第二章 晶体的测量与投影

合集下载

高考化学晶体投影知识点

高考化学晶体投影知识点

高考化学晶体投影知识点晶体投影是高考化学中的重要知识点之一,理解和掌握晶体投影的相关概念和方法对于解决晶体结构问题具有重要意义。

下面将介绍晶体投影的相关知识点及其应用。

一、晶体投影的定义晶体投影是指将三维晶体结构中的原子、分子或离子的投影投射在一个平面上,用二维图形来表示晶体的结构。

晶体投影可以帮助我们更清晰地观察晶体的结构,便于分析和研究晶体的性质。

二、晶体投影的方法1. 平行投影法平行投影法是一种常用的晶体投影方法,通过将所有原子在一个平面上投影,使得所有原子在投影图上的尺寸和位置与真实晶体结构一致。

可以使用线段或圆点表示原子,根据需要选择合适的比例尺和投影方向进行绘制。

2. 立体投影法立体投影法是另一种常用的晶体投影方法,它可以提供三维晶体结构的立体感。

通常使用矩形或六边形的投影图形表示晶体结构,其中不同的原子用不同的颜色或符号表示。

三、晶体投影的应用1. 晶体结构分析晶体投影可以帮助我们分析和解释晶体的结构。

通过观察晶体投影图,可以确定晶体中的基本单元和各个原子的位置关系,进而推断晶体的晶格类型、空间群和化学组成等信息。

2. 晶体性质研究晶体投影还可以用于研究晶体的物理和化学性质。

通过观察晶体投影图的形状和对称性,可以推断晶体的晶胞参数、晶体的晶系和晶体的晶体学类别,进而预测晶体的性质,如硬度、光学性质等。

3. 材料设计和合成晶体投影在材料科学和工程中有着广泛的应用。

通过研究晶体投影图,可以了解晶体的结构特征和原子排列方式,从而指导新材料的设计和合成。

四、晶体投影的难点和注意事项1. 投影方向的选择选择合适的投影方向是进行晶体投影的关键。

不同的投影方向可以呈现不同的晶体结构信息。

经验上,选择高对称轴或者对称平面作为投影方向,可以简化晶体投影图的绘制,并且更容易把握晶体的对称性。

2. 投影图的分析正确理解和分析晶体投影图对于解决晶体结构问题至关重要。

需要注意的是,晶体投影图只能提供晶体中原子位置在投影面上的信息,需要结合其它实验数据和理论知识进行综合分析。

晶体学基础(第二章)

晶体学基础(第二章)

2.1 面角守恒定律
双圈反射测角仪: 双圈反射测角仪:晶体位于二旋转 轴的交点。 轴的交点。。当观测镜 筒中出现“信号” 筒中出现“信号”时,我们便可以 在水平圈上得到一个读数ρ 极距角) 在水平圈上得到一个读数ρ(极距角), 并在竖圈上得到一个读数ϕ 方位角) 并在竖圈上得到一个读数ϕ(方位角), ρ和ϕ这两个数值犹如地球上的纬度 和经度,是该晶面的球面坐标 球面坐标。 和经度,是该晶面的球面坐标。
使用很简单,但精度较差,且不适于测量小晶体。 使用很简单,但精度较差,且不适于测量小晶体。
2.1 面角守恒定律
单圈反射测角仪, 单圈反射测角仪,精度可达 0.5′ l′-0.5′。但缺点是晶体安置 好之后只能测得一个晶带( 好之后只能测得一个晶带(指 晶棱相互平行的一组晶面) 晶棱相互平行的一组晶面)上 的面角数据。 的面角数据。若欲测另一晶 带上的面角时, 带上的面角时,必须另行安 置一次晶体。测量手续复杂。 置一次晶体。测量手续复杂。
2.1 面角守恒定律 晶体测量(goniometry)又称为测角法。 晶体测量(goniometry)又称为测角法。根据测角 (goniometry)又称为测角法 的数据,通过投影, 的数据,通过投影,可以绘制出晶体的理想形态 图及实际形态图。 图及实际形态图。在这一过程中还可以计算晶体 常数,确定晶面符号(见第四章) 同时, 常数,确定晶面符号(见第四章),同时,还可以 观察和研究晶面的细节(微形貌) 观察和研究晶面的细节(微形貌)。晶体测量是研 究晶体形态的一种最重要的基本方法。 究晶体形态的一种最重要的基本方法。 为了便于投影和运算, 为了便于投影和运算,一 般所测的角度不是晶面的 夹角, 夹角,而是晶面的法线 plane)夹角 (normals to plane)夹角 (晶面夹角的补角),称为 晶面夹角的补角) 面角(interfacial angle)。 面角(interfacial angle)。

