正方形的性质与判定经典例题练习

合集下载

中考数学复习之正方形的性质与判定,考点过关与基础练习题

中考数学复习之正方形的性质与判定,考点过关与基础练习题

27.正方形➢考点分类考点1正方形的性质例1如图,以正方形ABCD的边AB为一边向外作等边△ABE,则∠BED的度数为()A.55°B.45°C.42.5°D.40°考点2正方形与十字架模型例2如图,在正方形ABCD中,点E、F分别是AD、CD边上的点,且AE=DF,连接BE、AF交于点M,N为BF的中点,若AB=10,AE=4,则MN的长为________考点3正方形与半角模型例3如图,正方形ABCD中,点M是边BC异于点B、C的一点,AM的垂直平分线分别交AB、CD、BD于E、F、K,连接AK、MK.下列结论:①EF=AM;②AE=DF+BM;③BKAK;④∠AKM=90°.其中正确的结论有个.➢ 真题演练1.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:①AE =BF ;①AE ①BF ; ①AO =OE ;①S ①AOB =S四边形DEOF ,其中正确的有( )A .①①①B .①①①C .①①①D .①①①2.如图,E 、F 、H 分别为正方形ABCD 的边AB 、BC 、CD 上的点,连接DF ,HE ,且HE =DF ,DG 平分①ADF 交AB 于点G .若①BEH =52°,则①AGD 的度数为( )A .26°B .38°C .52°D .64°3.如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,连接AF 、EF ,过点E 作EH ①AD 交AD 于点H ,EG ①AF 交AD 于点G ,连接GF ,若BE =DF =1,且EF =2+√2,则sin①FGD 的值为( )A .√32B .√33C .√3−12D .12 4.如图,点E 为正方形ABCD 的对角线BD 上的一点,连接CE ,过点E 作EF ①CE 交AB 于点F ,交对角线AC 于点G ,且点G 为EF 的中点,若正方形的边长为4√2,则AG 的长为( )A .2B .3C .2√2D .43√25.如图,在正方形ABCD中,AB=2,点E是BC边的中点,连接DE,延长EC至点F,使得EF=DE,过点F作FG①DE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的是:①tan∠GFB=12;①MN=NC;①CMEG=12;①S四边形GBEM=√5+12()A.4B.3C.2D.16.如图,在正方形ABCD中,E为对角线AC上一点,连接DE,过点E作EF①DE,交BC 延长线于点F,以DE,EF为邻边作矩形DEFG,连接CG.在下列结论中:①DE=EF;①①DAE①①DCG;①AC①CG;①CE=CF.其中正确的是()A.①①①B.①①①C.①①①D.①①①7.如图,点E在正方形ABCD外,连结AE、BE、DE,过点A作AE的垂线交DE于点F.若AE=AF=4√2,BF=10,则下列结论:①△AFD≌△AEB;②EB⊥ED;③点B到直线AE的距离为3√2;④S△ABF+S△ADF=40.其中正确的结论是.(填写所有正确结论的序号)8.如图,边长为5的正方形ABCD中,点E、G分别在射线AB、BC上,F在边AD上,ED与FG交于点M,AF=1,FG=DE,BG>AF,则MC的最小值为.9.如图,在边长为4的正方形ABCD内有一动点P,且BP=√2.连接CP,将线段PC绕点P逆时针旋转90°得到线段PQ.连接CQ、DQ,则12DQ+CQ的最小值为.10.如图,小明同学将边长为5cm的正方形塑料模板ABCD与一块足够大的直角三角板叠放在一起,其中直角三角板的直角顶点落在点A处,两条直角边分别与CD交于点F,与CB延长线交于点E,则四边形AECF的面积是.11.已知四边形ABCD是正方形.(1)如图1所示,点O是正方形对角线的交点,连接OB,OC,若AB=4,求OB的长.(2)如图2所示,当点O是BC上一点,OC'⊥BC,连接BC',C'D,点M是C'D的中点,连接OM,CM,求证:CM=OM.12.如图,正方形ABCD 的对角线AC 、BD 相交于点O ,G 是CD 边上一点,连接BG 交AC 于E ,过点A 作AM ⊥BG ,垂足M ,AM 交BD 于点F .(1)求证:OE =OF .(2)若H 是BG 的中点,BG 平分∠DBC ,求证:DG =2OE .➢ 课后练习1.如图,在边长为8的正方形ABCD 中,E 、F 分别是边AB 、BC 上的点,且BE =CF =2,连接DE 、AF 交于点O ,过点F 作AF 的垂线段FG ,连接CG 使得①GCF =135°,连接AG 交DE 于点M ,则①GFM 的面积为( )A .24B .25C .25√22D .262.如图,在正方形ABCD 中,E 为BC 上一点,过点E 作EF ①CD ,交AD 于点F ,交对角线BD 于点G ,取DG 的中点H ,连接AH ,EH ,FH .下列结论:①FH ①AE ;①AH =EH 且AH ①EH ;①①BAH =①HEC ;①①EHF ①①AHD .其中正确的个数是( )A .4个B .3个C .2个D .1个3.如图,正方形ABCD 的边长为4,点E 在边AB 上,BE =1,①DAM =45°,点F 在射线AM 上,且AF =√2,过点F 作AD 的平行线交BA 的延长线于点H ,CF 与AD 相交于点G ,连接EC 、EG 、EF .下列结论:①CG =34√34;①①AEG 的周长为8;①①EGF 的面积为1710.其中正确的是( )A .①①①B .①①C .①①D .①①4.如图,E 为正方形ABCD 的边AB 的中点,过点E 作①GEF =90°,分别与边AD ,BC 交于点G ,F .若AG =2,BF =4,则GF 的长为( )A .4B .6C .8D .105.如图,在正方形ABCD 中,点E ,点F 分别是对角线BD ,AC 上的点,连接CE ,EF ,DF ,若EF ①BC ,且①CEF =15°,则①EDF 的度数为( )A .22.5°B .25°C .30°D .35°6.如图,在平面直角坐标系中,四边形ABCD 是边长为2的正方形,点A 在y 轴上运动,点B 在x 轴上运动,点E 为对角线的交点,在运动过程中点E 到y 轴的最大距离是( )A .√22B .1C .√2D .27.如图,在正方形ABCD中,O为对角线AC、BD的交点,E、F分别为边BC、CD上一点,且OE①OF,连接EF.若∠AOE=150°,DF=√3,则EF的长为()A.2√3B.2+√3C.√3+1D.38.如图,在正方形ABCD中,E、F分别是AB,BC的中点,CE,DF交于点G,连接AG,下列结论:①CE=DF;①CE①DF;①①AGE=①CDF;①①EAG=30°,其中正确的结论是()A.①①B.①①C.①①①D.①①①9.如图,在正方形ABCD中,AB=2,延长AD到点E,使得DE=1,EF⊥AE,EF=AE.分别连接AF,CF,M为CF的中点,则AM的长为.10.如图,在△ABC中,AC=BC=5,AB=6,以BC为边向外作正方形BCDE,连接AD,则AD=.11.如图,已知正方形ABCD的对角线AC与BD相交于点O,若AC=2√2cm,点E在DC 边的延长线上,若∠CAE=15°,则AE=cm.12.如图,点E在正方形ABCD边CD上,以CE为边向正方形ABCD外部作正方形CEFG,连接AF,P、Q分别是AF、AB的中点,连接PQ.若AB=7,CE=5,则PQ=.13.如图,正方形ABCD的边长为6.E,F分别是射线AB,AD上的点(不与点A重合),且EC⊥CF,M为EF的中点.P为线段AD上一点,AP=1,连接PM.当△PMF为直角三角形时,则AE的长为.14.如图,正方形ABCD中,点E为BC边上一点,点F为CD边上一点,且BE=CF,连接AE、BF交于点G.(1)求证:∠AGF=90°;(2)连接GC,若GC平分∠EGF,求证:AB=2CF;(3)在(2)的条件下,连接GD,过点E作EH∥GD交CD边于点H,交BF于点M,若FH=2,求线段FM的长.➢冲击A+如图1,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC 的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=32,ACBC=34,求⊙O的半径.(3)如图2,在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于点N,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段AO、CN、NQ的长度.。

正方形性质与判定练习题

正方形性质与判定练习题

正方形的性质与判断练习题一、填空1、如, E 是正方形 ABCD的角 BD 上一点,且 BE= BC,∠ ACE=°.2、如,四形 ABDC是正方形,延 CD 到点 E,使 CE=CB,∠ AEC=°.3、如,正方形 ABCD中,点 E 在 BC的延上, AE均分∠ DAC,以下:① ∠ E=°;② ∠AFC=°;③ ∠ ACE=135°;④ AC=CE;⑤ AD∶ CE=1∶ 2. 此中正确的有个.4、如,等△ EDC在正方形ABCD内, EA、 EB,∠ AEB=°;∠ ACE=°.第1题图第 2题图第 3题图第4题图5、已知正方形 ABCD,以 CD 作等△ CDE,∠ AED 的度数是° .6、如,四形 ABCD是正方形, E 是 CD 上一点,若△ AFB 逆旋角θ( 0°<θ< 180°)后,与△ AED重合,θ °.第 6题图第7题图第8题图第9题图7 、已知正方形ABCD中,点 E 在 DC上, DE = 2,EC = 1,把段 AE 点 A 旋,使点 E 落在直BC 上的点 F, F、C 两点的距离 ___________.8 、如,正方形ABCD的面12,△ ABE 是等三角形,点 E 在正方形 ABCD内,在角AC 上有一点P,使 PD+PE的和最小,个最小.9 、如,四形ABCD是9 的正方形片,将其沿MN 折叠,使点 B 落在 CD 上的B,点 A 点A ,且BC =3,CN=;AM的是.10、正方形的面是1,其角是________. 311、如,三个均 2 的正方形重叠在一同,O1、O2是此中两个正方形的中心,暗影部分的面是.12、如,将n 个都1cm 的正方形按如所示放,点A1、 A2、⋯、 A n分是正方形的中心,n 个的正方形重叠部分的面和.O2O1第 11题图第14题图第 12题图第13题图13、边长为 1 的正方形ABCD 绕点 A 逆时针旋转30°获得正方形 AB′ C′,D两′图叠成一个“蝶形风筝”(如下图重叠部分),则这个风筝的面积是.14、如图,边长为 1 的正方形ABCD绕点 A 逆时针旋转45 度后获得正方形AB′ C′,D边′B′与C′DC 交于点 O,则四边形 AB′OD 的周长是.15、如右图,正方形ABCD中, AB=6,点 E 在边 CD 上,且 CD=3DE.将△ ADE 沿 AE对折至△ AFE,延伸 EF 交边 BC 于点 G,连结 AG、 CF.以下结论:① △ ABG≌ △ AFG;② BG =GC;③ AG ∥ CF;④S△FGC= 3.此中正确的结论是.(填序号)16、如右图,四边形ABCD为正方形,以AB 为边向正方形外作等边△ABE, CE与 DB订交于点F,则AFD =。

