正方形的性质与判定练习题

合集下载

18.2.3正方形的性质与判定练习题

18.2.3正方形的性质与判定练习题
~
第12题图 第13题图
13、边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB′C′D′,两图叠成一个“蝶形风筝”(如图所示重叠部分),则这个风筝的面积是.
14、如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;
如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状是;(直接写出结果)
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC= (0°< <90°),
① 试用含 的代数式表示∠HAE;
② 求证:HE=HG;
③ 四边形EFGH是什么四边形并说明理由.
(2)如图(2),若将正方形CGEF绕点C逆时针旋转 ,使得正方形CGEF对角线CE在正方形ABCD的边BC的延长线上, M为AE的中点。试问:(1)中探究的结论是否还成立若成立,请证明,若不成立,请说明理由。

图1 图2
!
17、以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点,得四边形EFGH.
4、如图,等边△EDC在正方形ABCD内,连结EA、EB,则∠AEB=°;∠ACE=°.

5、已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是°.
6、如图,四边形ABCD是正方形,E是边CD上一点,若△AFB经过逆时针旋转角θ(0°<θ<180°)后,与△AED重合,则θ值为°.
第6题图 第7题图 第8题图 第9题图
`
6、如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB与DQ交于M,BP与CQ交于E,CP与DQ交于F.求证:PM = QM.

正方形的性质和判断

正方形的性质和判断

正方形温故知新1. 如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD2. 如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.课前热身1. 在四边形中,能判定这个四边形是正方形的条件是()A.对角线相等,对边平行且相等B.一组对边平行,一组对角相等C.对角线互相平分且相等,对角线互相垂直D.一组邻边相等,对角线互相平分2. 已知:如图,在Rt△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为E、F,求证:四边形CFDE是正方形.遗漏分析1.对正方形的性质不熟悉;2.对正方形和菱形、矩形的转换关系不清楚.知识精讲精讲:正方形定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.性质:正方形是特殊的矩形和菱形,所以正方形既具有矩形的性质,又有菱形的性质.按边、角、对角线分类,正方形的性质有:①正方形的四个角都是直角;②正方形的四条边都相等;③正方形的两条对角线相等,并且互相垂直平分,每条对角线相等,并且互相垂直平分,每条对角线平分一组对角;④正方形是轴对称图形,它有四条对称轴,分别是过对边中点的直线和两条对角线所在的直线.判定方法:①平行四边形+一组邻边相等+一个角为直角(定义法);②矩形+一组邻边相等;③矩形+对角线互相垂直;④菱形+一个角为直角;⑤菱形+对角线相等.例:下列判断错误的是()A.对角线相等四边形是矩形B.对角线相互垂直平分四边形是菱形C.对角线相互垂直且相等的平行四边形是正方形D.对角线相互平分的四边形是平行四边形巩固练习1. 在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形2. 如图,在正方形ABCD的外侧,作等边三角形AEB,则∠AED为()A.10°B.15°C.20°D.125°3. 在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF,则下列结论中错误的是()A.∠AFB+∠BEC=90°B.AF⊥BE C.∠DAF=∠BEC D.BE=AF4. 正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.35. 平行四边形、矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直平分且相等5. 如图,四边形ABCD中,∠ABC=∠BCD=∠CDA=90°,请添加一个条件,可得出该四边形是正方形.课堂小结补充:正方形:正方形的性质=矩形的性质+菱形的性质;矩形的判定条件+菱形的判定条件=正方形的判定条件.强化提升1. 顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形 B.矩形 C.菱形 D.正方形2. 已知正方形的边长为2cm,则其对角线长是()A.4cm B.8cm C.cm D.2cm3. 正方形面积为36,则对角线的长为()A.6 B. C.9 D.4. 如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.A.30°B.45°C.60°D.90°5. 将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠C=90°时,测得AC=2,当∠C=120°时,如图2,AC=()A.2 B.C.D.课后作业【第1天】1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的()A.当AB=BC时,它是菱形B.当∠ABC=90°时,它是矩形C.当AC⊥BD时,它是正方形D.当AC=BD时,它是矩形2. 有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:93. 如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.【第7天】1. 如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为()A.B.3C.5 D.62. 如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.【第15天】1. 如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是()A.75°B.60°C.54°D.67.5°2. 如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.【第28天】1. 下列命题中,不成立的是()A.等腰梯形的两条对角线相等B.菱形的对角线平分一组对角C.顺次连接四边形的各边中点所得的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形2. 如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个3. 如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P 作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【阶段检测】1. 用两块完全相同的直角三角形拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,一定能拼成的图形是( )A .①④⑤B .②⑤⑥C .①②③D .①②⑤2. 正方形ABCD 的对角线AC 的长是12cm ,则边长AB 的长是( )A.62B.122 C .6 D .83. 如图,已知正方形的面积为25,且AC 比AB 小1,BC 的长为( )A .3B .4C .5D .64. 下列说法中,正确的是( )A .等腰梯形的对角线互相垂直B .菱形的对角线相等C .矩形的对角线互相垂直D .正方形的对角线互相垂直且相等5. 如图,若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k 的值为( )A .6B .8C .10D .126. 如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD 的面积是18,则DP的长是.7. 如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若添加条件,则四边形AEDF是矩形;(3)若添加条件,则四边形AEDF是菱形;(4)若添加条件,则四边形AEDF是正方形.。

正方形的性质与判定【十大题型】(举一反三)(浙教版)(原卷版)

正方形的性质与判定【十大题型】(举一反三)(浙教版)(原卷版)