第2章 晶体投影

第2章 晶体投影
§2.1 面角守恒定律 §2.2 晶体的测量 §2.3 晶体的极射赤平投影
2
§2.1 面角守恒定律
成分和结构相同的晶体,常常因生长环境条件的影响,而 形成不同的外形,或者偏离理想的形态而形成所谓的“歪 晶”。
3
4
面角守恒定律(law of constancy of angle),亦称斯丹诺定律(law Steno):同种矿物的晶体,其对应晶面间的夹角恒等。

双圈反射测角仪
投影
8
§2.4 晶体的极射赤平投影
一、极射赤平投影的原理 二、极射赤平投影的方法和步骤 三、吴氏网
目的:将晶面在三维空间分布的规律性转化为二维平面图
9
一、极射赤平投影的原理
• • 取任一点O为投影中心,以一定的半径做一个球 通过球心作一个水平面,与投影球相交为一大圆,它相当于球的赤 道,称为基圆;基圆面称为赤道平面; 垂直于赤平面的直径NS称为投影轴;投影轴与投影球的两个交点N 和S,即投影球的北极和南极,也分别称为上目测点和下目测点。 子午面:包含投影轴的直立平面。 基本原理: 以赤道平面为投影平面,以南 极S(或北极N)作为目测点,由 S(或N)向球面上的点作直线, 连线与赤道平面的交点即为相 应点的极射赤平投影点。


立方体
三 方 柱
20
投影图的解读
四方单锥
斜方柱
四方柱 三方单锥
21
1.做立方体6个晶面的极射赤平投影
2.做八面体8个晶面的极射赤平投影
3.做菱形十二面体12个晶面的极射赤平投影
对称面?对称轴
22
在赤平投影图上,方位角() 与极距角() 怎么体现?
= 0 A’

方位角在基圆上度量,

第二章晶体的投影

第二章晶体的投影
ρ ϕ= 0 ϕ
即:方位角在基圆上度量,极距角则体现为投 影点距圆心的距离(h = r tan ρ /2) 。
极射赤平投影:
是将物体在三维空间的几何要素表述在平面上的一种投影方式。
特点:只反映物体的线和面在三度空间的方位和角距关系,而不涉及它 们的具体位置、长短大小和距离远近。它是一种等角投影。
上述投影平面与球面相截的圆称 为投影基圆。 球面上位于赤道上的点,其极射 赤平投影点将落在基圆上; 北极的投影点即是基圆的中心; 北半球上其他的点,它们的投影 都将落在基圆之内。
第二章 晶体的测量与投影
Ⅰ.面角守恒定律 Ⅱ.晶体的测量 Ⅲ.晶体的球面投影及其坐标 Ⅳ.极射赤平投影和乌尔夫网(吴氏网) Ⅴ.乌尔夫网应用举例
理想晶体与歪晶
p 理想晶体:理想条件下生长的晶体,表现为同一单形的晶面同形等大。 p 歪晶:偏离理想状态的晶体,表现为同一单形的晶面不同形等大,有
些晶面甚至缺失。
˜
˜
˜ ˜
˜˜ ˜
˜
凡是北半球上的点均以南极为视 点;南半球上的点则以北极作为视点。
北半球(包括赤道)上的点的极射 赤平投影点标记为“•”,南半球上者 标记为“○”;
如果南、北半球上的某两个点的投 影位置恰好重合时,则记为“☉”。
也有参考书将北半球(包括赤道)上的点的 极射赤平投影点标记为“⊙”,南半球上者标 记为“×”; 如果南、北半球上的某两个点的投影位置恰 好重合时,则记为“⊕”。
ϕ=350o;ρ=40.5o。
①求作该直线的另一个投影点b 1; ②求b 1的球面坐标值。
例:立方体晶面的球面投影
2. 球面坐标
• 球面坐标(ρ,ϕ):
类似地球的经纬度
• 极距角ρ (纬度) :投影轴与晶面