正方形的性质与判定【十大题型】(举一反三)(浙教版)(原卷版)

正方形的性质与判定【十大题型】(举一反三)(浙教版)(原卷版)

专题5.3 正方形的性质与判定【十大题型】【浙教版】【题型1 正方形的性质(求角的度数)】 (1)【题型2 正方形的性质(求线段的长度)】 (3)【题型3 正方形的性质(求面积、周长)】 (4)【题型4 正方形的性质(探究数量关系)】 (6)【题型5 判定正方形成立的条件】 (10)【题型6 正方形判定的证明】 (12)【题型7 正方形的判定与性质综合】 (16)【题型8 探究正方形中的最值问题】 (19)【题型9 正方形在坐标系中的运用】 (20)【题型10 正方形中的多结论问题】 (23)【题型1 正方形的性质(求角的度数)】【例1】(2022春•建阳区期中)如图,在正方形ABCD中有一个点E,使三角形BCE是正三角形,求:(1)∠BAE的大小(2)∠AED的大小.【变式1-1】如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并猜测∠FCN的度数,并说明理由.【变式1-2】(2022•武威模拟)如图,在正方形ABCD中,点E是对角线AC上的一点,点F在BC的延长线上,且BE=EF,EF交CD于点G.(1)求证:DE=EF;(2)求∠DEF的度数.【变式1-3】(2022春•新市区校级期末)如图,在给定的正方形ABCD中,点E从点B出发,沿边BC方向向终点C运动,DF⊥AE交AB于点F,以FD,FE为邻边构造平行四边形DFEP,连接CP,则∠DFE+∠EPC的度数的变化情况是()A.一直减小B.一直减小后增大C.一直不变D.先增大后减小【题型2 正方形的性质(求线段的长度)】【例2】(2022春•牡丹江期末)如图,正方形ABCD的边长为10,点E,F在正方形内部,AE=CF=8,BE=DF=6,则线段EF的长为()A.2√2B.4C.4−√2D.4+√2【变式2-1】(2022春•巴南区期末)如图,四边形ABCD是边长为4的正方形,点E在边CD上,且DE =1,作EF∥BC分别交AC、AB于点G、F,P、H分别是AG,BE的中点,则PH的长是()A.2B.2.5C.3D.4【变式2-2】(2022•越秀区一模)将正方形ABCD与正方形BEFG按如图方式放置,点F、B、C在同一直线上,已知BG=√2,BC=3,连接DF,M是DF的中点,连接AM,则AM的长是()A.√102B.√3C.√132D.32【变式2-3】(2022春•吴中区校级期末)如图,在正方形ABCD中,AB=4√5.E、F分别为边AB、BC的中点,连接AF、DE,点N、M分别为AF、DE的中点,连接MN,则MN的长度为.【题型3 正方形的性质(求面积、周长)】【例3】(2022春•鄞州区期末)有两个正方形A,B.现将B放在A的内部得图甲,将A,B构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B得图丙,则阴影部分的面积为()A.28B.29C.30D.31【变式3-1】(2022春•工业园区校级期中)如图,四边形ABCD为正方形,O为AC、BD的交点,△DCE 为Rt△,∠CED=90°,OE=2√2,若CE•DE=3,则正方形ABCD的面积为()A.5B.6C.8D.10【变式3-2】(2022•台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.【变式3-3】(2022•江北区一模)如图,以Rt△ABC的各边为边分别向外作正方形,∠BAC=90°,连结DG,点H为DG的中点,连结HB,HN,若要求出△HBN的面积,只需知道()A.△ABC的面积B.正方形ADEB的面积C.正方形ACFG的面积D.正方形BNMC的面积【题型4 正方形的性质(探究数量关系)】【例4】(2022秋•中原区校级月考)如图,线段AB=4,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE 与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)请直接写出△AEF的周长.【变式4-1】(2022春•雁塔区校级期末)在正方形ABCD中,∠MAN=45°,该角可以绕点A转动,∠MAN的两边分别交射线CB,DC于点M,N.(1)当点M,N分别在正方形的边CB和DC上时(如图1),线段BM,DN,MN之间有怎样的数量关系?你的猜想是:,并加以证明.(2)当点M,N分别在正方形的边CB和DC的延长线上时(如图2),线段BM,DN,MN之间的数量关系会发生变化吗?证明你的结论.【变式4-2】(2022春•莆田期末)如图,已知正方形ABCD中,E为CB延长线上一点,且BE=AB,M、N分别为AE、BC的中点,连DE交AB于O,MN交,ED于H点.(1)求证:AO=BO;(2)求证:∠HEB=∠HNB;(3)过A作AP⊥ED于P点,连BP,则PE−PA的值.PB【变式4-3】(2022春•鼓楼区校级期中)如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点G.点H是线段CE上一点,且CO=CH.(1)若OF=5,求FH的长;(2)求证:BF=OH+CF.【题型5 判定正方形成立的条件】【例5】(2022春•海淀区校级期中)已知四边形ABCD为凸四边形,点M、N、P、Q分别为AB、BC、CD、DA上的点(不与端点重合),下列说法正确的是(填序号).①对于任意凸四边形ABCD,一定存在无数个四边形MNPQ是平行四边形;②如果四边形ABCD为任意平行四边形,那么一定存在无数个四边形MNPQ是矩形;③如果四边形ABCD为任意矩形,那么一定存在一个四边形为正方形;④如果四边形ABCD为任意菱形,那么一定存在一个四边形为正方形.【变式5-1】(2022春•岳麓区校级月考)如图,E、F、G、H分别是AB、BC、CD、DA的中点.要使四边形EFGH是正方形,BD、AC应满足的条件是.【变式5-2】(2022春•汉寿县期中)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F在AC 上,且OE=OF,连接DE并延长至点M,使DE=ME,连接MF,DF,BE.(1)当DF=MF时,证明:四边形EMBF是矩形;(2)当△DMF满足什么条件时,四边形EMBF是正方形?请说明理由.【变式5-3】(2022春•沛县期中)已知在△ABC中,D为边BC延长线上一点,点O是边AC上的一个动点,过O作直线MN∥BC,设MN与∠BCA的平分线相交于点E,与∠ACD的平分线相交于点F.(1)求证:OE=OF;(2)试确定点O在边AC上的位置,使四边形AECF是矩形,并加以证明.(3)在(2)的条件下,且△ABC满足条件时,矩形AECF是正方形?.【题型6 正方形判定的证明】【例6】(2022春•虹口区期末)如图,在四边形ABCD中,AB∥CD,AD=CD,E是对角线BD上的一点,且AE=CE.(1)求证:四边形ABCD是菱形;(2)如果AB=BE,且∠ABE=2∠DCE,求证:四边形ABCD是正方形.【变式6-1】(2022春•宜城市期末)如图,四边形ABCD是平行四边形,连接对角线AC,过点D作DE ∥AC与BC的延长线交于点E,连接AE交DC于F.(1)求证:BC=CE;(2)连接BF,若∠DAF=∠FBE,且AD=2CF,求证:四边形ABCD是正方形.【变式6-2】(2022秋•市南区期末)已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH 是正方形?【变式6-3】(2022•上海)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【题型7 正方形的判定与性质综合】【例7】(2022•威海)如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为cm2.【变式7-1】(2022•萧山区模拟)如图,P为正方形ABCD内的一点,画▱P AHD,▱PBEA,▱PCFB,▱PDGC,请证明:以E,F,G,H为顶点的四边形是正方形.【变式7-2】(2022•萧山区模拟)已知:如图,边长为4的菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,BE=1,且DH⊥CE,垂足为H,DH与OC相交于点F,求线段OF的长.【变式7-3】(2022春•潜山市期末)如图,已知四边形ABCD为正方形,AB=3√2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【题型8 探究正方形中的最值问题】【例8】(2022春•沙坪坝区校级月考)如图,在正方形ABCD中,M,N是边AB上的动点,且AM=BN,连接MD交对角线AC于点E,连接BE交CN于点F,若AB=3,则AF长度的最小值为.【变式8-1】(2022•泰山区一模)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是()A.2B.1C.√5−1D.√5−2【变式8-2】(2022•青山区模拟)已知矩形ABCD,AB=2,AD=4AB=8,E为线段AD上一动点,以CE 为边向上构造正方形CEFG,连接BF,则BF的最小值是.【变式8-3】(2022•郧阳区模拟)如图,P A=2√2,PB=4√2,以AB为边作正方形ABCD,使得P、D两点落在直线AB的两侧,当∠APB变化时,则PD的最大值为.【题型9 正方形在坐标系中的运用】【例9】(2022春•市中区期末)在平面直角坐标系中,对于两个点P、Q和图形W,如果在图形W上存在点M、N(M、N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.已知正方形的边长为2,一边平行于x轴,对角线的交点为点O,点D的坐标为(2,0).若点E(x,2)与点D是正方形的一对平衡点,则x的取值范围为()A.﹣3≤x≤3B.﹣4≤x≤4C.﹣2≤x≤2D.﹣5≤x≤5【变式9-1】(2022秋•永新县期末)如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣2,0)、B(0,﹣2)、C(2,0)、D(0,2),求证:四边形ABCD是正方形.【变式9-2】(2022春•顺城区期末)如图,在平面直角坐标系xOy中,直线OC:yOC=3x与直线AC:yAC=﹣x+8相交于点C(2,6).(1)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.分别过点M,N作x轴的垂线,分别交直线OC,AC于点P,Q,请你在图1中画出图形,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(2)在(1)的条件下,当点M运动秒时,四边形PMNQ是正方形(直接写出结论).【变式9-3】(2022•河南模拟)如图,正方形OABC 中,点A (4,0),点D 为AB 上一点,且BD =1,连接OD ,过点C 作CE ⊥OD 交OA 于点E ,过点D 作MN ∥CE ,交x 轴于点M ,交BC 于点N ,则点M 的坐标为( )A .(5,0)B .(6,0)C .(254,0)D .(274,0) 【题型10 正方形中的多结论问题】【例10】(2022春•慈溪市期末)如图,正方形ABCD 中,点P 为BD 延长线上任一点,连结P A ,过点P 作PE ⊥P A ,交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F .下列结论:(1)P A =PE ; (2)BD =2PF ;(3)CE =√2PD ; (4)若BP =BE ,则PF =(√2+1)DF .其中正确的个数为( )A .1B .2C .3D .4【变式10-1】(2022春•渝中区校级期中)如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =√2BE ,CF 与AD 相交于点G .连接EC 、EF 、EG .下列结论:①∠ECF =45°;②△AEG 的周长为(1+√22)a ;③BE 2+DG 2=EG 2;④当G 是线段AD的中点时,BE =13a .正确的个数是( )A.1个B.2个C.3个D.4个【变式10-2】(2022秋•三水区月考)如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①HF=2HG;②∠GDH=∠GHD;③图中有8个等腰三角形;④S△CDG=S△DHF.其中正确的结论个数是()A.1个B.2个C.3个D.4个【变式10-3】(2022春•玉林期末)如图,正方形ABCD中,点E在边CD上,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC、EF于点G、H,连接EG、DH.则下列结论中:①BF=DE;②∠EGC=2∠BAG;③AD+DE=√3DH;④DE+BG=EH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有.。

