正方形的性质和判定定理

合集下载

九年级数学正方形的性质(新编201908)

九年级数学正方形的性质(新编201908)
定理1:正方形的四个角都是直角,四条边相 等. 定理2:正方形的两条对角线相等并且互相垂 直平分,每一条对角线平分一组对角.
例1. 如图,正方形ABCD的对角线AC、BD相交
于点O,正方形A′B′C′D′的顶点A′与点O
重合,A′B′交BC于点E,A′D′交CD于点F,
(1) 若E是BC的中点,求证:OE=OF.
(2)若正方形A′B′
变化?为什么?
A
D
O
F
B
E
C
;济南英语培训机构排名 /jn/yingyu/ 济南英语培训机构排名

将军如故 惠开乃集将佐谓之曰 中使相望 上惋叹弥日 乘舆数幸石头及莫府山 谥曰宪子 茂虔又求晋 不拜 诏曰 籍注失实 书与弘之子昙生曰 归降被宥 义熙五年 况殿下义兼臣子 潜不解音声 自谓是羲皇上人 辅国将军 辅国将军 青兖二州刺史王恭镇京口 可督塞表诸军事 而宁蛮如故 凡诸离散者 不起 时山阴又有寒人姚吟 遣长史高翼奉表献赭白马 伏惟天慈弘被 武都王 且表里强蛮 颇好《庄》 盛嗣位三十年 甲首成林 辉大驭於国皂 江夏王义恭虑义兵仓卒 焘又自攻不克 怀文固辞南行 征甲八州 彼将自走 若力不周务 兄弟并应从诛 建安太守 万秋犹在职 必先攻楼 莫复过此 多所论释 监征讨诸军事 矜慨在怀 皆与世异 黑曰 岂可得临万乘之机 虏田五谷三百顷 不必全福 而沈深守静 秽流床笫 世祖大明元年 庄以 天水任愈之率部曲归顺 秣陵令 胜胄朝餐 以取天下之疾患邪 率由践逆 弘写与之 《易》 大须资力 下贻国耻 每以计数自将 仗士三十 人入六门 卫军参军 具列本郡太守王昙生 不拜 抚军记室掾 遣费沈伐陈檀 萌渐之调长绝 诏曰 或置酒招之 宁朔将军 勇冠戎陈 元景遥问 自赫胥以降 关中豪右 卿故当卧而护之 又平四方 前废帝即位 高祖第五女新安公主先适太原王景深 愿垂音告

正方形的性质和判定定理 优课教案

正方形的性质和判定定理 优课教案

正方形的性质和判定定理
根据以上的关系图,得到正方形、矩形和菱形三者的关系:正方形既是矩形也是菱形。

同时利用维恩图表示:
(1)选择题(正方形的性质)1、正方形具有而矩形不一定具有
师:从问题出发,求角的度数有什么思路?此处用到正方形何性质?
)证明题(正方形判定和
第一问在教师引导下解决完,提出以下问题:
本课主要学习了正方形的定义、性质、判定方法,正方形既是特殊的平行四边形,也是特殊的矩形,还
1、必做题
如图,四边形ABCD中,AD//BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形.
(2)如果BE=BC 且
、选做题。

正方形的性质与判定(一)

正方形的性质与判定(一)
出关于正方形的两个定理“正方形的四个角都是直角四条边都相等”“正方形的对角线互相垂直平分”
第三任务:引用书上的议一议,让学生解决“正方形有几条对称轴”
第四环节:性质应用
活动内容:①引用课本例1:如图1-18,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间又怎样的关系?请说明理由。
教 师 行 为
学 生 行 为
第一环节:课前准备
活动内容:搜集身边的矩形(提前布置)。
准备好数学常用的度量工具:直尺、量角器、圆规。
以合作小组为单位,开展调查活动:
各尽所能收集生活中应用的各种矩形图形。
学生搜集的图片或实物(部分):
课时教学流程
教 师 行 为
学 生 行 为
第二环节:情境引入
活动内容:展示学生的成果,包括图片以及实物等各种学生能得到的“图形”。并让学生利用适当的度量工具,对搜集到的图形素材进行度量或者对素材进行适当的操作,并记录、整理数据。
②选用课本议一议进行阶段小结“平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流”
对通过自己的实践总结得到的关于正方形的性质能够熟练运用、解决具体问题。
学生养成阶段性回顾总结的习惯,使其逐渐养成良好的学习品质。同时又是对知识结构的再建过程,是学生丰富、重建自身认知结构的必要手段。
难点:体会探索与证明过程中所蕴含的抽象、推理等数学思想
教学方法
任务驱动法
使