第二章:晶体的测量与投影

第二章:晶体的测量与投影

利用吴氏网还可求晶体常数和晶面符号
本章总结: 1. 面角守恒定律及其意义
2 .晶体的投影过程
歪晶:偏离理想晶体形态
给形态研究带来困难
通过测量还原晶体
晶体的测量与投影

二、面角守恒定律
尽管同种矿物的各个晶体大小和形态不同, 看似无规,但对应的的晶面间的夹角是相等的,即 “面角守恒定律”:
同种矿物的晶体,其对应晶面间的角度守恒。
面角守恒定律的意义:为研究复杂纷纭的晶体形态 开辟了一条途径。
晶体的测量与投影

旋转刻度盘,使晶面a1的法线N1恰 好为光管C和观测镜筒F的交角的分 角线,此刻记下刻度盘的读数x1;

继续旋转刻度盘,使晶面 a2的法线 N2占据原来晶面a1的法线N1的位置 ,记下刻度盘的读数 x2;两个读数 之差,亦即a1和a2的面角的数值。 精度可达l′~0.5′;安好后只能测得 一个晶带上的面角数据。
操作实例
例2 已知两晶面球面坐标M(ρ1,φ1) 和P(ρ2,φ2),求此二晶面的面角 ♫ 分析:M和P分别为该两晶面的球面 投影点;M0、P0分别为两晶面的法线; 两晶面面角—M、P点所在大圆弧上MP 的弧角。 ♫ 操作:根据M和P的球面坐标,利 用吴氏网求得它们的极射赤平投影点 M和P; ♫ 中心不动,旋转半透明纸,使M点 和P点落于吴氏网的同一条大圆弧上, 在大圆弧上读得M点和P点间的刻度, 即为该两晶面的面角。
3.晶体的极射赤平投影 晶面
球面投影
球面投影点
极射赤平投影
平面投影点
极射赤平投影:以赤道平面为
投影面,以南极(或北极)为目测点, 将球面上的点、线进行投影。 将球面上的点与南极点(或北极 点)连线,该连线与赤平面的交点就 是极射赤平投影点。

晶体投影

晶体投影
投影平面,称为投影基圆。 取半径极大的球为参考球,把晶体放在球心上,作某晶面的极点P1(此晶面 法线与参考球的交点),或某晶向的迹点P1(此晶向与参考球的交点),将南极 点与此极点(或迹点)连线SP1,与赤道大圆(投影基圆内)交于一点S1,此点 S1则称为某晶面(或晶向)的极射赤面投影。 若极点在南半球P2点,连线SP2与赤道的交点S2位于赤道大圆(投影基圆) 之外,这种情况对投影作图及角度测量不方便,这时可从北极连线NP2,将NP2 与赤道大圆(投影基圆内)的S2称为此晶面(或晶向)的极射赤面投影。 为区别起见,将北半球的极点P1对应的极射赤面投影点S1用“o”表示;将南 半球的极点P2对应的极射赤面投影点S2用“”表示。 或:北半球的极点P1对应的极射赤面投影点S1用“”表示;将南半球的极点 P2对应的极射赤面投影点S2用“×”表示。
---精品---
图中S点的ρ不能直接从 乌里夫网上读出,但S‘及S‘‘点 的ρ与S点的ρ点相等,S‘点的 ρ可在AB上直接读出,S‘‘点的 可在CD上直接读出。因此, 将S点沿小圆S‘ SS‘‘绕O点转 到AB或CD上就可将到S点的ρ 度量出来。(实际上也就AB 或CD以O点为轴将S转动到与 S‘或S‘‘重合)
(经纬网是以NS为直径的大---圆精品族--和- 平行于赤道平面的小圆族)
小圆弧
大圆弧
O
---精品---
球面上的大圆族 在赤道平面上投影形 成大圆弧族,球面上 的小圆族在赤道平面 上投影投影形成小圆 弧族,它们构成一个 坐标网,这种网是乌 里夫首先制成,故称 为吴里夫网。
在乌里夫网上,大圆 弧族将小圆弧族划分 成180个间隔,小圆 弧族也将大圆弧族划 分成180个间隔,每 一间隔为1°。投影基 圆被小圆弧族划分成 360个间隔,每一间 隔为1°。