初中数学 习题3:正方形的性质与判定

初中数学 习题3:正方形的性质与判定

正方形的性质与判定一、填空题1.正方形的一边长5cm,则周长为cm,面积为cm22.E是正方形ABCD对角线AC上一点,且AE=AB,则∠ABE=3.E是正方形ABCD内一点,且△EAB是等边三角形,则∠ADE=4.正方形ABCD中,对角线BD长为16cm,P是AB上任意一点,则点P到AC、BD的距离之和等于cm5.正方形有条对称轴.6.如图(1),在正方形ABCD的边BC的延长线上取一点E,使CE=AC,连结AE交CD于F,则∠AFC=(1) (2)7.如图(2),E是正方形ABCD内一点,如果△ABE是等边三角形,那么∠DCE=,如果DE的延长线交BC于G,则∠BEG=8.F是正方形ABCD的对角线AC上一点,AF=AD,FG⊥AC于F,交CD于G,那么∠DFG=9.如图(3),截去正方形ABCD的∠A、∠C后,∠ 1、∠2、∠3、∠4的和为(3)(4)10.如图(4),正方形的对角线相交于O,∠BAC的平分线交BD于E,若正方形的周长是20cm,则DE=二、选择题1.正方形具有而矩形不一定具有的特征是( )A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等2.如图(5),在正方形ABCD中,∠DAF=25°,AF交对角线BD于E 点,则∠BEC=( ) A.45°B.60°C. 70°D.75°(5) (6)3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A.平行四边形B.等腰三角形C.等边三角形D.菱形4.如图(6),正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )A.30 B.34 C.36 D.405.如右图,以A、B为顶点作位置不同的正方形,一共可以作( )A.1个B.2个C.3个D.4个三、解答题(每题12分,共24分)1.图中的矩形是由六个正方形组成,其中最小的正方形的面积为1,求这个矩形的长和宽各是多少?2.如图,E是正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数.四、对于周长为20的矩形,通过填写下表,研究它的长、宽的变化对面积的影响.矩形的长……8 7 6 5 4 3 2 ……矩形的宽…………矩形的面积……观察数据,你有什么结论?五、如图,△ABC中,点O是AC上一动点,过点O作直线MN∥BC,设Mn交∠ACB的平分线于点E,交∠ACH的平分线于点F.⑴说明:EO=FO;⑵当点O运动到何处时,四边形AECF是矩形;⑶当O是AC上怎样的点,且AC与BC具有什么关系时,四边形AECF是正方形?参考答案一、1.20,25;2.°;3.75°;4.8;5.4;6.°7.15°,45°;8.° 9.540°10.5二、三、1.设中间最小正方形的边长为,则右下方正方形的边长为,左下方正方形的边长为,左上方正方形的边长为,右上方正方形的边长为,根据长方形的对边相等可列方程2(1)(2)(4)(3)x x x x+++=+++,解这个方程得,∴长方形的长为13,宽为11,面积为243;2.∵△ADE中,AE=AD,∠ADE=75°,∴∠AED=75°(等边对等角)∴∠EAD=180°-75°×2=30°又∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴△ABE中,AB=AE,∠BAE=120°∴∠AEB=1(1802°°)30=°四、在周长一定的情况下,当长方形的长与宽的差的绝对值越小,长方形的面积越大,当长与宽相等时,长方形的面积最大.五、⑴证OE OC OF==;⑵AC的中点;⑶当O是AC的中点,且AC⊥BC时,四边形AECF 是正方形.。

中考数学专项复习命题点5 正方形的性质与判定(必考)

中考数学专项复习命题点5 正方形的性质与判定(必考)
第15题解图③
解法4:如解图④,过点 作 于点 ,交 于点 ,由点 是 的中点,得 , 分别是 , 的中点,由中位线得 ,得 ,由 ,得 ,则 .
第15题解图④
第16题图
16.[2023安徽]如图,点 在正方形 的对角线 上, 于点 ,连接 并延长,交边 于点 ,交边 的延长线于点 .若 , ,则 ( )
, , .
第10题图
10.[2023河北]如图,在 中, ,点 是斜边 的中点,以 为边作正方形 .若 ,则 ( )
A. B. C. 12 D. 16

【解析】 四边形 是正方形,又 , , (负值已舍),在 中,点 是斜边 的中点, ,即 ,在 中, , , .
第15题解图①
解法2:如解图②,延长 交 的延长线于点 ,易得 ,由 ,点 是 的中点,得 ,由 垂直平分 ,得 , , , ,则 , .
第15题解图②
解法3:如解图③,过点 作 交 于点 ,过点 作 于点 ,易得四边形 是矩形,在 中求得 ,在 中求得 ,则 .

第9题图
9.(优质原创)如图,在正方形 中, , 分别在边 , 上,且 为等边三角形,若 ,则 的长为_ ________.
第9题图
【解析】 设 与 的交点为 , 为等边三角形,四边形 为正方形, , , , , , , 垂直平分 , , ,
第13题图
13.如图, 是正方形 的对角线, 平分 交 的延长线于点 ,交 于点 ,则 的值为( )
A. B. C. 2 D.

【解析】 四边形 是正方形, , , , ,, 平分 , , , , , , , .
第2题图
2.(新中考)如图,平行四边形 的对角线互相垂直,要使 成为正方形,还需添加的一个条件是_ _______________________.(只需添加一个即可)

