三角形内角和180°证明7种方法

合集下载

三角形内角和180°证明7种方法

三角形内角和180°证明7种方法

三角形内角和180°证明7种方法三角形是平面几何中的重要概念,它由三条边和三个角组成。

在欧氏几何中,三角形的内角和总是等于180°。

证明三角形内角和等于180°有许多不同的方法。

下面将介绍七种不同的证明方法,以阐述这一重要结论。

方法一:直角三角形的证明考虑一个直角三角形,其中一个角度为90°。

以这个角度为基础,我们可以将其他两个角度表示为α和β。

根据三角形内角和的定义,我们可以得到α+β+90°=180°,因此α+β=90°。

方法二:欧几里得几何法欧几里得几何中,三角形的内角和等于平面中的一直线对应的角。

在直线上,两个互相垂直的角的和是等于90°。

因此,我们可以将直线分为相互垂直的两个角,然后将两个角组合成一个等于90°的角。

这样,我们得到了三角形内角和等于180°的结论。

方法三:外角的证明考虑一个三角形ABC,我们可以在每个顶点处添加一个外角D、E和F。

根据外角定理,我们知道每个外角等于与其不相邻的两个内角之和。

因此,我们可以得到D=C+A,E=A+B和F=B+C。

将D、E和F相加,我们可以得到D+E+F=2(A+B+C)。

由于A+B+C是一个平面中的角的和(即180°),所以我们可以将上述等式重写为D+E+F=360°。

因此,三角形的外角和等于360°,而每个外角等于180°减去与其相邻的内角,即180°-D=180°-(C+A)=B。

因此,我们得出结论:三角形的内角和等于180°。

方法四:平行直线的证明考虑一个三角形ABC,其中一个角度为α。

通过点B,我们可以绘制一条平行于边AC的直线DE。

这样,我们获得了两个平行直线AC和DE,并且角DBC和角BCA为同旁内角,它们的和等于180°。

因此,我们可以得到角DBC+角BCA=180°-α。

关于“三角形内角和是180度”几种验证方法的思虑[宝典]

关于“三角形内角和是180度”几种验证方法的思虑[宝典]

00关于“三角形内角和是180度”几种验证方法的思考000 0一、几种常见方法的比较0000验证“三角形的内角和是180度”,常见的有三种方法:00001.用量角器量出三个角的度数,然后加起来看是不是180度(下文简称“测量求和法”);00002.将三角形三个角剪下来,再将它们拼在一起看能不能组成平角(下文简称“剪拼法”);00003.将三个角折起来拼在一起,看能不能组成平角(下文简称“折拼法”)。

0000对于这三种方法中,“测量求和法”的优点是:接近学生的思维水平,课堂上学生很容易想到,也很容易理解;缺点是:“测量”存在着误差,因此测得的三个角的度数加起来往往都不是180度。

这使得测量结果非但不能验证结论,相反却易给人造成“三角形内角和不是180度”的错误印象。

0000对于“剪拼法”,优点是:操作简单、看起来一目了然;缺点是:破坏了原图形,不能很好地体现了原图形与撕下来后图形间的联系与变化。

0000而“折拼法”则有效地避免了“量”、“撕”的缺陷;可惜的是,操作起来困难,想起来费劲——它要求学生首先沿着“中位线”来折,而“中位线”对学生来说则是个陌生的事物——因此,我们对教材中的“折拼法”方案(如图1)稍作改进:首先让学生折“高”找到对应的“垂足”;然后将三角形三个“顶点”分别对准“垂足”进行折叠就行了(见图2),经改进操作起来简捷多了。

0000图1 图20000二、几种常见方法的导出0000其实对于三角形内角和三种常见的验证方法“量”也好,“撕”也好,“折”也罢,它们或多或少都存在着误差。

用单个任何一种方法验证“三角形内角和就是180度”,不足以让人信服。

因此,让尽量多的验证方法出现的课堂上,“让各种方法相互解释、互相佐证”是上好这节课的关键。

0000然而事实并不随你我所愿。

正常情况下,学生上课时只能想到“量”这一种方法,其他方法的出现,充其量仅仅是一两个“优等生闻道预先”。

0000如何通过教师艺术的启发,引导出多样的验证方法呢?0000我们从最坏处考虑,对课堂中可能出现的种种情况进行了预设:0000新课伊始,学生猜想“三角形内角和是180度”,教师将猜想板书在黑板上追问:三角形内角和真的是180度吗?说说你的依据。

