应变,然后利用混凝土的弹性模量及徐变等试验资料,其间需要做相当程度的简化和必要的理论上的假定,通过计算间接得到混凝土的应力。

因此,有必要研究、采用新的更为准确的混凝土支撑内力监测手段。

c)轴力监测值不大时,监测值可以作为较保守的内力值供工程参考。

d)在基坑工程中对设计计算分析和施工质量控制中可以考虑适当提高钢筋混凝土支撑的轴力监测报警值,以解决混凝土支撑内力监测中较为普遍地出现结果异常的问题。

总之,混凝土应力应变分析具有理论和实践紧密结合的特点,需要充分考虑到结构特点、材料因素、工程施工及运行状况以及计算理论的合理性,才能得到较为准确可靠的成果。

参考文献:[1] 彭海波,卢文富,梁波 . 混凝土应力应变观测的探讨[J]. 水利水文自动化,2005, 3(1): 36-38.。

相关文档
最新文档