专题5.3 正方形的性质与判定【十大题型】【浙教版】【题型1 正方形的性质(求角的度数)】 (1)【题型2 正方形的性质(求线段的长度)】 (3)【题型3 正方形的性质(求面积、周长)】 (4)【题型4 正方形的性质(探究数量关系)】 (6)【题型5 判定正方形成立的条件】 (10)【题型6 正方形判定的证明】 (12)【题型7 正方形的判定与性质综合】 (16)【题型8 探究正方形中的最值问题】 (19)【题型9 正方形在坐标系中的运用】 (20)【题型10 正方形中的多结论问题】 (23)【题型1 正方形的性质(求角的度数)】【例1】(2022春•建阳区期中)如图,在正方形ABCD中有一个点E,使三角形BCE是正三角形,求:(1)∠BAE的大小(2)∠AED的大小.【变式1-1】如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并猜测∠FCN的度数,并说明理由.【变式1-2】(2022•武威模拟)如图,在正方形ABCD中,点E是对角线AC上的一点,点F在BC的延长线上,且BE=EF,EF交CD于点G.(1)求证:DE=EF;(2)求∠DEF的度数.【变式1-3】(2022春•新市区校级期末)如图,在给定的正方形ABCD中,点E从点B出发,沿边BC方向向终点C运动,DF⊥AE交AB于点F,以FD,FE为邻边构造平行四边形DFEP,连接CP,则∠DFE+∠EPC的度数的变化情况是()A.一直减小B.一直减小后增大C.一直不变D.先增大后减小【题型2 正方形的性质(求线段的长度)】【例2】(2022春•牡丹江期末)如图,正方形ABCD的边长为10,点E,F在正方形内部,AE=CF=8,BE=DF=6,则线段EF的长为()A.2√2B.4C.4−√2D.4+√2【变式2-1】(2022春•巴南区期末)如图,四边形ABCD是边长为4的正方形,点E在边CD上,且DE =1,作EF∥BC分别交AC、AB于点G、F,P、H分别是AG,BE的中点,则PH的长是()A.2B.2.5C.3D.4【变式2-2】(2022•越秀区一模)将正方形ABCD与正方形BEFG按如图方式放置,点F、B、C在同一直线上,已知BG=√2,BC=3,连接DF,M是DF的中点,连接AM,则AM的长是()A.√102B.√3C.√132D.32【变式2-3】(2022春•吴中区校级期末)如图,在正方形ABCD中,AB=4√5.E、F分别为边AB、BC的中点,连接AF、DE,点N、M分别为AF、DE的中点,连接MN,则MN的长度为.【题型3 正方形的性质(求面积、周长)】【例3】(2022春•鄞州区期末)有两个正方形A,B.现将B放在A的内部得图甲,将A,B构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B得图丙,则阴影部分的面积为()A.28B.29C.30D.31【变式3-1】(2022春•工业园区校级期中)如图,四边形ABCD为正方形,O为AC、BD的交点,△DCE 为Rt△,∠CED=90°,OE=2√2,若CE•DE=3,则正方形ABCD的面积为()A.5B.6C.8D.10【变式3-2】(2022•台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.【变式3-3】(2022•江北区一模)如图,以Rt△ABC的各边为边分别向外作正方形,∠BAC=90°,连结DG,点H为DG的中点,连结HB,HN,若要求出△HBN的面积,只需知道()A.△ABC的面积B.正方形ADEB的面积C.正方形ACFG的面积D.正方形BNMC的面积【题型4 正方形的性质(探究数量关系)】【例4】(2022秋•中原区校级月考)如图,线段AB=4,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE 与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)请直接写出△AEF的周长.【变式4-1】(2022春•雁塔区校级期末)在正方形ABCD中,∠MAN=45°,该角可以绕点A转动,∠MAN的两边分别交射线CB,DC于点M,N.(1)当点M,N分别在正方形的边CB和DC上时(如图1),线段BM,DN,MN之间有怎样的数量关系?你的猜想是:,并加以证明.(2)当点M,N分别在正方形的边CB和DC的延长线上时(如图2),线段BM,DN,MN之间的数量关系会发生变化吗?证明你的结论.【变式4-2】(2022春•莆田期末)如图,已知正方形ABCD中,E为CB延长线上一点,且BE=AB,M、N分别为AE、BC的中点,连DE交AB于O,MN交,ED于H点.(1)求证:AO=BO;(2)求证:∠HEB=∠HNB;(3)过A作AP⊥ED于P点,连BP,则PE−PA的值.PB【变式4-3】(2022春•鼓楼区校级期中)如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点G.点H是线段CE上一点,且CO=CH.(1)若OF=5,求FH的长;(2)求证:BF=OH+CF.【题型5 判定正方形成立的条件】【例5】(2022春•海淀区校级期中)已知四边形ABCD为凸四边形,点M、N、P、Q分别为AB、BC、CD、DA上的点(不与端点重合),下列说法正确的是(填序号).①对于任意凸四边形ABCD,一定存在无数个四边形MNPQ是平行四边形;②如果四边形ABCD为任意平行四边形,那么一定存在无数个四边形MNPQ是矩形;③如果四边形ABCD为任意矩形,那么一定存在一个四边形为正方形;④如果四边形ABCD为任意菱形,那么一定存在一个四边形为正方形.【变式5-1】(2022春•岳麓区校级月考)如图,E、F、G、H分别是AB、BC、CD、DA的中点.要使四边形EFGH是正方形,BD、AC应满足的条件是.【变式5-2】(2022春•汉寿县期中)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F在AC 上,且OE=OF,连接DE并延长至点M,使DE=ME,连接MF,DF,BE.(1)当DF=MF时,证明:四边形EMBF是矩形;(2)当△DMF满足什么条件时,四边形EMBF是正方形?请说明理由.【变式5-3】(2022春•沛县期中)已知在△ABC中,D为边BC延长线上一点,点O是边AC上的一个动点,过O作直线MN∥BC,设MN与∠BCA的平分线相交于点E,与∠ACD的平分线相交于点F.(1)求证:OE=OF;(2)试确定点O在边AC上的位置,使四边形AECF是矩形,并加以证明.(3)在(2)的条件下,且△ABC满足条件时,矩形AECF是正方形?.【题型6 正方形判定的证明】【例6】(2022春•虹口区期末)如图,在四边形ABCD中,AB∥CD,AD=CD,E是对角线BD上的一点,且AE=CE.(1)求证:四边形ABCD是菱形;(2)如果AB=BE,且∠ABE=2∠DCE,求证:四边形ABCD是正方形.【变式6-1】(2022春•宜城市期末)如图,四边形ABCD是平行四边形,连接对角线AC,过点D作DE ∥AC与BC的延长线交于点E,连接AE交DC于F.(1)求证:BC=CE;(2)连接BF,若∠DAF=∠FBE,且AD=2CF,求证:四边形ABCD是正方形.【变式6-2】(2022秋•市南区期末)已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH 是正方形?【变式6-3】(2022•上海)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【题型7 正方形的判定与性质综合】【例7】(2022•威海)如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为cm2.【变式7-1】(2022•萧山区模拟)如图,P为正方形ABCD内的一点,画▱P AHD,▱PBEA,▱PCFB,▱PDGC,请证明:以E,F,G,H为顶点的四边形是正方形.【变式7-2】(2022•萧山区模拟)已知:如图,边长为4的菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,BE=1,且DH⊥CE,垂足为H,DH与OC相交于点F,求线段OF的长.【变式7-3】(2022春•潜山市期末)如图,已知四边形ABCD为正方形,AB=3√2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【题型8 探究正方形中的最值问题】【例8】(2022春•沙坪坝区校级月考)如图,在正方形ABCD中,M,N是边AB上的动点,且AM=BN,连接MD交对角线AC于点E,连接BE交CN于点F,若AB=3,则AF长度的最小值为.【变式8-1】(2022•泰山区一模)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是()A.2B.1C.√5−1D.√5−2【变式8-2】(2022•青山区模拟)已知矩形ABCD,AB=2,AD=4AB=8,E为线段AD上一动点,以CE 为边向上构造正方形CEFG,连接BF,则BF的最小值是.【变式8-3】(2022•郧阳区模拟)如图,P A=2√2,PB=4√2,以AB为边作正方形ABCD,使得P、D两点落在直线AB的两侧,当∠APB变化时,则PD的最大值为.【题型9 正方形在坐标系中的运用】【例9】(2022春•市中区期末)在平面直角坐标系中,对于两个点P、Q和图形W,如果在图形W上存在点M、N(M、N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.已知正方形的边长为2,一边平行于x轴,对角线的交点为点O,点D的坐标为(2,0).若点E(x,2)与点D是正方形的一对平衡点,则x的取值范围为()A.﹣3≤x≤3B.﹣4≤x≤4C.﹣2≤x≤2D.﹣5≤x≤5【变式9-1】(2022秋•永新县期末)如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣2,0)、B(0,﹣2)、C(2,0)、D(0,2),求证:四边形ABCD是正方形.【变式9-2】(2022春•顺城区期末)如图,在平面直角坐标系xOy中,直线OC:yOC=3x与直线AC:yAC=﹣x+8相交于点C(2,6).(1)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.分别过点M,N作x轴的垂线,分别交直线OC,AC于点P,Q,请你在图1中画出图形,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(2)在(1)的条件下,当点M运动秒时,四边形PMNQ是正方形(直接写出结论).【变式9-3】(2022•河南模拟)如图,正方形OABC 中,点A (4,0),点D 为AB 上一点,且BD =1,连接OD ,过点C 作CE ⊥OD 交OA 于点E ,过点D 作MN ∥CE ,交x 轴于点M ,交BC 于点N ,则点M 的坐标为( )A .(5,0)B .(6,0)C .(254,0)D .(274,0) 【题型10 正方形中的多结论问题】【例10】(2022春•慈溪市期末)如图,正方形ABCD 中,点P 为BD 延长线上任一点,连结P A ,过点P 作PE ⊥P A ,交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F .下列结论:(1)P A =PE ; (2)BD =2PF ;(3)CE =√2PD ; (4)若BP =BE ,则PF =(√2+1)DF .其中正确的个数为( )A .1B .2C .3D .4【变式10-1】(2022春•渝中区校级期中)如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =√2BE ,CF 与AD 相交于点G .连接EC 、EF 、EG .下列结论:①∠ECF =45°;②△AEG 的周长为(1+√22)a ;③BE 2+DG 2=EG 2;④当G 是线段AD的中点时,BE =13a .正确的个数是( )A.1个B.2个C.3个D.4个【变式10-2】(2022秋•三水区月考)如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①HF=2HG;②∠GDH=∠GHD;③图中有8个等腰三角形;④S△CDG=S△DHF.其中正确的结论个数是()A.1个B.2个C.3个D.4个【变式10-3】(2022春•玉林期末)如图,正方形ABCD中,点E在边CD上,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC、EF于点G、H,连接EG、DH.则下列结论中:①BF=DE;②∠EGC=2∠BAG;③AD+DE=√3DH;④DE+BG=EH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有.。