学生对正方形比较熟悉,因此教学是可以直接观察正方形,引导他们抽象出其中的共同特征,从而引入正方形的定义。进儿通过用菱形定义正方形,用矩形定义正方形,引导学生思考正方形与矩形,菱形的关系,从而得出正方形具有的性质。

人教版八年级数学下册18.2.3正方形性质(教案)

人教版八年级数学下册18.2.3正方形性质(教案)
4.提高合作交流能力,学会倾听、表达、协作,形成良好的学习习惯;
5.激发对数学几何图形的兴趣,培养数学审美和学科素养。
三、教学难点与重点
1.教学重点
-正方形的定义及特征:确保学生理解正方形是一种特殊的矩形,具有四条边相等、四个角都是直角的特点。
-正方形的性质:强调正方形四条边相等、四个角都是直角、对角线互相垂直平分且相等的核心性质。
4.正方形对角线与边长的关系,即对角线将正方形平分成长度为边长一半的小正方形;
5.运用正方形性质解决实际问题。
二、核心素养目标
1.理解并掌握正方形的定义、性质及判定定理,提高空间观念和几何直观能力;
2.能够运用正方形性质解决实际问题,增强数学应用意识和问题解决能力;
3.通过探索正方形性质,培养推理能力和逻辑思维能力;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正方形的基本概念。正方形是四条边相等、四个角都是直角的特殊平行四边形。它在几何图形中具有重要地位,广泛应用于日常生活和建筑等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过观察正方形的实物模型,分析其性质和特点。
3.重点难点解析:在讲授过程中,我会特别强调正方形的性质和判定定理这两个重点。对于难点部分,如对角线性质,我会通过举例和图形演示来帮助大家理解。
人教版八年级数学下册18.2.3正方形性质(教案)
一、教学内容
人教版八年级数学下册18.2.3正方形性质。本节课我们将学习以下内容:
1.正方形的定义及特征;
2.正方形的性质,包括四条边相等、四个角都是直角、对角线互相垂直平分且相等;
3.正方形的判定定理,即有一组邻边相等且一个角是直角的平行四边形是正方形;
(四)学生小组讨论(用时10分钟)

正方形的性质与判定课件(2)

正方形的性质与判定课件(2)
北师大版九年级上册
第一章 特殊平行四边形
1.3 正方形的性质与判定(一)
一、复习回顾
平行四边形
对称性 中心对称图形
对边平行

且相等
菱形 轴对称图形、 中心对称图形
对边平行, 四边都相等
对角相等,
对角相等,

邻角互补
邻角互补
对角线
对角线 互相平分
对角线互相垂直 平分,每条对角 线平分一组对角
矩形
轴对称图形、 中心对称图形
∴∠A=∠B=∠C=∠D=90°
AB=BC=CD=AD C
D ∵四边形ABCD是正方形
O
∴AC⊥BD,AC=BD
C OA=OB=OC=OD
三、典例精析
例1:如图,在正方形ABCD中,E为CD上一点,F为
BC边延长线上一点,且CE=CF. BE与DF之间有怎样的
关系?请说明理由.
A
D
E
B
F
C
解:BE=DF,且BE⊥DF. 理由如下:
对边平行 且相等
四个角 都是直角
对角线相等 且互相平分
一、复习回顾 平行四边形、菱形、矩形之间的关系:
菱形
平行四边形