三角形的内角和定理与证明

三角形的内角和定理与证明

证明三角形的内角和定理1、过三角形的一个顶点做对边的平行线,该顶点处有三个角,相加为180,然后把这三个角中的两个角通过平行关系代换成内角,从而得证。

2、任意绘制一个平行四边形,将其分割成两个三角形,这两个三角形全等,然后平行四边形相邻两角相加为180,可以找到三个角的和为180,而其中两个角是一个三角形的内角,还有一个角同样可以通过平行线关系代换成此三角形内角,从而得证。

3、任意做三角形的一条高线,然后过高线所在边的一个顶点,做高线的平行线,然后可以证明出被高线分割出来的三角形的两个不是直角的内角互余,然后同理另外一个三角形的两角也互余,这四个角相加等于大三角形的内角和,等于一百八十度,从而得证。

扩展资料:一、内角和公式任意n边形的内角和公式为θ=180°·(n-2)。

其中,θ是n边形内角和,n是该多边形的边数。

从多边形的一个顶点连其他的顶点可以将此多边形分成(n-2)个三角形,每个三角形内角和为180°,故,任意n边形内角和的公式是:θ=(n-2)·180°,∀n=3,4,5,…。

二、多边形内角和定理证明证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。

因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°所以n边形的内角和是n·180°-2×180°=(n-2)·180°.(n为边数)即n边形的内角和等于(n-2)×180°.(n为边数)证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形。

因为这(n-2)个三角形的内角和都等于(n-2)·180°(n为边数)所以n边形的内角和是(n-2)×180°。

证法三:在n边形的任意一边上任取一点P,连结P点与其不相邻的其它各顶点的线段可以把n边形分成(n-1)个三角形,这(n-1)个三角形的内角和等于(n-1)·180°(n为边数)以P为公共顶点的(n-1)个角的和是180°所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°.(n为边数)。

三角形内角和180°证明7种方法

三角形内角和180°证明7种方法

三角形内角和180°证明方法1. 如图,证明/ B+Z C+Z BAC=180 证明:过A点作DE// BC••• DE// BC•••Z B=Z DAB Z C=Z EAC(两直线平行,内错角相等)••• D,A,E三点共线•Z DAE=180vZ DAE Z DAB Z BAC+Z CAE•Z DAB Z BAC+Z CAE=180•Z B+Z C+Z BAC=1802. 如图,证明:Z B+Z A+Z ACB=180证明:过C点作CD// AB,延长BC交CD于 Cv CD// AB•Z A=Z ACD(两直线平行,内错角相等)ZB=Z DCE(两直线平行,同位角相等)v B,C,E三点共线•Z BCE=180vZ BCE Z ACB Z ACD Z DCE•Z ACB Z ACD Z DCE=180•Z A+Z B+Z ACB=1803. 如图,证明:Z C+Z BAC Z B=180°证明:过A点作AD// BCv AD// BC•Z C=Z ADC(两直线平行,内错角相等)Z DAC Z B=180°(两直线平行,同旁内角互补)vZ DAC Z DAC Z CAB• Z DAC Z CAB Z B=180°vZ C=Z ADC•Z C+Z CAB Z B=180°4. 如图,证明:Z BAC Z C+Z B=180°证明:过A点作DE// BC,延长AC BC交DE于A点v DE// BC•Z C=Z FDA Z B=Z GAE(两直线平行,同位角相等)v D,A,E三点共线•Z DAE=180vZ DAE Z DFA Z FAG Z GAE•Z DFA+Z FAG Z GAE=180 v・Z GAE Z BAC(对顶角相等)•Z BAC Z C+Z B=180°5. 如图,证明:Z A+Z C+Z B=180°EEA证明:作直线DE// AC FE// AB交BC于 EA•••DE// AC•••/ AFE+Z DEF=180 (两直线平行,同旁内角互补)/ C=Z DEB(两直线平行,同位角相等)•FE// AB•••/ AFE+/ A=180°(两直线平行,同旁内角互补)Z B=Z FEC(两直线平行,同位角相等)•••/ A=Z DEF•B,C,E三点共线•••Z BCE=180•Z BCE Z DEB Z DEF Z FEC•Z DEB Z DEF Z FEC =180°•Z A+Z C+Z B=180°6. 如图,证明:Z A+Z B+Z C=180 证明:作DE// AC, FG// AB MN/ BC,都交于点O•DE// AC•Z AFO Z FOD=180 (两直线平行,同旁内角互补)•FG// AB•Z AFO Z A=180°(两直线平行,同旁内角互补)•Z A=Z FOD•MN/ BC•Z C=Z FNO(两直线平行,同位角相等)•DE// AC•Z FNO Z DO(两直线平行,同位角相等)•Z C=Z DOM•MN/ BC•Z B=Z DM(两直线平行,同位角相等)•FG// AB•Z DMO Z FON(两直线平行,同位角相等)•Z B=Z FNO•M,O,N三点共线•Z MON=180•Z MON Z DOM Z DOF Z FON•Z DOF Z DOM Z FON=180•Z A+Z B+Z C=1807. 如图,证明:Z BAC Z CBA Z ACB=180证明:作DE// AC, FG// AB MN/ BC,都交于点O延长AC交FG于点K,延长AB到点L,延长BC交FG于点P• MN// BC•Z ABC Z AHN Z ACB Z ANM(两直线平行,同位角相等)•AB // FG•Z AHN Z FON Z BAC Z AKO(两直线平行,同位角相等)•••/ ABC=/ FON••• DE// AC •••/ ANM N DOM(两直线平行,同位角相等)/ OKA N DOF(两直线平行,内错角相等)•••N ACB N DOM••• FG// AB•/ BAC N OKA(两直线平行,同位角相等)•N BAC N DOF••• M,O,N三点共线•N MON=18°vZ MON N DOM N DOF N FON•/ DOM N DOF N FON=180•N BAC N CBA N ACB=180A。