1.3 正方形的 性质与判定 同步练习(课课练)附答案

1.3  正方形的 性质与判定 同步练习(课课练)附答案

1.3正方形的性质与判定1、四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是()A. OA=OB=OC=OD,AC⊥BDB. AB∥CD,AC=BDC. AD∥BC,∠A=∠CD. OA=OC,OB=OD,AB=BC2、在正方形ABCD中,AB=12cm,对角线AC、BD相交于O,则△ABO的周长是()A. 12+122B. 12+62C. 12+2D. 24+623、如图,四边形ABCD是正方形,延长BC至点E,使CE=CA,连结AE交CD•于点F,•则∠AFC的度数是().(A)150°(B)125°(C)135°(D)112.5°4、已知正方形的面积为4,则正方形的边长为________,对角线长为________.5、如左下图,四边形ABCD是正方形,△CDE是等边三角形,则∠AED=______,∠AEB=______.6、如右上图,四边形ABCD是正方形,△CDE是等边三角形,求∠AEB的度数.7、已知:如左下图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,•BF与AD交于点F,求证:AE=BF.8、如图,正方形ABCD,AB=a,M为AB的中点,ED=3AE,(1)求ME的长;(2)△EMC是直角三角形吗?为什么?9、如左下图,在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH.四边形EFGH是什么特殊的四边形,你是如何判断的?10、如右上图所示,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G .试说明AE =FG .11、以锐角△ABC 的边AC 、AB 为边向外作正方形ACDE 和正方形ABGF ,连结BE 、CF.(1)试探索BE 和CF 的关系?并说明理由。