晶体学复习——精选推荐

晶体学复习——精选推荐

晶体学复习第⼀章晶体及结晶学1、晶体的定义内部质点在三维空间周期性的重复排列构成的固体物质,晶体是具有格⼦构造的固体.2、晶体与⾮晶体的区别,及它们所具有的结构规律,具格⼦构造,不具格⼦构造晶体:既有近程规律,也有远程规律(整体有序)⾮晶体:只有近程规律(局部有序)准晶体或准晶态:具有近程和远程规律,没有平移周期,不具格⼦构造液体:与⾮晶体结构相似,只具有近程规律,⽓体:⽆近程规律,也⽆远程规律3、空间格⼦:表⽰晶体内部结构中质点周期性重复排列规律的⼏何图形4、相当点应满⾜的条件,点的内容(或种类)相同,点的周围环境相同5、空间格⼦的⼏种要素结点、⾏列、⾯⽹、平⾏六⾯体6、晶体的基本性质⾃限性、均⼀性、异向性、对称性、最⼩内能性、稳定性第⼆章晶体的测量及投影1、⾯⾓守恒定律同种矿物的晶体之间,其对应晶⾯间的夹⾓恒等2、晶体测量使⽤的仪器接触测⾓仪、单圈反射测⾓仪、双圈反射测⾓仪3、极射⾚平投影以⾚道平⾯为投影平⾯,以南极(或北极)为⽬测点,将球⾯上的各个点线进⾏投影,投影球、投影⾯、基圆、投影轴4、晶体的球⾯投影(1)晶体上各晶⾯的球⾯投影将各晶⾯法线在球⾯上投影(2)晶体上各种直线的球⾯投影将直线平移,使之通过投影球球⼼(3)晶体上平⾯本⾝的球⾯投影将平⾯平移⾄通过投影球球⼼,然后延长5、晶体的投影p206、球⾯坐标⽅位⾓(经度) ρ: 0 ~ 360?极距⾓(纬度) ψ: 0 ~ 180?, 从北极开始第三章晶体的宏观对称1、晶体的对称的特点所有的晶体都是对称的、晶体的对称是有限的,遵循―晶体对称定律‖、晶体的对称不仅体现在外形上,同时也体现在物理性质上2、对称要素种类及对应的对称操作和符号对称⾯反映P、对称轴旋转L、对称中⼼反伸C、旋转反伸轴旋转+反伸Lni 、旋转反映轴旋转+反映Lsn3、晶体对称定律晶体中可能出现的对称轴只能是⼀次轴、⼆次轴、三次轴、四次轴、六次轴,不可能存在五次轴及⾼于六次的对称轴。