正方形的性质与判定专题练习

正方形的性质与判定专题练习

正方形专题训练(含答案)一.选择题(共11小题)1.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()2.)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a23.如图,F是正方形ABCD的边CD上的一个动点,BF 的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF 的度数是()A.45°B.50°C.60°D.不确定4.平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C .对角线相等D.对角线互相垂直且相等5.正方形的一条对角线长为4,则这个正方形的面积是()6.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°7.顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形B.矩形C.菱形D.正方形8.下列说法中,正确的是()A.相等的角一定是对顶角B.四个角都相等的四边形一定是正方形C.平行四边形的对角线互相平分D.矩形的对角线一定垂直9.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④10.如图,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()A.45°B.50°C.55°D.60°11.如图,菱形ABCD中,∠B=60°,AB=5,则以AC为边长的正方形ACEF的面积为()A.9B.16 C.20 D.25二.填空题(共5小题)12.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEB=_________度.13.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_________度.14.如图,四边形ABCD为正方形,△ADE为等边三角形.AC为正方形ABCD的对角线,则∠EAC=_________度.A.8B.4C.8D.1615.已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_________.16.如图所示,正方形ABCD 的周长为16cm,顺次连接正方形ABCD各边的中点,得到四边形EFGH,则四边形EFGH的周长等于_________cm,四边形EFGH的面积等于_________cm.三.解答题(共6小题)17.如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.18.如图,在正方形ABCD中,P是对角线AC上的一点,连接BP、DP,延长BC到E,使PB=PE.求证:∠PDC=∠PEC.19.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.20.在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.21.已知:如图,▱ABCD中,O是CD的中点,连接AO 并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=_________°时,四边形ACED是正方形?请说明理由.22.(2014•随州)已知:如图,在矩形ABCD中,M、N 分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB:AD=_________时,四边形MENF 是正方形.一.选择题(共11小题)1.(2014•南充)如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,),则点C 的坐标为( )A . (﹣,1) B . (﹣1,) C . (,1) D . (﹣,﹣1)考点: 全等三角形的判定与性质;坐标与图形性质;正方形的性质.专题:几何图形问题. 分析: 过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD 和△OCE 全等,根据全等三角形对应边相等可得OE=AD ,CE=OD ,然后根据点C 在第二象限写出坐标即可.解答: 解:如图,过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,∵四边形OABC 是正方形, ∴OA=OC ,∠AOC=90°, ∴∠COE+∠AOD=90°, 又∵∠OAD+∠AOD=90°, ∴∠OAD=∠COE, 在△AOD 和△OCE 中,,∴△AOD ≌△OCE (AAS), ∴OE=AD=,CE=OD=1,∵点C 在第二象限, ∴点C 的坐标为(﹣,1).故选:A .点评: 本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.2.(2014•山西)如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N .若正方形ABCD 的边长为a,则重叠部分四边形EMCN 的面积为( )A . a 2B . a 2C . a 2D . a 2考点:全等三角形的判定与性质;正方形的性质.专题:几何图形问题. 分析: 作EP ⊥BC 于点P ,EQ ⊥CD 于点Q ,△EPM ≌△EQN,利用四边形EMCN 的面积等于正方形MCQE 的面积求解.解答:解:作EP ⊥BC 于点P,EQ ⊥CD 于点Q ,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EN,四边形MCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形MCQE的面积, ∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形MCQE的面积=a ×a=a2,∴四边形EMCN的面积=a2,故选:D.点评:本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM≌△EQN.3.(2014•台州)如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是()A.45°B.50°C.60°D.不确定考点:全等三角形的判定与性质;正方形的性质.专题:几何图形问题.分析:过E作HI∥BC,分别交AB、CD于点H、I,证明Rt△BHE≌Rt△EIF,可得∠IEF+∠HEB=90°,再根据BE=EF即可解题.解答:解:如图所示,过E作HI∥BC,分别交AB、CD于点H、I,则∠BHE=∠EIF=90°,∵E是BF的垂直平分线EM上的点,∴EF=EB,∵E是∠BCD角平分线上一点,∴E到BC和CD的距离相等,即BH=EI,Rt△BHE和Rt△EIF中,,∴Rt△BHE≌Rt△EIF(HL),∴∠HBE=∠IEF , ∵∠HBE+∠HEB=90°, ∴∠IEF+∠HEB=90°, ∴∠BEF=90°, ∵BE=EF ,∴∠EBF=∠EFB=45°. 故选:A .点评: 本题考查了正方形角平分线和对角线重合的性质,考查了直角三角形全等的判定,全等三角形对应角相等的性质.4.(2014•郴州)平行四边形、矩形、菱形、正方形都具有的是( ) A . 对角线互相平分 B . 对角线互相垂直 C . 对角线相等 D . 对角线互相垂直且相等考点: 正方形的性质;平行四边形的性质;菱形的性质;矩形的性质.专题:证明题. 分析: 本题主要依据平行四边形、矩形、菱形、正方形都具有对角线相互平分的性质来判断.解答: 解:A 、对角线相等是平行四边形、矩形、菱形、正方形都具有的性质;B 、对角线互相垂直是菱形、正方形具有的性质;C 、对角线相等是矩形和正方形具有的性质;D 、对角线互相垂直且相等是正方形具有的性质. 故选:A .点评: 本题主要考查平行四边形、矩形、菱形、正方形的性质定理.5.(2014•来宾)正方形的一条对角线长为4,则这个正方形的面积是( )A . 8B . 4C . 8D . 16考点:正方形的性质.分析: 根据正方形的面积等于对角线乘积的一半列式计算即可得解.解答: 解:∵正方形的一条对角线长为4, ∴这个正方形的面积=×4×4=8.故选:A .点评: 本题考查了正方形的性质,熟记利用对角线求面积的方法是解题的关键.6.(2014•福州)如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )A . 45°B . 55°C . 60°D .75°考点: 正方形的性质;等腰三角形的性质;等边三角形的性质.分析: 根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC . 解答: 解:∵四边形ABCD 是正方形, ∴AB=AD又∵△ADE 是等边三角形, ∴AE=AD=DE,∠DAE=60° ∴AD=AE∴∠ABE=∠AEB ,∠BAE=90°+60°=150° ∴∠ABE=(180°﹣150°)÷2=15° 又∵∠BAC=45° ∴∠BFC=45°+15°=60°故选:C .点评: 本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.7.(2014•来宾)顺次连接菱形各边的中点所形成的四边形是( ) A . 等腰梯形 B . 矩形 C . 菱形D . 正方形考点:正方形的判定;三角形中位线定理;菱形的性质.分析:根据三角形的中位线定理以及菱形的性质即可证得. 解答: 解:∵E ,F 是中点, ∴EH ∥BD ,同理,EF ∥AC,GH ∥AC ,FG ∥BD , ∴EH ∥FG ,EF ∥GH ,则四边形EFGH 是平行四边形. 又∵AC ⊥BD , ∴EF ⊥EH ,∴平行四边形EFGH 是矩形. 故选:B .点评: 本题主要考查了矩形的判定定理,正确理解菱形的性质以及三角形的中位线定理是解题的关键.8.(2014•湘西州)下列说法中,正确的是( ) A . 相等的角一定是对顶角B . 四个角都相等的四边形一定是正方形C . 平行四边形的对角线互相平分D . 矩形的对角线一定垂直考点: 正方形的判定;对顶角、邻补角;平行四边形的性质;矩形的性质.分析: 根据对顶角的定义,正方形的判定,平行四边形的性质,矩形的性质对各选项分析判断利用排除法求解. 解答: 解:A 、相等的角一定是对顶角错误,例如,角平分线分成的两个角相等,但不是对顶角,故本选项错误;B 、四个角都相等的四边形一定是矩形,不一定是正方形,故本选项错误;C 、平行四边形的对角线互相平分正确,故本选项正确;D 、矩形的对角线一定相等,但不一定垂直,故本选项错误. 故选:C .点评: 本题考查了正方形的判定,平行四边形的性质,矩形的性质,对顶角的定义,熟记各性质与判定方法是解题的关键.9.(2014•株洲)已知四边形ABCD 是平行四边形,再从①AB=BC ,②∠ABC=90°,③AC=BD,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( ) A . 选①② B . 选②③ C . 选①③ D . 选②④考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形. 解答: 解:A 、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD 是正方形,正确,故本选项不符合题意;B 、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD 是正方形,错误,故本选项符合题意;C 、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD 是正方形,正确,故本选项不符合题意; D 、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD 是正方形,正确,故本选项不符合题意. 故选:B .点评: 本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.10.(2014•红桥区三模)如图,在正方形ABCD 中,CE=MN ,∠MCE=35°,那么∠ANM 等于( )A . 45°B .50° C .55° D .60°考点:全等三角形的判定与性质;正方形的性质. 分析: 过B 作BF ∥MN 交AD 于F,则∠AFB=∠ANM ,根据正方形的性质得出∠A=∠EBC=90°,AB=BC,AD ∥BC,推出四边形BFNM 是平行四边形,得出BF=MN=CE ,证Rt △ABF ≌Rt △BCE,推出∠AFB=∠ECB 即可.解答:解:过B 作BF ∥MN 交AD 于F , 则∠AFB=∠ANM , ∵四边形ABCD 是正方形,∴∠A=∠EBC=90°,AB=BC,AD ∥BC , ∴FN ∥BM,BE ∥MN ,∴四边形BFNM 是平行四边形, ∴BF=MN , ∵CE=MN , ∴CE=BF,在Rt △ABF 和Rt △BCE 中∴Rt △ABF ≌Rt △BCE (HL ), ∴∠AFB=∠ECB=35°, ∴∠ANM=∠AFB=55°, 故选C .点评: 本题考查了平行四边形的性质和判定,全等三角形的性质和判定,正方形的性质的应用,主要考查学生的推理能力.11.(2014•四会市一模)如图,菱形ABCD 中,∠B=60°,AB=5,则以AC 为边长的正方形ACEF 的面积为( )A . 9B . 16C . 20D . 25考点:菱形的性质;正方形的性质.分析: 据已知可求得△ABC 是等边三角形,从而得到AC=AB,从而求出正方形ACEF 的边长,进而可求出其面积.解答: 解:∵B=60°,AB=BC , ∴△ABC 是等边三角形,∴AC=AB=5,∴正方形ACEF 的边长为5, ∴正方形ACEF 的面积为25, 故选D .点评: 本题考查菱形与正方形的性质,属于基础题,对于此类题意含有60°角的题目一般要考虑等边三角形的应用.二.填空题(共5小题)12.(2009•江西模拟)如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠AEB= 15 度.考点:正方形的性质;等边三角形的性质. 分析: 由等边三角形的性质可得∠DAE=60°,进而可得∠BAE=150°,又因为AB=AE ,结合等腰三角形的性质,易得∠AEB 的大小.解答: 解:△ADE 是等边三角形;故∠DAE=60°, ∠BAE=90°+60°=150°,又有AB=AE,故∠AEB=30°÷2=15°; 故答案为15°.点评: 主要考查了正方形基本性质:①两组对边分别平行;四条边都相等;相邻边互相垂直;②四个角都是90°;③对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.13.(2008•佛山)如图,已知P 是正方形ABCD 对角线BD 上一点,且BP=BC,则∠ACP 度数是 22.5 度.考点: 正方形的性质.专题:计算题. 分析: 根据正方形的性质可得到∠DBC=∠BCA=45°又知BP=BC,从而可求得∠BCP 的度数,从而就可求得∠ACP 的度数. 解答: 解:∵ABCD 是正方形, ∴∠DBC=∠BCA=45°,∵BP=BC ,∴∠BCP=∠BPC=(180°﹣45°)=67。