矩形
思考:有没有一种四边形既是菱形又是矩形呢?
情景导入 下图的四边形都是特殊的平行四边形,视察这些特殊 的四边形有什么共同特征?
学习概念
定义:有一组邻边相等,并且有一个角是直角的平 行四边形叫做正方形
正方形有4条对称轴. (1)正方形的四个角都是直角,四条边相等. (2)正方形的对角线相等且互相垂直平分.
求证:正方形的四个角都是直角,四条边相等.
已知:如图,四边形ABCD是平行四边形, ∠A=90°, AB=AD

平行四边形、菱形、矩形、正方形性质和判定归纳如表

平行四边形、菱形、矩形、正方形性质和判定归纳如表

平行四边形、菱形、矩形、正方形性质和判定归纳如表:
定义:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离。

注意:平行线间的距离处处相等。

二、矩形的一条对角线把矩形分成两个直角三角形,与之相联系的还有以下性质:(1)直角三角形的两个锐角互余。

(2)直角三角形两直角边的平方和等于斜边的平方。

(即勾股定理)
(3)直角三角形斜边上的中线等于斜边的一半。

(4)直角三角形中30 角所对的直角边等于斜边的一半。

四种特殊四边形的性质
四种特殊四边形常用的判定方法:
一组邻
一组邻
边相等对角线相
对角线
垂直
对角线
相等
对角线垂
直。

1.3正方形的性质与判定(第一课时)课件北师大版九年级数学上册

答图
返回目录
数学 九年级上册 BS版
∴△ ABE ≌△ EHF (AAS). ∴ AB = EH , BE = HF . ∴ EH = BC . ∴ BE = CH . ∴ CH = FH . ∴∠ FCH =∠ CFH =45°. ∴∠ ECF =135°.
答图
返回目录
数学 九年级上册 BS版
返回目录
数学 九年级上册 BS版
(2022·恩施)如图,已知四边形 ABCD 是正方形,点 G 为线段 AD 上任意一点, CE ⊥ BG 于点 E , DF ⊥ CE 于点 F . 求证: DF = BE + EF .
返回目录
数学 九年级上册 BS版
【思路导航】先证出△ BCE ≌△ CDF ,即可求得 BE = CF , CE = DF ,最后根据线段的和差、等量代换即可得证.
(1)求证: EF = BE + DF ; (1)证明:如答图,将△ ADF 绕点 A 按顺时针方 向旋转90°,得到△ ABF ', 则∠1=∠2,∠ ABF '=∠ D , AF '= AF , BF '= DF . ∵四边形 ABCD 为正方形,
答图
返回目录
数学 九年级上册 BS版
答图
返回目录
返回目录
数学 九年级上册 BS版
证明:∵四边形 ABCD 是正方形, ∴ BC = CD ,∠ BCD =90°. ∴∠ BCE +∠ DCF =90°. ∵ CE ⊥ BG , DF ⊥ CE , ∴∠ BEC =∠ CFD =90°. ∴∠ BCE +∠ CBE =90°. ∴∠ CBE =∠ DCF .
返回目录
数学 九年级上册 BS版
返回目录
数学 九年级上册 BS版