(2)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角。

北师大版九年级数学上册《1.3 正方形的性质与判定》 同步练习试题

北师大版九年级数学上册《1.3 正方形的性质与判定》 同步练习试题

1.3 正方形的性质与判定一.选择题1.下列说法错误的是()A.对角线互相垂直的平行四边形是矩形B.矩形的对角线相等C.对角线相等的菱形是正方形D.两组对边分别相等的四边形是平行四边形2.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=25°,则∠AED=()A.60°B.65°C.70°D.75°3.如图,两把完全一样的直尺叠放在﹣起,重合的部分构成一个四边形,给出以下四个论断:①这个四边形可能是正方形②这个四边形一定是菱形③这个四边形不可能是矩形④这个四边形一定是轴对称图形,其中正确的论断是()A.①②B.③④C.①②④D.①②③④4.如图,以△ABC的各边为边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG,对于四边形ADEG的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.若△ABC为任意三角形,则四边形ADEG是平行四边形B.若∠BAC=90°,则四边形ADEG是矩形C.若AC=AB,则四边形ADEG是菱形D.若∠BAC=135°且AC=AB,则四边形ADEG是正方形5.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE与BF相交于O;下列结论:(1)AE=BF;(2)AE⊥BF;(3)AD=OE;(4)S△AOB=S四边形DEOF.其中正确的有()A.4个B.3个C.2个D.1个二.填空题6.如图,平面内直线l1∥l2∥l3∥l4,且相邻两条平行线间隔均为1,正方形ABCD四个顶点分别在四条平行线上,则正方形的面积为.7.如图,正方形ABCD的边长为5,AG=CH=4,BG=DH=3,连接GH,则线段GH的长为.8.如图,在边长为2的正方形ABCD中,点E、F分别是边AB,BC的中点,连接EC,FD,点G、H分别是EC,FD的中点,连接GH,则GH的长度为.9.如图,已知正方形ABCD的边长为7,点E,F分别在AD、DC上,AE=DF=3,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.10.如图,四边形ABCD为正方形,AB为边向正方形外作等边三角形ABE、CE与DB相交于点F,则∠AFD=度.11.如图,在正方形ABCD的外侧,作等边三角形ABE,则∠DEB的度数为度.12.如图,若四边形ABCD是正方形,△CDE是等边三角形,则∠EAB的度数为.13.如图,四边形ABCD是一个正方形,E是BC延长线上的一点,且AC=EC,则∠DAE =.14.如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=.15.已知:正方形ABCD中,对角线AC、BD相交于点O,∠DBC的平分线BF交CD于点E,交AC于点F,OF=1,则AB=.三.解答题16.如图,在△ABC中,AC=BC=6,∠ACB>90°,∠ABC的平分线交AC于点D,E是AB上点,且BE=BC,CF∥ED交BD于点F,连接EF,ED.(1)求证:四边形CDEF是菱形;(2)当∠ACB=度时,四边形CDEF是正方形,请给予证明;并求此时正方形的边长.17.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.18.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF ⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.19.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.20.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,E是DB延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AEB=2∠EAB,求证:四边形ABCD是正方形.21.以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?参考答案一.选择题1.解:对角线互相垂直的平行四边形是菱形,故选项A错误;矩形的对角线相等,故选项B正确;对角线相等的菱形是正方形,故选项C正确;两组对边分别相等的四边形是平行四边形,故选项D正确;故选:A.2.解:∵四边形ABCD是正方形,∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.又AE=AE,∴△ABE≌△ADE(SAS).∴∠ADE=∠ABE=90°﹣25°=65°.∴∠AED=180°﹣45°﹣65°=70°.故选:C.3.解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形直尺的宽度相等,∴DE=DF,又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.当∠DAB=90°时,这个四边形是正方形,∴这个四边形一定是轴对称图形,故选:C.4.解:A、∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等),正确,故本选项不符合题意;B、∵四边形ABDI和四边形ACHG是正方形,∴∠DAI=45°,∠GAC=90°,∵∠BAC=90°,∴∠DAG=360°﹣45°﹣90°﹣90°=135°,∵四边形ADEG是平行四边形,∴四边形ADEG不是矩形,错误,故本选项符合题意;C、∵四边形ADEG是平行四边形,∴若要四边形ADEG是菱形,则需AD=AG,即AD=AC.∵AD=AB,∴当AB=AD,即AB=AC时,四边形ADEG是菱形,正确,故本选项不符合题意;D、∵当∠BAC=135°时,∠DAG=360°﹣45°﹣90°﹣135°=90°,即平行四边形ADEG是平行四边形,∵当AB=AD,即AB=AC时,四边形ADEG是菱形,∴四边形ADEG是正方形,即当∠BAC=135°且AC=AB时,四边形ADEG是正方形,正确,故本选项不符合题意;故选:B.5.解:∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠ADE=90°.∵CE=DF,∴AF=DE.在△ABF和△DAE中,,∴△ABF≌△DAE.∴AE=BF,故(1)正确.∵△ABF≌△DAE,∴∠AFB=∠AED.∵∠AED+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF,故(2)正确.∵△ABF≌△DAE,∴S△ABF=S△ADE.∴S△AOB=S△ABF﹣S△AOF,S四边形DEOF=S△ADE﹣S△AOF,即∴S△AOB=S四边形DEOF.如图所示:过点E作EG⊥AB,则EG=AD.∵HE>OE,GE>HE,∴GE>OE.∴AD>OE,故(3)错误.故选:B.二.填空题6.解:过C点作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠CED=∠BFC=90°.∵ABCD为正方形,∴∠BCD=90°.∴∠DCE+∠BCF=90°.又∵∠DCE+∠CDE=90°,∴∠CDE=∠BCF.在△CDE和△BCF中,∴△CDE≌△BCF(AAS),∴BF=CE=2.∵CF=1,∴BC2=12+22=5,即正方形ABCD的面积为5.故答案为:5.7.解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∵AG=CH=4,BG=DH=3,AB=5,∴AG2+BG2=AB2,∴∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,∴GE=BE﹣BG=4﹣3=1,同理可得HE=1,在Rt△GHE中,GH===,故答案为:.8.解:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=1,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∴△PDH≌△CFH(AAS),∴PD=CF=1,∴AP=AD﹣PD=1,∴PE==,∵点G,H分别是EC,FD的中点,∴GH=EP=.9.解:∵四边形ABCD是正方形,∴AB=DA,∠BAE=∠ADF=90°,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=90°,∴∠BGF=90°,∵点H为BF的中点,∴GH=BF,又∵BC=CD=7,DF=3,∠C=90°,∴CF=4,∴BF===,∴GH=,故答案为:.10.解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形∴∠BEC=15°,∵∠FBE=∠DBA+∠ABE=105°,∴∠BFE=60°,在△CBF和△ABF中,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠F AB=15°+45°=60°.故答案为60.11.解:∵四边形ABCD是正方形∴AB=AD,∠BAD=90°∵△ABE是等边三角形∴AE=AB,∠BAE=∠BEA=60°∴AD=AE,∠DAE=150°∴∠AED=∠ADE=(180°﹣∠DAE)=15°∴∠DEB=∠BEA﹣∠AED=60°﹣15°=45°故答案为:45.12.解:∵∠ADE=∠BCE=90°+60°=150°,AD=BC,DE=CE,∴△ADE≌△BCE,∴AE=BE,∴∠EAB=∠EBA.∵正方形中AD=DC,等边三角形中DC=DE,∴AD=DE,∵∠ADE=90°+60°=150°,∴∠DEA==15°,同理∠CEB=15°,∴∠AEB=60°﹣15°﹣15°=30°,∴∠EAB==75°.故答案为75°.13.解:∵四边形ABCD是正方形,∴∠ACB=45°,AD∥BC,∵AC=EC,∴∠E=∠CAE,∵∠ACB=∠E+∠CAE=2∠E,∴∠E=∠ACB=22.5°,∵AD∥BC,∴∠DAE=∠E=22.5°.故答案为:22.5°.14.解:过E作EF⊥DC于F,∵四边形ABCD是正方形,∴AC⊥BD,∵CE平分∠ACD交BD于点E,∴EO=EF,在Rt△COE和Rt△CFE中,∴Rt△COE≌Rt△CFE(HL),∴CO=FC,∵正方形ABCD的边长为1,∴AC=,∴CO=AC=,∴CF=CO=,∴EF=DF=DC﹣CF=1﹣,∴DE==﹣1,另法:因为四边形ABCD是正方形,∴∠ACB=45°=∠DBC=∠DAC,∵CE平分∠ACD交BD于点E,∴∠ACE=∠DCE=22.5°,∴∠BCE=45°+22.5°=67.5°,∵∠CBE=45°,∴∠BEC=67.5°,∴BE=BC,∵正方形ABCD的边长为1,∴BC=1,∴BE=1,∵正方形ABCD的边长为1,∴AC=,∴DE=﹣1,故答案为:﹣1.15.解:如图作FH∥BC交BD于点H.∵四边形ABCD是正方形,∴∠OBC=∠OCB=45°,OB=OC,∠BOC=90°∵FH∥BC,∴∠OHF=∠OBC,∠OFH=∠OCB,∴∠OHF=∠OFH,∴OH=OF=1,FH==,∵BF平分∠OBC,∴∠HBF=∠FBC=∠BFH,∴BH=FH=,∴OB=OC=1+,∴BC=OB=2+.故答案为2+.三.解答题16.证明:(1)如图,连接EC,交BD于点O∵BE=BC,BD平分∠ABC∴EO=CO,BD⊥CE∴EF=FC,DE=CD,∵CF∥DE∴∠DFC=∠FDE,且EO=CO,∠FOC=∠DOE ∴△DOE≌△FOC(AAS)∴DE=CF∴EF=FC=CD=DE∴四边形EFCD是菱形(2)当∠ACB=120度时,四边形CDEF是正方形,理由如下:∵∠ACB=120°,BC=AC∴∠ABC=∠BAC=30°∵BD平分∠ABC∴∠DBC=15°,且BD⊥EC∴∠BCO=75°∴∠ACE=45°,∵四边形EFCD是菱形∴∠FCD=2∠ACE=90°∴四边形CDEF是正方形,∴∠ADE=90°如图,过点C作CP⊥AB于点P,∵BC=AC=6,∠ABC=30°,CP⊥AB∴CP=3,BP=CP=3,AB=2BP=6,∴AE=AB﹣BE=6﹣6∵∠A=30°,∠ADE=90°∴DE=AE=3﹣317.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BD,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.18.解:(1)如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∴∠EAD=∠EAB,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∵EF⊥DE,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形.(2)∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴AE+AG=AE+EC=AC=AD=4.(3)如图,作EH⊥DF于H.∵四边形ABCD是正方形,∴AB=AD=4,AB∥CD,∵F是AB中点,∴AF=FB∴DF==2,∵△DEF是等腰直角三角形,EH⊥AD,∴DH=HF,∴EH=DF=,∵AF∥CD,∴AF:CD=FM:MD=1:2,∴FM=,∴HM=HF﹣FM=,在Rt△EHM中,EM==.19.解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为6,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在∴△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴CE+CG=CE+AE=AC=AB=×3=6是定值.20.证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.∵△ACE是等边三角形,∴AE=CE.∴BE⊥AC.∴四边形ABCD是菱形.(2)从上易得:△AOE是直角三角形,∴∠AEB+∠EAO=90°∵△ACE是等边三角形,∴∠EAO=60°,∴∠AEB=30°∵∠AEB=2∠EAB,∴∠EAB=15°,∴∠BAO=∠EAO﹣∠EAB=60°﹣15°=45°.又∵四边形ABCD是菱形.∴∠BAD=2∠BAO=90°∴四边形ABCD是正方形.21.解:(1)图中四边形ADEG是平行四边形.理由如下:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(2)当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;(3)当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由(2)知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.。