晶体投影

晶体投影

P
E
S A N F
如图:平面A的面痕 为EFNS,极点为P。 可 以 看 出 P 与EFNS 成90º
两晶面之间的夹角可 用两面痕或两极点之间的 夹 角 表示 。图 中P1 和P2 分别为两平面的极点。大 圆ABCD和BEDF为面痕, 两平面之间夹角为α。为 测量极点之间的角度需要 先作一个能在球面上自由 转动的大圆,并把此大圆 均分成360份,画上刻度。 测 圆 P1 和P2 两极点之间 的夹角时,在球面上转动 此带刻度的大圆、让它通 过 极 点P1 和 P2 ,如图中 的LMNK位置,两极点之 间的刻度数就是这两个极 点之间的角度数。
晶系的标准投影对所有立方晶系晶体都是相同的。
但在其他晶系中、必须考虑点阵常数对点阵面夹角的影 响,所以对某一具体晶体都具有它自己特有的极射赤面标准
投影,它们彼此之间是不能通用的。
因此,极射赤面投影多用于研究立方晶系晶体,而在其 他晶系中用的比较少。
乌式网绘图计算(投影基圆半径R=9) 角度 大圆弧半径 R/(COS(C4*PI()/180)) 5 10 15 9.034 9.139 9.317 小圆弧半径 =R/(COS(C4*PI()/180))R*tan((45-C4/2)*PI()/180) 0.787 1.587 2.412
假设球面经纬线网是带有刻度的极薄的透明塑料球。测量球面投影上 两极点P1和P2之间的夹角时,应先把球面经纬线网紧贴在球面投影的表面, 再让P1和P2两极点转到经纬线网的同一条经线上,读出两极点之间的纬度 差,即为两极点间夹角。图中极点P1与P2之间的夹角为30°。
如果球面投影上原有P1、
P2 两个极点,要确定晶 体 绕AB轴转动某个角度后极 点P1、P2的位置。
1. 球面投影
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(对于晶体上的对称面我们通常不将之转化为点,而是 直接投影成一条直线或弧线。实习课时再讲。)
在赤平投影图上, 方位角与极距角怎么体现?
= 0
即:方位角在基圆上度量,极距角则体现为投 影点距圆心的距离(h = r tan /2) 。
3、吴氏网:
用来进行极射赤平投影的工具。
吴氏网的组成:基圆、直径、 大圆弧、小圆弧
第二章 晶体的测量与投影
一、面角守恒定律:
实际晶体形态(歪晶):偏离理想晶体形态。
“歪晶”导致 同种矿物晶 体形态变化 无常,给面面角相等, 即 发现“面角守恒定律”: 同种矿物的晶体,其对应晶面间角度守恒。 面角守恒定律的意义:结晶学发展的奠基石。
二、晶体测量:
就是测量晶面之间的夹角。 注意:晶面夹角与面角(晶面法线的夹角) 的区别! 它们之间的关系为互补的关系。
通常都用面角(晶面法线的夹角)
接触测角
反射测角:单圈反射测角仪
双圈反射测角仪
三、晶体的投影: 将晶面的空间分布转化为平面图.
(一)极射赤平投影: 投影的原理及过程:投影球、投影面(赤
平面)、投影轴, 北极点与南极点(目测 点)。
具体投影过程为:球面上任一点A与南极点S连线, 此连线与投影面(赤道平面)的交点A’即为投影点。
这样就将球面上三维空间的东西投影到二维平面上。 如果A点在下半球,就与北极点N连线。
下面进行晶体的投影。
1、晶面的球面投影:
将晶面转化为球面上的点:
晶面的方位就可用点的球面坐 标方位角与极距角来表征。
(相当于纬度与经度)
重点要掌握方位角与极 距角的含义!
2、极射赤平投影: 将晶面的球面投影点再转化为赤平面上的点:
即:将球面上 的点与南极点 (或北极点) 连线,该连线 与赤平面的交 点就是极射赤 平投影点。
这样,晶体上所有晶面的分布规律就反映在赤平面上的 对应点的分布规律。
下图的4个点代表4个怎么样的晶面?
1、已知晶面的球面坐标(方位角与极距角),作晶面的投影。
2、已知两晶面的球面坐标,求这两个晶面的面角。
(二)心射极平投影:
与极射赤平投影相反,是将目测点置于投影球中心,在 过北极点的切面上投影.
本章总结: 1. 面角守恒定律及其意义; 2.晶面的投影过程, 3. 吴氏网的构成与应用, 4. 方位角与极距角的概念, 5. 投影图的解读,即从投影图上点的分布规律
能看出晶体上晶面的空间分布规律,例如:
(给出模型)
请课后思考:吴氏网所在的平面与一般地图所在 的平面是什么关系?
它们各是什么投影 而成?
水平大圆的投影形成基圆, 直立大圆的投影形成直径
倾斜大圆的投影形成大圆弧
直立小圆的投影形成小圆弧
吴氏网是一个平面网, 但要把它看成是一个空间的球体,网 格能够测量球面上任一点的方位角与极距角,所以,只要知 道方位角与极距角,就可以用吴氏网进行投影。
晶体的上述投影过程可借用吴氏网很方便地进行,下面举例说 明。
相关文档
最新文档