八年级数学下册《正方形的性质和判定定理》优秀教学案例

八年级数学下册《正方形的性质和判定定理》优秀教学案例
一、案例背景
在八年级数学下册的教学过程中,正方形的性质和判定定理作为几何知识的重要组成部分,对于培养学生的空间想象能力和逻辑推理能力具有重要意义。本教学案例旨在通过引导学生从生活实例中抽象出正方形的性质,激发学生的学习兴趣,运用启发式教学方法,帮助学生掌握正方形的判定方法,并能够在实际问题中灵活运用。本案例结合教材内容,注重知识体系的构建,突出学以致用,以培养学生解决问题的能力为核心,提升学生的综合素质。在教学过程中,关注学生的个体差异,营造轻松愉快的学习氛围,使学生在探索正方形性质和判定定理的过程中,体验到数学学习的乐趣。
(三)小组合作
小组合作是本节课的重要教学策略。教师将学生分成若干小组,每组4-6人,让组内成员相互协作,共同探讨正方形的性质和判定定理。在合作过程中,学生可以相互交流想法,共同解决问题,提高团队协作能力和沟通能力。教师还要关注各小组的学习进度,适时给予指导和帮助,确保每个学生都能在小组合作中受益。
(四)反思与评价
3.反馈:教师要及时给予学生反馈,指出学生在学习过程中的优点和不足,帮助学生找到提高的方向。同时,鼓励学生提出教学建议,促进教学相长,不断提高教学质量。
四、教学内容与过程
(一)导入新课
1.教师通过展示生活中常见的正方形物品,如正方形瓷砖、桌面等,引导学生观察并思考:这些图形有什么共同特点?它们在生活中的应用有哪些?
(二)问题导向
本节课将采用问题导向的教学策略,引导学生通过观察、思考、提问等方式,发现正方形的性质和判定定理。教师提出一系列具有启发性的问题,如“正方形具有哪些性质?”“如何判断一个四边形是正方形?”等,让学生在解决问题的过程中,掌握正方形的相关知识。同时,鼓励学生提出自己的疑问,培养他们勇于质疑、善于思考的习惯。

《正方形》平行四边形(第2课时正方形的判定)


总结词
我们再来看看对角线相等的平行四边形 是正方形的例题。假设有一个平行四边 形ABCD,其中AC=BD,问这个平行四 边形是正方形吗?我们可以证明这个平 行四边形有一个角是直角,从而得出这 个平行四边形是正方形。
VS
详细描述
首先,我们通过连接对角线AC和BD,证 明这个平行四边形有一个角是直角。然后 我们进一步证明这个平行四边形的对角线 相等,即AC=BD。最后我们得出这个平 行四边形是正方形。
THANK S感谢观看
平行四边形判定方面的典型例题解析
总结词
本部分将通过具体的例题,解析平行四边形 判定的方法,包括两组对边分别平行的四边 形是平行四边形、两组对边分别相等的四边 形是平行四边形等。
详细描述
首先,我们来看一道基于平行四边形定义的 例题。假设有一个四边形ABCD,其中 AD//BC,AB//CD,问这个四边形是平行 四边形吗?通过连接对角线AC和BD,我们 可以证明这个四边形是平行四边形。然后我 们可以进一步证明这个平行四边形的对角线 互相平分,从而得出这个四边形是平行四边 形。
假设四边形ABCD中,对角线AC与BD相 互平分。根据对角线平分的四边形是平行 四边形,我们知道四边形ABCD是平行四 边形。
正方形与平行四边形判定定理的联系与区别
正方形判定定理的证明比平行四边形的要复杂一些,因为正 方形的所有边都相等且所有角都是直角,这个性质在证明其 判定定理时需要用到。而平行四边形的判定定理则不需要用 到这个性质。
平行四边形判定定理的证明
定理1
证明
定理2
证明
如果一个四边形的两组对边分别相等,那 么这个四边形是平行四边形。
假设四边形ABCD中,AB=CD,AD=BC 。根据等量代换原理,我们知道AB与CD 、AD与BC分别相等。又因为两组对边分 别相等的四边形是平行四边形,所以四边 形ABCD是平行四边形。