正方形性质及判定练习题

正方形性质及判定练习题

正方形性质及判定练习题正方形是一种特殊的四边形,具有一些独特的性质。

在本文档中,我们将介绍关于正方形的性质以及如何判定一个形状是否为正方形的练题。

1. 正方形的定义- 正方形是一个四边形,具有四条相等的边和四个相等的角。

- 每个角都是直角,即90度。

2. 正方形的性质- 边长:正方形的四条边长度相等。

- 角度:正方形的每个角都是直角,即90度。

- 对角线:正方形的对角线相等且垂直相交于中点。

3. 正方形的判定练题1. 练题1:给出一个形状的四条边长A、B、C、D,如何确定它是否为正方形?- 答案:如果A = B = C = D,并且角ABC和角BCD均为直角(90度),则该形状为正方形。

2. 练题2:给出一个形状的四个顶点坐标(Ax, Ay),(Bx, By),(Cx, Cy),(Dx, Dy),如何确定它是否为正方形?- 答案:计算四条边的长度AB、BC、CD、DA,并检查是否满足A = B = C = D的条件。

同时,计算角ABC、BCD、CDA、DAB是否均为90度。

3. 练题3:给出一个形状的四个顶点坐标(Ax, Ay),(Bx, By),(Cx, Cy),(Dx, Dy),如何确定它是否为正方形?如果无法使用角度判定,请给出其他方法。