【精编版】中考数学专题训练——正方形的判定和性质

【精编版】中考数学专题训练——正方形的判定和性质

中考专题训练——正方形的判定和性质1.如图,在矩形ABCD中,点E,F分别在边AB,BC上,AF⊥DE,且AF=DE,AF与DE相交于点G.(1)求证:矩形ABCD为正方形:(2)若AE:EB=2:1,△AEG的面积为4,求四边形BEGF的面积.2.已知:如图,边长为4的菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,BE=1,且DH⊥CE,垂足为H,DH与OC相交于点F,求线段OF的长.3.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.4.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.5.如图①,在正方形ABCD中,点E,F分别在AB、BC上,且AE=BF.(1)试探索线段AF、DE的数量关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图②中补全图形,并说明理由.6.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.7.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F 分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.8.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.9.平行四边形ABCD的对角线AC和BD交于O点,分别过顶点B,C作两对角线的平行线交于点E,得平行四边形OBEC.(1)如果四边形ABCD为矩形(如图),四边形OBEC为何种四边形?请证明你的结论;(2)如果四边形ABCD是正方形,四边形OBEC也是正方形吗?如果是,请给予证明;如果不是,请说明理由.10.如果P是正方形ABCD内的一点,且满足∠APB+∠DPC=180°,那么称点P是正方形ABCD的“对补点”.(1)如图1,正方形ABCD的对角线AC,BD交于点M,求证:点M是正方形ABCD 的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.11.已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.(1)求证:AE=CE;(2)若将△ABE沿AB翻折后得到△ABF,当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.12.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.13.在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(1,1).将一个最短边长大于的直角三角形纸片的直角顶点放在对角线FO上.(1)如图,当三角形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片与正方形OEFG重叠部分(即阴影部分)的面积为;(2)若三角形纸片的直角顶点不与点O,F重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),并画出此时的图形.14.(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.15.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.16.如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2,连接CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求CG的值.17.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.18.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)∠EAF=°(直接写出结果不写解答过程);(2)①求证:四边形ABCD是正方形.②若BE=EC=3,求DF的长.(3)如图(2),在△PQR中,∠QPR=45°,高PH=5,QH=2,则HR的长度是(直接写出结果不写解答过程).19.如图1,在正方形ABCD中,G为线段BD上一点,连接AG,过G作AG⊥GE交BC 于E,连接AE.(1)求证:BG=DG+BE;(2)如图2,AB=4,E为BC中点,P,Q分别为线段AB,AE上的动点,满足QE=AP,则在P,Q运动过程中,当以PQ为对角线的正方形PRQS的一边恰好落在△ABE 的某一边上时,直接写出正方形PRQS的面积.20.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.参考答案;1.如图,在矩形ABCD中,点E,F分别在边AB,BC上,AF⊥DE,且AF=DE,AF与DE相交于点G.(1)求证:矩形ABCD为正方形:(2)若AE:EB=2:1,△AEG的面积为4,求四边形BEGF的面积.【分析】(1)根据矩形的性质得∠DAB=∠B=90°,由等角的余角相等可得∠ADE=∠BAF,利用AAS可得△ABF≌△DAE(AAS),由全等三角形的性质得AD=AB,即可得四边形ABCD是正方形;(2)根据相似三角形面积的比等于相似比的平方即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴∠DAB=∠B=90°,∵DE⊥AF,∴∠DAB=∠AGD=90°,∴∠BAF+∠DAF=90°,∠ADE+∠DAF=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AD=AB,∵四边形ABCD是矩形,∴四边形ABCD是正方形;(2)解:∵△ABF≌△DAE,∴BF=AE,∵AE:EB=2:1,设AE=2x,EB=x,∴BF=AE=2x,AB=3x,∴AF==x,∵∠EAG=∠F AB,∠AGE=∠B=90°,∴△AEG∽△AFB,∴△AEG的面积:△AFB的面积=AE2:AF2=4x2:13x2=4:13,∵△AEG的面积为4,∴△AFB的面积为13,∴四边形BEGF的面积=13﹣4=9.2.已知:如图,边长为4的菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,BE=1,且DH⊥CE,垂足为H,DH与OC相交于点F,求线段OF的长.【分析】(1)由菱形的性质得出AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,得出∠BAD+∠ABC=180°,证出∠BAD=∠ABC,求出∠BAD=90°,即可得出结论;(2)由正方形的性质得出AC⊥BD,AC=BD,CO=AC,DO=BD,得出∠COB=∠DOC=90°,CO=DO,证出∠ECO=∠EDH,证明△ECO≌△FDO(ASA),即可得出结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)解:∵四边形ABCD是正方形,AB=BC=4,∴AC⊥BD,AC=BD=4,∴OB=CO=AC=2,DO=BD=2,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.∵BE=1,∴OE=OF=OB﹣BE=2﹣1.3.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.【分析】(1)连接GE,根据正方形的性质和平行线的性质得到∠AEG=∠CGE,根据菱形的性质和平行线的性质得到∠HEG=∠FGE,解答即可;(2)证明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,证明∠GHE=90°,根据正方形的判定定理证明.【解答】证明:(1)连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中,,∴Rt△HAE≌Rt△GDH(HL),∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形;4.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;(2)同(1)的方法判断出△ADE≌△CDG得到CG=AE,即:CE+CG=CE+AE=AC =6.【解答】解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为6,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在∴△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴CE+CG=CE+AE=AC=AB=×3=6是定值.5.如图①,在正方形ABCD中,点E,F分别在AB、BC上,且AE=BF.(1)试探索线段AF、DE的数量关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图②中补全图形,并说明理由.【分析】(1)根据已知利用SAS判定△DAE≌△ABF,由全等三角形的判定方法可得到AF=DE.(2)根据已知可得HK,KJ,IJ,HI都是中位线,由全等三角形的判定可得到四边形四边都相等且有一个角是直角,从而来可得到该四边形是正方形.【解答】解:(1)AF=DE.∵ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°,∵AE=BF,∴△DAE≌△ABF,∴AF=DE.(2)四边形HIJK是正方形.如下图,H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△DAE≌△ABF,∴∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠BAF+∠AED=90°,∴∠AOE=90°∴∠KHI=90°,∴四边形HIJK是正方形.6.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.【分析】(1)根据有三个角是直角的四边形是矩形证明四边形MANP是矩形,再根据角平分线的性质得:PM=PN,可得结论;(2)证明△EPM≌△BPN,可得结论.【解答】证明:(1)∵四边形ABCD是正方形,∴∠DAB=90°,AC平分∠DAB,(1分)∵PM⊥AD,PN⊥AB,∴∠PMA=∠PNA=90°,∴四边形MANP是矩形,(2分)∵AC平分∠DAB,PM⊥AD,PN⊥AB,∴PM=PN,(3分)∴四边形MANP是正方形;(4分)(2)∵四边形ABCD是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,(5分)在△EPM和△BPN中,∵,∴△EPM≌△BPN(ASA),(6分)∴EM=BN.(7分)7.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F 分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.【分析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.【解答】(1)证明:连接CD,如图1所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形;(2)解:过点D作DE′⊥AC于E′,如图2所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′=BC=2,AB=4,点E′为AC的中点,∴2≤DE<2(点E与点E′重合时取等号).∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.8.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;(2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=4即可.【解答】①证明:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵正方形ABCD∴∠BCD=90°,∠ECN=45°∴∠EMC=∠ENC=∠BCD=90°且NE=NC,∴四边形EMCN为正方形∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,②解:CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG∴AC=AE+CE=AB=×2=4,∴CE+CG=4 是定值.9.平行四边形ABCD的对角线AC和BD交于O点,分别过顶点B,C作两对角线的平行线交于点E,得平行四边形OBEC.(1)如果四边形ABCD为矩形(如图),四边形OBEC为何种四边形?请证明你的结论;(2)如果四边形ABCD是正方形,四边形OBEC也是正方形吗?如果是,请给予证明;如果不是,请说明理由.【分析】(1)由平行线可得四边形OBEC为平行四边形,又矩形对角线互相平分且相等,则可得四边形OBEC为菱形;(2)由平行线可得四边形OBEC为平行四边形,又正方形对角线互相垂直、平分且相等,则可得四边形OBEC为正方形.【解答】解:(1)四边形OBEC是菱形.证明:∵BE∥OC,CE∥OB,∴四边形OBEC为平行四边形.又∵四边形ABCD是矩形,∴OC=OB,∴平行四边形OBEC为菱形;(2)四边形OBEC是正方形.证明:∵BE∥OC,CE∥OB,∴四边形OBEC为平行四边形.又∵四边形ABCD是正方形,∴OC=OB,∠BOC=90°,∴平行四边形OBEC为正方形.10.如果P是正方形ABCD内的一点,且满足∠APB+∠DPC=180°,那么称点P是正方形ABCD的“对补点”.(1)如图1,正方形ABCD的对角线AC,BD交于点M,求证:点M是正方形ABCD 的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.【分析】(1)根据四边形ABCD是正方形,得到AC⊥BD,于是得到结论;(2)如图2,延长CD交y轴于E,延长CB交x轴于F,则四边形CEOF是正方形连接OC,EF交于P,推出A,C在直线y=x上,得到A在OC上,根据全等三角形的性质得到∠APD=∠APB,得到∠CPD+∠APB=180°,于是得到结论.【解答】解:(1)∵四边形ABCD是正方形,∴AC⊥BD,∴∠AMB=∠CMD=90°,∴∠AMB+∠CMD=180°,∴点M是正方形ABCD的对补点;(2)如图2,点P(,)是该正方形的对补点,延长CD交y轴于E,延长CB交x轴于F,则四边形CEOF是正方形连接OC,EF交于P,∵A(1,1),C(3,3),∴A,C在直线y=x上,∴A在OC上,在△APD与△APB中,,∴△APD≌△APB,∴∠APD=∠APB,∴∠DPE=∠BPF,∵∠EPC+∠APF=180°,∴∠CPD+∠APB=180°,∴P(,)是该正方形的对补点.11.已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.