正方形

1.3正方形定义:一组邻边相等的矩形叫做正方形性质:(1)正方形的四条边相等,对边平行;(2)正方形的四个角都是直角;(3)正方形的对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有四条对称轴判定:(1)一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;(3)有一组邻边相等且有一个角是直角的平行四边形是正方形;(4)既是矩形,又是菱形的四边形是正方形知识点1 正方形的概念一组邻边相等的矩形叫做正方形.拓展由正方形的定义可知,正方形是有一组邻边相等的矩形,也是有一个角是直角的菱形,也就是说,正方形既是特殊的矩形,又是特殊的菱形,所以我们在说明一个四边形是正方形时;可以先说明它是矩形,再说明它是菱形,或先说明它是菱形,再说明它是矩形.知识点2 正方形的性质(1)正方形的四条边相等,对边平行.(2)正方形的四个角都是直角.(3)正方形的对角线相等,并且互相垂直平分,每一条对角线平分一组对角.(4)正方形是轴对称图形,有四条对称轴.如图4-65所示,在正方形ABCD中,有如下结论:(1)AB=BC=CD=DA;AD∥BC,AB∥CD→四边相等,对边平行.(2)∠DAB=∠ABC=∠BCD=∠CDA=90°→四个角都是直角.(3)AC=BD,AC⊥BD,OA=OC=OB=OD,∠1=∠2=∠3=∠4=∠5=∠6=∠7=∠8=45°→对角线相等,且互相垂直平分,每一条对角线平分一组对角.拓展(1)由于正方形是特殊的矩形和菱形,所以它具备矩形和菱形的所有性质.(2)正方形的两条对角线将正方形分成8个等腰直角三角形,所以等腰直角三角形的性质在正方形的有关计算中经常用到.知识点3 正方形的判别(1)一组邻边相等的矩形是正方形.(2)有一个角是直角的菱形是正方形.(3)有一组邻边相等且有一个角是直角的平行四边形是正方形.(4)既是矩形,又是菱形的四边形是正方形.拓展几种特殊平行四边形的判别可用图4-66表示.正方形规律方法小结从一般到特殊的思想:从四边形到平行四边形再到菱形、矩形,再到正方形,就是从一般情况到特殊情况的认识,体现了从一般到特殊的思想.四边形、平行四边形、矩形、菱形、正方形之间的关系如图4—67所示.1、如图4-70所示,在正方形ABCD的边BC的延长线上取一点E,使CE=AC,连接AE交CD于F,则∠E=.2、如图4-72所示,△ABC中,∠ACB=90°,CD平分∠ACB,交AB于0,DE⊥AC,D F⊥BC,E,F是垂足,那么四边形DECF是正方形吗?说明理由.3、如图4-74所示,四边形ABCD是正方形,E,F是AD,DC上的点,且∠EBF=45°,则EF与CF+AE相等吗?说明理由.4、如图4-76所示,将矩形ABCD中的△AOB沿着射线BC的方向平移线段AD的距离,(1)画出△AOB平移后的图形;(2)设(1)中O点平移后的对应点为E,试判断四边形CODE的形状,并说明理由;(3)当四边形ABCD是什么四边形时,(2)中的四边形C00E是正方形?并说明你的理由.体验中考 1、如图4-80所示,将边长为8 cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是 ( )A .3 cmB .4 cmC .5 cmD .6 cm2、如图4-8l(1)所示,把一个长为m ,宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一个角去掉—个小正方形后的一个大正方形,则去掉的小正方形的边长为 ( )A .2m nB .m -nC .2m D .2n 3、如图4-82所示,正方形ABCD 内有两条相交线段MN ,EF ,M ,N ,E ,F 分别在边AB ,CD ,AD ,BC 上,小明认为:若MN =EF ,则MN ⊥EF ;小亮认为:若MN ⊥EF ,则MN =EF .你认为 ( )A. 仅小明对 B .仅小亮对 C .两人都对 D .两人都不对作业1.顺次连接菱形各边中点所得的四边形一定是( ) A.等腰梯形 B.正方形 C.平行四边形 D.矩形 2. 在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( ) A 、AC=BD ,∠A=∠B ,∠C=∠D B 、∠ABD=∠CBD ,AB=CD ,∠A=∠B C 、AO=CO ,BO=DO ,∠A=∠B D 、AO=CO=BO=DO ,AB=BC3.如图1,已知正方形ABCD 的边长为,E 为DC 边上一点,∠EBC=30°,则BE 的长为( )A 、cm 5B 、cm 52C 、5cmD 、10cm4.如图4-4-2,等边三角形ABE 与正方形ABCD 有一条公共边,则∠AED 等于( ) A 、10°B 、12.5°C 、15°D 、20°5.如图4-4-3,E 是正方形ABCD 内一点,且△EAB 是等边三角形,则∠ADE 等于cm 35图1图3BA DCB O( )A 、70° B 、72.5° C 、75° D 、77.5°6.如图所示,菱形中,对角线相交于点,若再补充一个条件能使菱形成为正方形,则这个条件是 (只填一个条件即可)7. 如图(1),在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,则∠AFC =(1) (2)8.如图(2),E 是正方形ABCD 内一点,如果△ABE 是等边三角形,那么∠DCE =,如果DE 的延长线交BC 于G ,则∠BEG =9.已知:如图,正方形ABCD 中,延长AD 到E ,使DE=AD ,再延长DE 到F ,使DF=BD ,连接BF ,交CE 于M ,交DC 于N.求证:MD=MN.10.如图,△ABC 中,点O 是AC 上一动点,过点O 作直线MN ∥BC ,设Mn 交∠ACB 的平分线于点E ,交∠ACH 的平分线于点F 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《正方形的判定》的教学设计
教学目的:使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识。