- 答案:计算四条边的长度AB、BC、CD、DA,并检查是否满足A = B = C = D的条件。

同时,计算AB和CD的斜率,如果斜率为相反数且BC和DA的斜率为相反数,那么该形状为正方形。

通过掌握正方形的定义、性质以及判定练题,我们能够更好地理解和识别正方形。

练题的完成也有助于加深对正方形性质的掌握。

希望这份文档对您有所帮助!。

《 正方形的性质与判定》同步能力提升训练(附答案) 2021-2022学年北师大版九年级数学上册

《 正方形的性质与判定》同步能力提升训练(附答案) 2021-2022学年北师大版九年级数学上册

2021-2022学年北师大版九年级数学上册《1.3正方形的性质与判定》同步能力提升训练(附答案)1.如图,E为正方形ABCD的对角线上一点,四边形EFCG为矩形,若正方形ABCD的边长为4,则EG+GC的长为()A.4B.8C.16D.322.如图是一个正方形和直角三角形的组合图形,直角三角形的斜边和一条直角边的长分别为10cm,8cm,则该正方形的面积为()A.6cm2B.36cm2C.18cm2D.2cm23.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角线互相垂直D.对角线互相平分4.如图,正方形ABCD中,点E是对角线BD上的一点,且BE=AB,连接CE,AE,则∠DAE的度数为()A.22.5°B.25°C.30°D.32.5°5.如图,将平行四边形ABCD的∠ABC变成直角,则平行四边形ABCD变成()A.平行四边形B.矩形C.菱形D.正方形6.正方形、菱形、矩形、平行四边形共同具有的性质是()A.对角线相等B.对角线相互平分C.对角线相互垂直D.对角线相互垂直平分7.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AC,CF,那么AF的长是()A.B.2C.3D.28.下列说法错误的是()A.对角线垂直且互相平分的四边形是菱形B.对角线相等的平行四边形是矩形C.对角线相等且垂直的四边形是正方形D.一组对边平行且相等的四边形是平行四边形9.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE PF的最小值为()A.3 B.2C.2 D.110.如图,正方形ABCD的边长为4,点E在CD的边上,且DE=1,△AFE与△ADE关于AE 所在的直线对称,将△ADE按顺时针方向绕点A旋转90°得到△ABG,连接FG,则线段FG 的长为()A.4 B.42C.5 D.611.如图,已知四边形ABCD是平行四边形,下列结论中正确的是()A.当AC=BD时,它是正方形B.当AC⊥BD时,它是矩形C.当∠ABC=90°时,它是菱形D.当AB=BC时,它是菱形12.下列条件中能判断一个四边形是正方形的是()A.对角线互相垂直且相等B.一组对边平行,另一组对边相等且有一个内角为90度C.对角线平分每一组对角D.四边相等且有一个角是直角13.如图,将正方形OACD放在平面直角坐标系中,O是坐标原点,点D的坐标为(3,4),则点A的坐标为.14.菱形ABCD中,AD=4,∠DAB=60°,E、F、G、H分别是AD、AB、BC、CD上的点,且DH=FB,DE=BG,当四边形EFGH为正方形时,DH=.15.如图,正方形ABCD的边长为12,对角线AC、BD相交于点O,E是AC上一点,连接BE并延长交正方形ABCD的边于点F,若OE=3,则CF=.16.如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,5),点C在第一象限,则点C的坐标是.17.如图,正方形ABCD中,点P在边AD上,PE⊥AC于点E,PF⊥BD于点F,AC=m,PE+PF=n,则m,n满足的数量关系是.18.已知:如图,在矩形ABCD中,E、F分别是边CD、AD上的点,AE⊥BF,且AE=BF.(1)求证:矩形ABCD是正方形;(2)联结BE、EF,当线段DF是线段AF与AD的比例中项时,求证:∠DEF=∠ABE.19.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.20.如图,在正方形ABCD中,E、F、G、H分别是各边上的点,且AE=BF=CG=DH.求证:(1)△AHE≌△BEF;(2)四边形EFGH是正方形.21.如图,在四边形ABDE中,AD与BE相交于点O,OA=OB=OE=OD,AB=BD.(1)求证:四边形ABDE是正方形;(2)若∠ACB=90°,连接OC,OC=6,AC=5,求BC的长.22.如图,在Rt△ABC中,∠ACB=90°,CD平分∠ACB,过点D分别作DE⊥BC,DF ⊥AC,垂足分别为E,F.(1)证明:四边形DECF为正方形;(2)若AC=6cm,BC=8cm,求四边形DECF的面积.参考答案1.解:∵四边形ABCD是正方形,∴∠BDC=45°,∴EG=DG,∵四边形EFCG为矩形,∴EF=GC,∴EF+EG=GC+DG=DC=4,故选:A.2.解:如图所示:∵△ABE是直角三角形,AE=8cm,BE=10cm,∴AB=(cm),∵四边形ABCD是正方形,∴正方形ABCD的面积=AB2=36(cm2),故选:B.3.解:菱形和矩形的性质合在一起得到了正方形.正方形具有而菱形不具有的性质即为矩形的特性,由矩形对角线相等满足条件.故选:B.4.解:∵四边形ABCD为正方形,∴∠ABD=45°,∠BAD=90°,∵BE=AB,∴∠BAE=∠BEA=×(180°﹣45°)=67.5°,∴∠DAE=∠BAD﹣∠BAE=90°﹣67.5°=22.5°.故选:A.5.解:∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是正方形,故选:B.6.解:平行四边形的对角线互相平分,而对角线相等、对角线相互垂直、对角线相互垂直平分不一定成立.故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.故选:B.7.解:∵四边形ABCD和四边形CEFG为正方形,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠B=∠E=90°,∴AC==,CF==,∵AC、CF分别是正方形ABCD和正方形CEFG的对角线,∴∠ACG=∠GCF=45°,∴∠ACF=90°,在Rt△ACF中,AF===2.故选:D.8.解:A.对角线垂直且互相平分的四边形是菱形,正确,不合题意;B.对角线相等的平行四边形是矩形,正确,不合题意;C.对角线相等且垂直的平行四边形是正方形,原说法错误,符合题意;D.一组对边平行且相等的四边形是平行四边形,正确,不合题意.故选:C.MN AD交AB于点M,交CD于点N,如图所示:9.解:过点P作//四边形ABCD为正方形,∴⊥,MN AB⊥时取等号),∴(当PE ABPM PE⊥时取等号),PN PF(当PF BC∴==++,MN AD PM PN PE PF正方形ABCD的面积是2,2∴AD∴+2B.PE PF10.解:如图,连接BE,∵△AFE与△ADE关于AE所在的直线对称,∴AF=AD,∠EAD=∠EAF,∵△ADE按顺时针方向绕点A旋转90°得到△ABG,∴AG=AE,∠GAB=∠EAD,∴∠GAB=∠EAF,∴∠GAB+∠BAF=∠EAF+∠BAF,∴∠GAF=∠EAB,∴△GAF≅△EAB(SAS),∴FG=EB,∵四边形ABCD是正方形,∴BC=CD=AB=4,∵DE=1,∴CE=3,∴在Rt△BCE中,22+,345∴FG=5故选C11.解:∵四边形ABCD是平行四边形,∴当AC=BD时,它是矩形,故选项A不符合题意;当AC⊥BD时,它是菱形,故选项B不符合题意;当∠ABC=90°时,它是矩形,故选项C不符合题意;当AB=BC时,它是菱形,故选项D符合题意;故选:D.12.解:对角线互相垂直、平分且相等的四边形是正方形,但是对角线互相垂直且相等的四边形不一定是正方形,如等腰梯形中的对角线就有可能垂直且相等,故选项A不符合题意;一组对边平行,另一组对边相等且有一个内角为90度的四边形不一定是正方形,如直角梯形,故选项B不符合题意;对角线平分每一组对角的四边形不一定是正方形,如菱形,故选项C不符合题意;四边相等且有一个角是直角的四边形是正方形,故选项D符合题意;故选:D.13.解:如图,过点A作AB⊥x轴于B,过点D作DE⊥x轴于E,∵四边形OACD是正方形,∴OA=OD,∠AOD=90°,∴∠DOE+∠AOB=90°,又∵∠OAB+∠AOB=90°,∴∠OAB=∠DOE,在△AOD和△OCE中,,∴△AOB≌△ODE(AAS),∴AB=OE,OB=DE,∵点D的坐标为(3,4),点C在第二象限,∴点C的坐标为(﹣4,3).故答案为:(﹣4,3).14.解:过点E作AB的垂线分别交AB于N、交CD延长线于M,∵四边形EFGH为正方形,∴EH=EF,∠HEF=90°,∴∠MEH+∠NEF=90°,∵∠NEF+∠EFN=90°,∴∠MEH=∠EFN,在△EMH与△FNE中,,∴△EMH≌△FNE(AAS),∴EM=NF,EN=MH,设MD=x,在菱形ABCD中,AD=4,∠DAB=60°,∴∠ADM=30°,∴MD=DE,∴DE=2x,EM==x,∴AE=4﹣2x,AN==2﹣x,∴EN==(2﹣x),∴NF=x,HM=(2﹣x),DH=MH﹣MD=2﹣x﹣x,∴AF=2﹣x+x,∵AB=CD,BF=DH,∴AF=CH=2﹣x+x,∵DH+CH=4,∴2﹣x+x+2﹣x﹣x=4,解得:x=﹣1,∴DH=2﹣2.故答案为:2﹣2.15.解:∵正方形ABCD的边长为12,∴AC=12,∴OA=OC=6,∵OE=3,∴E点是OA或OC的中点,如图1,当E点是OA的中点时,过点E作NE⊥AB交AB于N,∴AE=3,∴AN=NE=3,∵NE∥AF,∴AF=4,∴DF=8,∴CF=4;如图2,当E为CO的中点时,过点E作EM⊥BC交BC于M,则EC=3,∴EM=MC=3,∴BM=9,∵EM∥FC,∴FC=4;综上所述:FC的长为4或4.16.解:∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵O,D两点的坐标分别是(0,0),(0,5),∴OD=5,∴OB=BC=CD=5,∴C的坐标为(5,5).故答案为:(5,5).17.解:∵四边形ABCD是正方形,∴∠CAD=45°,AC⊥BD,AC=2OA,∵PE⊥AC,PF⊥BD,∴△APE是等腰直角三角形,四边形PEOF是矩形,∴PE=AE,PF=OE,∴OA=AE+OE=PE+PF,∵AC=m,PE+PF=n,AC=2OA,∴m=2n.故答案为:m=2n.18.证明:(1)∵四边形ABCD是矩形,∴∠BAD=∠ADE=90°,∴∠ABF+∠AFB=90°,∵AE⊥BF,∴∠DAE+∠AFB=90°,∴∠ABF=∠DAE,在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AB=AD,∴矩形ABCD是正方形;(2)由(1)可知,△ABF≌△DAE,∴AF=DE,∴DF=CE,∵∠FDE=∠BCE=90°,∴△FDE∽△BCE,∴∠DEF=∠CEB,∵AB∥CD,∴∠ABE=∠CEB,∴∠ABE=∠DEF.19.解:∵四边形ABCD是正方形,∴∠FDC=∠DCF=45°,∵∠E=90°,ED=EC,∴∠EDC=∠ECD=45°,∴∠FCE=∠FDE=∠E=90°,∴四边形DFCE是矩形,∵DE=CE,∴四边形DFCE是正方形.20.证明:(1)∵四边形ABCD为正方形,∴AB=BC=CD=DA,∠A=∠B=90°,又∵AE=BF=DH=CG,∴AH=BE=CF=DG,∴△AHE≌△BEF(SAS);(2)在正方形ABCD中,AB=BC=CD=AD,∵AE=BF=CG=DH,∴AH=DG=CF=BE,∵∠A=∠B=∠C=∠D=90°,∴△AEH≌△DHG≌△CGF≌△BFE(SAS),∴EF=EH=HG=GF,∠EHA=∠HGD,∴四边形EFGH是菱形,∵∠EHA=∠HGD,∠HGD+∠GHD=90°,∴∠EHA+∠GHD=90°,∴∠EHG=90°,∴四边形EFGH是正方形.21.解:(1)∵OA=OB=OE=OD,∴四边形ABCD是平行四边形,AD=BE,∴四边形ABDE是矩形,又∵AB=BD,∴四边形ABDE是正方形.(2)如图所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=AM=CF,∴△OCF为等腰直角三角形,∵OC=6,根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,∴BC=CF+BF=6+1=7.22.(1)证明:∵DE⊥BC,DF⊥AC,∠ACB=90°,∴∠DFC=∠FCE=∠DEC=90°,∴四边形DECF是矩形,∴DF∥EC,∴∠FDC=∠ECD,∵CD平分∠ACB,∴∠FCD=∠ECD,∴∠FDC=∠FCD,∴DF=CF,∴四边形DECF是正方形;(2)解:∵四边形DECF是正方形,∴DF=FC=CE=DE,设DF=FC=CE=DE=x,∵DF∥BC,∴x=,即DF=FC=CE=DE=,∴四边形DECF的面积是×=.。