(1)求证:AE=CE;(2)若将△ABE沿AB翻折后得到△ABF,当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.【分析】(1)利用正方形的性质和SAS证明△ABE≌△CBE即可;(2)由折叠的性质得出∠F=∠AEB,AF=AE,BF=BE,由直角三角形斜边上的中线性质得出AE=BD=BE=DE,证出AE=BE=AF=BF,得出四边形AFBE是菱形,AE ⊥BD,即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠BAD=∠ABC=90°,∠ABE=∠CBE=45°,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE.(2)解:点E在BD的中点时,四边形AFBE是正方形;理由如下:由折叠的性质得:∠F=∠AEB,AF=AE,BF=BE,∵∠BAD=90°,E是BD的中点,∴AE=BD=BE=DE,∵BF=BE,∴AE=BE=AF=BF,∴四边形AFBE是菱形,E是正方形ABCD对角线的交点,∴AE⊥BD,∴∠AEB=90°,∴四边形AFBE是正方形.12.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.【分析】(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形,故可根据正方形的定义证明四边形PQEF是否使正方形.(2)证PE是否过定点时,可连接AC,证明四边形APCE为平行四边形,即可证明PE 过定点.【解答】解:(1)在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴BP=QC=ED=F A.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF.∴FP=PQ=QE=EF,∠APF=∠PQB.∴四边形PQEF是菱形,∵∠FPQ=90°,∴四边形PQEF为正方形.(2)连接AC交PE于O,∵AP平行且等于EC,∴四边形APCE为平行四边形.∵O为对角线AC的中点,∴对角线PE总过AC的中点.13.在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(1,1).将一个最短边长大于的直角三角形纸片的直角顶点放在对角线FO上.(1)如图,当三角形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片与正方形OEFG重叠部分(即阴影部分)的面积为;(2)若三角形纸片的直角顶点不与点O,F重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),并画出此时的图形.【分析】(1)S=OE•EF=;(2)如图,正方形GFEO的面积为1,当重合的面积为正方形GFEO的面积的一半时,有两种情况:①四边形OSCB的面积为时,易证得四边形ACDO为正方形,△ABC≌△DSC,有四边形OSCB的面积与正方形ACDO的面积相等,故有OD=OA=即点C的坐标为(,).②四边形FSCB的面积为时,易证得四边形ACDF为正方形,△ABC≌△DSC,有四边形FSCB的面积与正方形ACDO的面积相等,故有AD=F A=即点C的坐标为(1﹣,1﹣).【解答】解:(1)S=OE•EF=;(2)如图,正方形GFEO的面积为1,当重合的面积为正方形GFEO的面积的一半时,有两种情况:①四边形OSCB的面积为时,易证得四边形ACOD为正方形,△ABC≌△DSC,有四边形OSCB的面积与正方形ACOD的面积相等,故有OD=OA=即点C的坐标为(,).②四边形FSCB的面积为时,易证得四边形ACDF为正方形,△ABC≌△DSC,有四边形FSCB的面积与正方形ACDO的面积相等,故有FD=F A=即点C的坐标为(1﹣,1﹣).14.(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.【分析】(1)根据矩形的性质得出OD=OC,根据有一组对边平行且相等的四边形是平行四边形得出四边形CODP是平行四边形,根据菱形的判定推出即可;(2)根据菱形的性质得出∠DOC=90°,根据有一组对边平行且相等的四边形是平行四边形得出四边形CODP是平行四边形,根据矩形的判定推出即可;(3)根据正方形的性质得出OD=OC,∠DOC=90°,根据有一组对边平行且相等的四边形是平行四边形得出四边形CODP是平行四边形,根据正方形的判定推出即可;【解答】解:(1)四边形CODP的形状是菱形,理由是:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∴OC=OD,∵DP∥OC,DP=OC,∴四边形CODP是平行四边形,∵OC=OD,∴平行四边形CODP是菱形;(2)四边形CODP的形状是矩形,理由是:∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∵DP∥OC,DP=OC,∴四边形CODP是平行四边形,∵∠DOC=90°,∴平行四边形CODP是矩形;(3)四边形CODP的形状是正方形,理由是:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,OA=OC=AC,OB=OD=BD,∴∠DOC=90°,OD=OC,∵DP∥OC,DP=OC,∴四边形CODP是平行四边形,∵∠DOC=90°,OD=OC∴平行四边形CODP是正方形.15.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,【分析】根据正方形的判定定理证明即可;(2)通过计算发现E是AC中点,点F与C重合,△CDG是等腰直角三角形,由此即可解决问题.(3)分两种情形考虑问题即可;【解答】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,点F在BC边上,∠ADE=30°,则∠CDE=90°﹣30°=60°,在四边形CDEF中,由四边形内角和定理得:∠EFC=360°﹣90°﹣90°﹣60°=120°,②当DE与DC的夹角为30°时,点F在BC的延长线上,∠CDE=30°,如图3所示:∵∠HCF=∠DEF=90°,∠CHF=∠EHD,∴∠EFC=∠CDE=30°,综上所述,∠EFC=120°或30°.16.如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2,连接CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求CG的值.【分析】(1)由于四边形ABCD为矩形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;(2)过F作FM⊥DC于M,根据AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,利用三角形面积解答即可.【解答】(1)证明:在矩形ABCD中,有∠A=∠D=90°,∴∠DGH+∠DHG=90°.在菱形EFGH中,EH=GH∵AH=2,DG=2,∴AH=DG,∴Rt△AEH≌Rt△DHG(HL).∴∠AHE=∠DGH.∴∠AHE+∠DHG=90°.∴∠EHG=90°.∴四边形EFGH是正方形.(2)过F作FM⊥DC于M,则∠FMG=90°.∴∠A=∠FMG=90°.连接EG.由矩形和菱形性质,知AB∥DC,HE∥GF,∴∠AEG=∠MGE,∠HEG=∠FGE,∴∠AEH=∠MGF.∵EH=GF,∴△AEH≌△MGF.∴FM=AH=2.∵S△FCG=,∴CG=2.17.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.【分析】(1)由于四边形ABCD为矩形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,由于AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,从而有FM=HA=2(即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2),进而可求三角形面积;(3)先设DG=x,由第(2)小题得,S△FCG=7﹣x,在△AHE中,AE≤AB=7,利用勾股定理可得HE2≤53,在Rt△DHG中,再利用勾股定理可得x2+16≤53,进而可求x ≤,从而可得当x=时,△GCF的面积最小.【解答】解:(1)∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,∴四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此;(3)设DG=x,则由第(2)小题得,S△FCG=7﹣x,在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,∴x≤,∴S△FCG的最小值为,此时DG=,∴当DG=时,△FCG的面积最小为().18.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)∠EAF=45°(直接写出结果不写解答过程);(2)①求证:四边形ABCD是正方形.②若BE=EC=3,求DF的长.(3)如图(2),在△PQR中,∠QPR=45°,高PH=5,QH=2,则HR的长度是(直接写出结果不写解答过程).【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠AEF+∠AFE=(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD 是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD =6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ =2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR中,由勾股定理得出方程,解方程即可.【解答】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=DFE,∠AEF=BEF,∴∠AEF+∠AFE=(∠DFE+∠BEF)=270°=135°,∴∠EAF=180°﹣∠AEF﹣∠AFE=45°,故答案为:45;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,∵AB⊥CE,AD⊥CF,∴∠B=∠D=90°=∠C,∴四边形ABCD是矩形,∵∠CEF,∠CFE外角平分线交于点A,∴AB=AG,AD=AG,∴AB=AD,∴四边形ABCD是正方形;②设DF=x,∵BE=EC=3,∴BC=6,由①得四边形ABCD是正方形,∴BC=CD=6,在Rt△ABE与Rt△AGE中,,∴Rt△ABE≌Rt△AGE(HL),∴BE=EG=3,同理,GF=DF=x,在Rt△CEF中,EC2+FC2=EF2,即32+(6﹣x)2=(x+3)2,解得:x=2,∴DF的长为2;(3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=,即HR=;故答案为:.19.如图1,在正方形ABCD中,G为线段BD上一点,连接AG,过G作AG⊥GE交BC 于E,连接AE.(1)求证:BG=DG+BE;(2)如图2,AB=4,E为BC中点,P,Q分别为线段AB,AE上的动点,满足QE=AP,则在P,Q运动过程中,当以PQ为对角线的正方形PRQS的一边恰好落在△ABE 的某一边上时,直接写出正方形PRQS的面积.【分析】(1)过点G作GN⊥BC于点N,作GM⊥AB于点M,过点E作EF⊥BC,交BD于点F,先证明△AGM≌△EGN(ASA),从而AM=EN,再利用DG=BD﹣BG=AB﹣BM=AM,FG=BG﹣BF=BN﹣BE=EN,得出DG=FG,则BG =BF+FG=DG+BE;(2)分五种情况讨论,以点B为原点,BC所在直线为x轴,BA所在直线为y轴建立平面直角坐标系,分别求得AE和PQ的解析式,二者联立解得用含m的式子表示的点Q 的坐标,在Rt△QEF中,由勾股定理得出QE的表达式,然后结合QE=AP得出关于m的方程,解得m的值,则可得点Q的横坐标,从而可得正方形PRQS的面积,利用锐角三角函数和线段的和差关系列出方程,可求正方形的边长,即可求解.【解答】解:(1)证明:过点G作GN⊥BC于点N,作GM⊥AB于点M,过点E作EF ⊥BC,交BD于点F,如图所示:∵四边形ABCD是正方形,BD是对角线,∴BF=BE,GM=GN,∵AG⊥GE,GN⊥BC,GM⊥AB,∴∠AMG=∠ENG=90°,∠AGM+∠MGN=∠EGN+∠MGN,∴∠AGM=∠EGN,∴在△AGM和△EGN中,,∴△AGM≌△EGN(ASA),∴AM=EN,∵DG=BD﹣BG=AB﹣BM=AM,FG=BG﹣BF=BN﹣BE=EN,∴DG=FG,∴BG=BF+FG=DG+BE;(2)①若正方形PRQS的一边恰好落在AB上,如图2:当点P在点R的上方,∵AB=4,E为BC中点,∴A(0,4),E(2,0),设AE的解析式为y=kx+4,将(2,0)代入得:0=2k+4,∴k=﹣2,∴y=﹣2x+4,∵PQ与AB的夹角为45°,∴设PQ的解析式为y=﹣x+m,则P为(0,m),|AP|=4﹣m,由解得:Q(4﹣m,2m﹣4),过Q作QF⊥BC,则QF=2m﹣4,EF=m﹣2,∴在Rt△QEF中,由勾股定理得:QE==(m﹣2).∵QE=AP,∴(m﹣2)=(4﹣m),∴m=3,∴4﹣m=1,∴正方形PRQS的面积为1.如图2﹣1,当点P在点R的下方,∵tan∠RAQ==,∴AR=2RQ,∴AP=AR+RP=3RQ,∴AQ==RQ,∵BE=2,AB=4,∴AE===2,∵QE=AP,∴QE=3RQ,∴3RQ+RQ=2,∴RQ=,∴正方形PRQS的面积为.②当正方形PRQS的一边落在AE上,如图2﹣2,∵tan∠P AQ==,∴AS=2PS,∴AP==PS,∵QE=AP,∴QE=5PS,∵AE=AS+SQ+QE=2,∴2PS+PS+5PS=2,PS=,∴正方形PRQS的面积为,如图2﹣3,同理可得:AE=AR+RE=AR+QE﹣QR=(5+1)RP=2,∴PR=,∴正方形PRQS的面积为,当正方形PRQS与BC重合时,如图2﹣4,∵tan∠BAE==,∴AS=2SQ,∴AP=AS+SP=3SQ,∵sin∠AEB===,∵QE=QR,∴QE≠AP,∴这种情况不存在,故舍去,综上所述:正方形PRQS的面积为或1或或.20.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,【分析】根据正方形的判定定理证明即可;(2)通过计算发现E是AC中点,点F与C重合,△CDG是等腰直角三角形,由此即可解决问题.(3)分两种情形考虑问题即可;【解答】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中,AC=AB=4,∵EC=2,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=2;(3)①如图3,当DE与AD的夹角为40°时,∠DEC=45°+40°=85°,∵∠DEF=90°,∴∠CEF=5°,∵∠ECF=45°,∴∠EFC=130°,②如图4,当DE与DC的夹角为40°时,∵∠DEF=∠DCF=90°,∴∠EFC=∠EDC=40°,。