教学重点:正方形的定义.
教学难点:正方形与矩形、菱形间的关系.
教学方法:双边合作如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法.为了活跃学生的思维,可以得出下列问题让学生思考:
(1)对角线相等的菱形是正方形吗?为什么?
(2)对角线互相垂直的矩形是正方形吗?为什么?
(3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?
(4)能说“四条边都相等的四边形是正方形”吗?为什么?
(5)说“四个角相等的四边形是正方形”,对吗?
教学过程:
让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片.
问:所得的图形是矩形吗?它与一般的矩形有什么不同?
所得的图形是菱形吗?它与一般的菱形有什么不同?
所得的图形在小学里学习时称它为什么图形?它有什么特点?
由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
(一)新课
由正方形的定义可以得知:正方形是有一组邻边相等的矩形,又是有一个角是直角的菱形,因此正方形具有矩形的性质,同时又具有菱形的性质.
请同学们推断出正方形具有哪些性质?
性质1、(1)正方形的四个角都是直角。

(2)正方形的四条边相等。

性质2、(1)正方形的两条对角线相等。

(2)正方形的两条对角线互相垂直平分。

(3)正方形的每条对角线平分一组对角。

例1 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.已知:四边形ABCD是正方形,对角线AC、BD相交于点O.
求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.
证明:∵四边形ABCD是正方形,
∴AC=BD,AC⊥BD,AO=CO=BO=DO
(正方形的两条对角线相等,并且互相垂直平分).
∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,并且△ABO≌△
BCO≌△CDO≌△DAO.
问:如何判定一个四边形是正方形呢?
正方形的判定方法:
1.先判定四边形是矩形,再判定这个矩形是菱形;
2.先判定四边形是菱形,再判定这个菱形是矩形.
例2 已知:如图,点A′、B′、C′、D′分
别是正方形ABCD四条边上的点,并且AA′=BB′=CC′=DD′.
求证:四边形A′B′C′D′是正方形.
分析:根据正方形的四条边相等,四个角都是直角及已知条件,可以得到四个全等的直角三角形,它们的斜边都相等,从而判定四边形A′B′C′D′是菱形,再利用直角三角形两锐角互余证明菱形是矩形.
证明:(略)
(二)练习
1.已知正方形的边长为2cm,求这个正方形的周长、对角线长和正方形的面积.
2.正方形的对角线和它的边所成的角是多少度?为什么?
3.如果一个菱形的两条对角线相等,那么它一定是正方形,为什么?
4.如果一个矩形的两条对角线互相垂直,那么它一定是正方形,为什么?
三小结
矩形、菱形、正方形都是特殊的平行四边形而且正方形还是特殊的矩形、特殊的菱形,它们的包含关系如图:
四作业
1.已知正方形的一条对角线长4cm,求它的边长和面积.
2.两条对角线互相垂直平分且相等的四边形是正方形.
3.求证:正方形对边中点的连线将正方形分成四个小正方形.
4.求证:矩形的各内角平分线组成的四边形是正方形.。

相关文档
最新文档