初二正方形性质及判定练习题

初二正方形性质及判定练习题

初二正方形性质及判定练习题
形状与性质
正方形是一种特殊的四边形,具有以下性质:
1. 四条边相等:正方形的四条边的长度相等。

2. 四个角相等:正方形的四个角的大小都是90度。

3. 对角线相等:正方形的对角线长度相等。

4. 正方形是菱形:正方形的对角线相互垂直,且长度相等,因此也是菱形的一种特殊情况。

判定练题
以下是一些判定练题,帮助你巩固对正方形性质的理解:
1. 判断下列图形是否为正方形:
A. ![正方形A](image-link)
B. ![正方形B](image-link)
C. ![图形C](image-link)
D. ![图形D](image-link)
答案:A是正方形,B是正方形,C不是正方形,D不是正方形。

2. 若两个正方形的边长分别为4cm和6cm,哪个正方形的面积更大?
答案:边长为6cm的正方形面积更大,因为面积与边长的平方成正比。

3. 若一个正方形的对角线长度为10cm,求其边长。

答案:根据正方形的性质,对角线长度等于边长乘以√2,所以边长等于10cm除以√2,约为7.07cm。

4. 若一个四边形的边长均为5cm,四个角的大小均为90度,是否一定是正方形?
答案:不一定,虽然满足了长宽相等和角度为90度的条件,但没有保证对角线相等,因此不一定是正方形。