正方形的性质及判定典型题(精选)

正方形的性质及判定典型题(精选)

、正方形的性质例1】正方形有条对称轴.例2】已知正方形BD EF 的边长是正方形ABCD 的对角线,则S正方形BDEF :S正方形ABCD例3】如图,已知正方形ABCD 的面积为256 ,点 F 在CD 上,点 E 在CB 的延长线上,且AE AF ,AF 20,则BE 的长为例4】如图,在正方形ABCD 中, E 为AB 边的中点,G , F 分别为AD ,BC 边上的点,若AG 1,BF 2 ,GEF 90 ,则GF 的长为.例5】将n 个边长都为1cm 的正方形按如图所示摆放,点A1,A2,...,A n分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为如图,正方形 ABCD 中, O 是对角线 A C ,B D 的交点,过点 O 作OE OF ,分别交 AB ,CD 于 E ,F ,若 AE 4,CF 3,则 EF如图,正方形 ABCD 的边长为 2cm ,以 B 为圆心, BC 长为半径画弧交对角线 BD 于点E ,连接C E , P 是C E 上任意一点, PM BC 于M ,PN BD 于N ,则PM PN 的值为如图所示,正方形 ABCD 对角线 AC 与BD 相交于 O ,MN ∥ AB ,且分别与 AO 、BO 交于 M 、N .试探讨 BM 与CN 之间的关系,写出你所得到的结论的证明过程.例 6】例 7】 例 8】 如图, E 是正方形 ABCD对角线 BD 上的一点,求证: AE C E . 例 9】 如图, P 为正方形ABCD对角线上一点, PE BC 于E ,PF CD 于F .求证: AP EF. 例 10】例 11】如图,已知 P 是正方形 ABCD 内的一点,且 ABP 为等边三角形,那么 DCP例 13】如图,已知 E 、 F 分别是正方形 ABCD 的边 BC 、 CD 上的点,AE于M 、N ,若 EAF 50 ,则 CME CNF例 14】 如图,四边形 ABCD 为正方形,以 AB 为边向正方形外作正方形则AF D例 12】 已知正方形 ABCD ,在AD 、 等腰直角三角形. AC 上分别取 E 、 F 两点,使 ED∶AD 2FC∶AC ,求证: BEF 是AF 分别与对角线 BD 相交ABE , CE 与 BD 相交于点 F ,D CB例15】如果点 E 、F 是正方形ABCD 的对角线BD 上两点,且BEDF 吗?并阐明理由.DF DE .D N AN ,求证KL M N ,K L M N例16】如图,正方形ABCD 中,在AD 的延长线上取点交CD ,CE 于H ,G .求证:GHD 是等腰三角形.例17】如图,过正方形顶点A 引AE ∥ BD连结BF 分别E ,F ,使DE AD , D F BD,且 B E BD .若BE 与AD 的延长线的交点为F ,求证,你能判断四边形AECF 的形状例18】如图所示,在正方形ABCD 中,AK 、AN 是 A 内的两条射线,BK AK ,BL AN ,D M AK ,D C第 5 页 共 10 页例19】如图,正方形 ABCD 的边 CD 在正方形 ECGF 的边CE 上,连接 BE , D G ,求证: BE DG .例 20】 ( 2007 年三帆中学期中考试)如图,在正方形 上的一点, CE CF , FD C 30 ,求 BEFABC D 中, 的度数 . E 为 CD 边上的一点,AF 为 BC 延长线DEBC F例21】已知:如图,在正方形 ABCD 中,G 是CD 上一点,延长 BC到E ,使CE CG ,连接 BG 并延 长交 D E 于 F .(1)求BC G ≌ D CE ;2)将 △ DCE 绕点 D 顺时针旋转 90 得到 DAE ,判断四边形 E BG D 是什么特殊四边形?并说明 理由.例22】若正方形 ABCD 的边长为 4,E 为BC 边上一点, BE 3,M 为线段 AE 上一点,射线 BM 交正 方形的一边于点 F ,且 BF AE ,则 BM 的长为 .例 23】如图 1,在正方形 ABCD 中, E 、 F 、 G 、 H 分别为边 AB 、 BC 、 CD 、 D A 上的点,HA EB FC GD ,连接 EG 、FH ,交点为 O .⑴ 如图 2,连接 EF ,FG ,GH ,H E ,试判断四边形 EFGH 的形状,并证明你的结论;⑵ 将正方形 ABCD 沿线段 EG 、HF 剪开,再把得到的四个四边形按图例 26】如图,正方形 ABCD 中, E ,F 是 AB ,BC 边上两点,且 EF AE FC ,DG EF 于 G ,求证:3 的方式拼接成一个 四边形.若正方形 ABCD 的边长为 3 cm ,H A EB FC GD 1cm ,则图 3 中阴影部分的面 积为 2cm例24】如图,正方形 ABCD 对角线相交于点 O ,点 P 、Q 分别是 BC CD 上的点, A Q D P ,求证:1)OP OQ ;(2)O P OQ. 例25】如图,在正方形 ABCD 中, E 、F 分别是 AB 、BC 的中点,求证:AM ADA EB 图2D G C图AD例27】如图,点 M ,N 分别在正方形 ABCD 的边 BC ,CD 上,已知 MCN 的周长等于正方形 ABCD 周长的一半,求 M AN 的度数例28】如图,设 EF ∥ 正方形 ABCD 的对角线 AC ,在D A 延长线上取一点 G ,使 AG AD ,EG 与DF交于 H ,求证: AH 正方形的边长.例29】把正方形 ABCD 绕着点 A ,按顺时针方向旋转得到正方形 AEFG ,边 FG 与 BC 交于点 H(如 图).试问线段 HG 与线段 HB 相等吗?请先观察猜想,然后再证明你的猜想.例30】如图所示,在直角梯形 ABCD 中, AD∥ BC , ADC 90 ,l 是 AD 的垂直平分线,交 AD 于点M ,以腰 AB 为边作正方形 ABFE ,作 EP l 于点 P ,求证 2EP AD 2CD.Fl例33】如图,已知平行四边形 ABCD 中,对角线 AC 、BD 交于点 O ,E 是BD 延长线上的点,且 ACE是等边三角形.⑴ 求证:四边形 ABCD 是菱形;⑵ 若 AED 2 EAD ,求证:四边形 ABCD 是正方形.例31】如图所示, A BC D 是正方形, E 为B F 上的一点,四边形 AEFC 恰好是一个菱形,、正方形的判定四边形 ABC D 的四个内角的平分线两两相交又形成一个四边形 ⑴四边形 EFG H 对角互补;⑵若四边形 ABCD 为平行四边形,则四边形 EFG H 为矩形. ⑶四边形 ABCD 为长方形,则四边形 EF GH 为正方形.例 32】EF GH ,求证:D则 EAB __________AB例34】已知:如图,在ABC 中,AB AC ,AD BC ,垂足为点 D ,AN 是ABC 外角CAM 的平分线,CE AN ,垂足为点 E .⑴ 求证:四边形AD CE 为矩形;⑵ 当ABC 满足什么条件时,四边形AD CE 是一个正方形?并给出证明.l例 35】如图,点 M 是矩形 ABCD 边 AD 的中点, 2AB AD ,点 P 是 BC 边上一动点, PE M C ,PF BM ,垂足分别为 E 、 F ,求点 P 运动到什么位置时,四边形 PEM F 为正方形.例36】如图, ABCD 是边长为 1的正方形, EFGH 是内接于 ABCD 的正方形, AE a ,AF b ,若 SEFGH 3,则b a =例37】如图, A 在线段 BG 上, ABCD 和 DEFG 都是正方形,面积分别为7cm 2和11cm 2,则 CDE的面积为例 38】如图,在正方形 ABCD 中,点 P ,P 1为正方形内的两点,且 PB PD ,P 1B AB , CBP P 1BP ,则 B P 1PDE第 11 页 共 10 页例40】已知: PA 2,PB 4,以 AB 为一边作正方形 ABCD ,使 P 、D 两点落在直线 AB 的两侧.(1)如图,当∠ APB= 45 °时,求 AB 及 PD 的长;( 2)当∠ APB 变化,且其它条件不变时,求 PD 的最大值,及相应∠ APB 的大小 .D C例 39】 如图,若在平行四边形 顶点组成一个正方形. ABC D 各边上向平行四边形的外侧作正方形,求证:以四个正方形中心为A DM。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正方形第一课时一、自主学习●目标导学1、理解并掌握正方形的性质。