5. 若一个四边形的对角线相等,四个角的大小均为90度,是否一定是正方形?
答案:是的,根据这些条件可以确定该四边形是正方形,因为这些是正方形的定义性质。

以上是关于初二正方形性质及判定练习题的内容。

希望能够帮助你更好地理解和应用正方形的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题
1、如图,E 是正方形ABCD 的对角线BD 上一点,且BE =BC ,则∠ACE=°.
2、如图,四边形ABDC 是正方形,延长CD 到点E ,使CE=CB ,则∠AEC=°.
3、如图,正方形ABCD 中,点E 在BC 的延长线上,AE 平分∠DAC,则下列结论:
①∠E=22.5°;②∠AFC=112.5°;③∠ACE=135°;④AC=CE ;⑤AD∶CE=1∶.其中正确的有个.
4、如图,等边△EDC 在正方形ABCD 内,连结EA 、EB ,则∠AEB=°;∠ACE=°.
5、已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是°.
6、如图,四边形ABCD 是正方形,E 是边CD 上一点,若△AFB 经过逆时针旋转角θ(0°<θ<180°)后,与△AED 重合,则θ值为°.
第6题图第7题图第8题图第9题图
7、已知正方形ABCD 中,点E 在边DC 上,DE=2,EC=1,把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为___________.
8、如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为.
9、如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B '处,点A 对应点为A ',且C B '=3,则CN=;AM 的长是.
10、正方形的面积是31,则其对角线长是________.
11、如图,三个边长均为2的正方形重叠在一起,O 1、O 2是其中两个正方形的中心,则阴
影部分的面积是.
12、如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、A n 分别是正方
形的中心,则n 个这样的正方形重叠部分的面积和为.
第12题图第13题图 13、边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB′C′D′,两图叠成一
个“蝶形风筝”(如图所示重叠部分),则这个风筝的面积是. 14、如图,边长为1的正方形ABCD 绕点A 逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC 交于点O ,则四边形AB′OD 的周长是.
15、如右图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE
对折至△AFE,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG≌△AFG; ②BG=GC ;③AG∥CF;④S △FGC =3.其中正确的结论是.(填序号)
16、如右图,四边形ABCD 为正方形,以AB 为边向正方形外作等边△ABE,CE 与DB
相交于点F ,则AFD ∠=。

二、解答题
1、如图1:正方形ABCD 中,AC=10,P 是AB 上任意一点,PE⊥AC 于E ,
PF⊥BD 于F ,则PE+PF=.可以用一句话概括:
正方形边上的任意一点到两对角线的距离之和等于.
思考:如若P 在AB 的延长线时,上述结论是否成立?若不成立,请在图2中画出图
形,写出你的结论,并加以说明. 图2
第1题图第2题图第3题图第4题图
O
2O
1
2、(1)如图1,点P 是正方形ABCD 的对角线BD 上一点,PE⊥BC 于点E ,PF⊥CD 于点F ,连接EF 给出下列五个结论:①AP=EF;②AP⊥EF;③△APD 一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正确结论的序号是.
思考:(2)当点P 在DB 的长延长线上时,请在图2中补充完整,并思考(1)中AP
与EF 的关系结论是否依旧成立?若成立,请给出证明;若不成立,请说明理由. 图2图1
3、已知Rt△ABC 中,∠C=90°,CD 平分∠ACB 交AB 于D ,DF//BC,DE//AC.
求证:四边形DECF 为正方形.
4、如图,正方形ABCD 中,E 、F 、G 分别是AD 、AB 、BC 上的点,且AE=FB=GC. 试判断△EFG 的形状,并说明理由.
5、E 为正方形ABCD 内一点,且△EBC 是等边三角形,求∠EAD 的度数.
6、如图,在正方形ABCD 中,△PBC、△QCD 是两个等边三角形,PB 与DQ 交于M ,BP 与CQ 交于E ,CP 与DQ 交于F.求证:PM=QM.
7、P 为正方形ABCD 内一点,PA=1,PB=2,PC=3,求∠APB 的度数.
8、如图,在正方形ABCD 中,F 是CD 的中点,E 是BC 边上一点,且AF 平分∠DAE,求证:AE=EC+CD.
9、如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在
射线BC 上,且PE=PB.试判断PE 与PD 的关系.
10、如图,在△ABC 中,AB=AC ,AD⊥BC,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE⊥AN,垂足为点E ,
(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.
11、如图,已知□ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且
ACE △是等边三角形.
(1)求证:四边形ABCD 是菱形;
(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.
12、如图,在正方形ABCD 中,P 为BC 上一点,Q 为CD 上一点,
(1)若∠PAQ=45°,求证:PQ=BP+DQ ;(2)若PQ=BP+DQ ,求∠PAQ 的度数. 13、如图,正方形ABCD 的对角线AC 、BD 相交于点O ,正方形A′B′C′D′的顶点A′与点O 重合,A′B′交BC 于点E ,A′D′交CD 于点F.(1)求证:OE=OF ;(2)若正方形ABCD 的边长为1,求两个正方形重叠部分的面积;(3)若正方形A′B′C′D′
绕着O 点旋转,EF 的长度何时最小,并求出最小值.
14、如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠(点E 、F 分别在边AB 、CD 上),
使点B 落在AD 边上的点M 处,点C 落在点N 处,MN 与CD 交于点P ,连接EP .如图②,若M 为AD 边的中点,
(1)△AEM 的周长=cm ;(2)求证:EP=AE+DP ;
15、如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以
CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:
(1)猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;(无需证明)
(2)将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得
到如图2、图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取一种情况证明你的判断. E
C D B A O
16、(1)如图(1),已知正方形ABCD和正方形CGEF(CG>BC),B、C、G在同一直线
上,M为线段AE的中点。

探究:线段MD、MF的关系。

(2)如图(2),若将正方形CGEF绕点C逆时针旋转45︒,使得正方形CGEF对角线CE在正方形ABCD的边BC的延长线上,M为AE的中点。

试问:(1)中探究的结
论是否还成立?若成立,请证明,若不成立,请说明理由。

图1图2
17、以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点
分别为E、F、G、H,顺次连结这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;
如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状是;(直接写出
结果)
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
①试用含α的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.
18、已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点
M、N,连接MN,作AH⊥MN,垂足为点H
(1)如图1,猜想AH与AB有什么数量关系?并证明;
(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;
小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN 对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?。

相关文档
最新文档