2、通过自学、合作、交流培养自己分析问题解决问题的能力。

●合作探究【探究一】正方形的定义1、正方形的定义:2、正方形与矩形和菱形的关系是【探究二】正方形的性质1、归纳正方形的性质:边角对角线对称性2、用几何语言叙述正方形的性质:【探究三】正方形的周长与面积边讲边练:①正方形与等腰三角形(等边三角形)结合1. 如图,E是正方形ABCD的对角线BD上一点,且BE=BC,则∠ACE=°2. 如图,四边形ABCD是正方形,延长CD到E,使CE=CB,则∠DBE=°.3. 如图,正方形ABCD中,点E在BC的延长线上,AE平分∠DAC,则下列结论:(1)∠E=22.5°;(2) ∠AFC=112.5°;(3) ∠ACE=135°;(4)AC=CE;(5) AD∶CE=1∶ 2. 其中正确的有()A.5个 B.4个 C.3个 D.2个4. 如图,等边△EDC在正方形ABCD内,连结EA、EB,则∠AEB=°;∠ACE=°.5.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是°.②正方形与旋转结合1.如图1,四边形ABCD是正方形,E是边CD上一点,若△AFB经过逆时针旋转角θ后与△AED重合,则θ的取值可能为()A.90°B.60°C.45°D.30°2.已知正方形ABCD中,点E在边DC上,DE = 2,EC = 1(如图2所示)把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为___________.3. 如图3,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证:DE+BF=EF.③正方形对角线的对称性1. 如图:正方形ABCD中,AC=10,P是AB上任意一点,PE⊥AC于E,PF⊥BD于F,则PE+PF= .可以用一句话概括:正方形边上的任意一点到两对角线的距离之和等于.思考:如若P在AB的延长线时,上述结论是否成立?若不成立,请写出你的结论,并加以说明.2.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP =EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD= 2EC.其中正确结论的序号是.思考:当点P在DB的长延长线上时,请将备用图补充完整,并思考(1)正确结论是否依旧成立?若成立,直接写出结论;若不成立,请写出相应的结论.④正方形的折叠1.如图1,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是 .2. 如图2,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B '处,点A 对应点为A ',且C B '=3,则AM 的长是 .3如图3,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是 .课后练习1、已知:如图,正方形ABCD 中,CM =CD ,MN ⊥AC ,连结CN ,则∠DCN =_____=____∠B ,∠MND =_______=_______∠B.2.在正方形ABCD 中,AB =12 cm ,对角线AC 、BD 相交于O ,则△ABO 的周长是( )A.12+122B.12+62C.12+2D.24+623.正方形的面积是31,则其对角线长是________. 4. 如图,在正方形ABCD 中,△PBC 、△QCD 是两个等边三角形,PB 与DQ 交于M ,BP 与CQ 交于E ,CP 与DQ 交于F .求证:PM = QM .P5. 如图4,正方形ABCD的对角线AC、BD相交于点O,正方形A′B′C′D′的顶点A′与点O 重合,A′B′交BC于点E,A′D′交CD于点F,若正方形A′B′C′D′绕点O旋转某个角度后,OE=OF吗?两正方形重合部分的面积怎样变化?为什么?6.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.试判断PE与PB的关系.7. 如图,正方形ABCD的面积为12,△ADE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PB+PE的和最小,则这个最小值为.8.如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.(1)如图②,若M为AD边的中点,①△AEM的周长=_____cm;②求证:EP=AE+DP;(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.正方形第二课时一、自主学习●目标导学1、理解并掌握正方形的判定方法。

2、通过合作、探究、交流培养自己分析问题和解决问题的能力。

二、合作学习●合作探究根据正方形的定义如何判定一个四边形为正方形?练一练:1、判断:(1)四条边都相等的四边形是正方形。

()(2)两条对角线相等且互相垂直的四边形是正方形。

()(3)两条对角线分别平分一组对角的四边形是正方形。

()(4)两条对角线互相垂直的矩形是正方形。

()2.不能判定四边形是正方形的是()A.对角线互相垂直且相等的四边形 B.对角线互相垂直的矩形C.对角线相等的菱形 D.对角线互相垂直平分且相等的四边形3、四边形ABCD的对角线相交于点O,能判定它是正方形的条件是()A.AB=BC=CD=DA B.AO=CO,BO=DO,AC⊥BDC.AC=BD,AC⊥BD且AC、BD互相平分 D.AB=BC,CD=DA4、如图,已知四边形ABCD是菱形,则只须补充条件:(用字母表示)就可以判定四边形ABCD是正方形.精讲精练例1、已知Rt ABC 中,90C ∠=︒,CD 平分ACB ∠,交AB 于D ,DF//BC,DE//AC ,求证:四边形DECF 为正方形。

例2、已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E ,(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.例3如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形.(1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.DBAO A MNE例4、如图,△ABC 中,点O 是AC 边上一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于E ,交∠BCA 的外角平分线于点F .(1)求证:EO =FO(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(3) 当点O 运动到何处时,四边形AECF 是有可能是正方形?并证明你的结论.拓展探究(平行四边形与特殊平行四边形的综合运用)1、如图,正方形ABCD 中,E 、F 、G 分别是AD 、AB 、BC 上的点,且AE=FB=GC 。

试判断EFG 的形状,并说明理由。

2、如图,在正方形ABCD 中,P 为BC 上一点,Q 为CD 上一点,(1)若PQ=BP+DQ ,求PAQ ∠。

(2)若45PAQ ∠=︒,求证:PQ=BP+DQ.3、如图,菱形ABCD的边长为2,对角线BD=2,E、F分别是AD、CD上的动点,且满足≅.(2)判断BEF的形状。

AE+CF=2.(1)求证:BDE BCF(11 舟山)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.∠例1、在正方形ABCD的边BC的延长线上取一点E,使CE=CA,连接AE交CD于F,求AFD 的度数。

变式:1、已知如下图,正方形ABCD中,E是CD边上的一点,F为BC延长线上一点,CE=CF.(1)求证:△BEC≌△DFC;(2)若∠BEC=60°,求∠EFD的度数.例2:如图,E为正方形ABCD的BC边上的一点,CG平分∠DCF,连结AE,并在CG上取一点G,使EG=AE.求证:AE⊥EG.例3、P为正方形ABCD内一点,PA=1,PB=2,PC=3,求∠APB的度数.例4如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;1、如图,四边形ABCD 为正方形,以AB 为边向正方形外作等边三角形ABE ,CE 与DB 相交于点F ,则AFD = 。

2、(哈尔滨)若正方形ABCD 的边长为4,E 为BC 边上一点,BE=3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF=AE ,则BM 的长为 。

4.E 为正方形ABCD 内一点,且△EBC 是等边三角形,求∠EAD 的度数.5、如图,正方形ABCD 与正方形OMNP 的边长均为10,点O 是正方形ABCD 的中心,正方形OMNP 绕O 点旋转,证明:无论正方形OMNP 旋转到何种位置,这两个正方形重叠部分的面积总是一个定值,并求这个定值.ABC P DE6、(2008义乌)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.7、(大连)(1)如图,已知正方形ABCD和正方形CGEF(CG>BC),B、C、G在同一直线上,M为线段AE的中点。

相关文档
最新文档