初中证明角相等的方法

初中证明角相等的方法

初中证明角相等的方法
证明角相等的方法有以下几种:
1. 使用直角三角形:如果两个角分别是一个直角三角形的两个锐角,那么这两个角相等。

2. 使用三角形内角和等于180度:如果两个角的内角和等于180度,则这两个角相等。

3. 使用垂直角性质:如果两个角互为垂直角,则这两个角相等。

4. 使用同位角性质:如果两个角位于平行线之间,并且分别与这两条平行线相交,那么这两个角相等。

5. 使用同旁内角性质:如果两个角位于两条平行线之间,并且位于同一侧,那么这两个角互为同旁内角,若一角为内角,则另一角为外角,这两个角相加等于180度。

6. 使用等角定理:如果两个角的度数相等,则这两个角相等。

根据具体问题,可以选择适用的方法进行证明。

三角形内角和证明方法

三角形内角和证明方法

三角形内角和证明方法三角形内角和是指三角形的三个内角的度数之和,它是三角形最基本的性质之一。

在本文中,我们将介绍一些关于三角形内角和的证明方法。

1.我们可以使用三角形内角和定理来证明三角形内角和的性质。

根据该定理,三角形的内角和等于180度。

证明方法:假设ABC是一个三角形,我们可以作三角形的外接圆O。

连接AO,BO,CO,以及连接AO与BC的垂线OD。

根据外接圆的性质,AO的长度等于半径R,而R为定值。

又因为AO与OD相交,所以AO的垂足D到外接圆的距离等于OD的长度。

由于OD与BC垂直,并且是BC的中线,所以OD的长度等于BC的一半,即OD=BC/2。

根据三角形ABC的内角和定理,∠A+∠B+∠C=180度,而∠A和∠B是三角形的两个锐角,它们可以理解为AO和BO在三角形内角A和B上的倒影,所以∠A和∠B的和等于AO和BO的倒影两个角之和,即∠A+∠B=∠DOA+∠DOB。

同理,∠B+∠C=∠BOC+∠BOA,∠C+∠A=∠COA+∠COD。

因为∠DOA+∠DOB+∠BOC+∠BOA+∠COA+∠COD=360度,而∠A+∠B+∠C=180度,所以∠DOA+∠DOB+∠BOC+∠BOA+∠COA+∠COD-∠A-∠B-∠C=360度-180度=180度。

同理∠DOA+∠COA=180度-∠A-∠C,∠DOB+∠BOA=180度-∠A-∠B,∠BOC+∠COD=180度-∠B-∠C。

将上述等式代入∠A+∠B+∠C=180度,得到:(180度-∠A-∠C)+(180度-∠A-∠B)+(180度-∠B-∠C)=180度。

化简上述等式,可以得到3*180度-2*(∠A+∠B+∠C)=180度,即3*180度=2*(∠A+∠B+∠C),进一步化简为∠A+∠B+∠C=180度。

证明完毕。

2.另一种证明三角形内角和的方法是使用拓扑学中的欧拉公式。

根据欧拉公式,一个简单多边形的顶点数、边数和面数之间存在着一个关系。

三角形内角和定理

三角形内角和定理

三角形内角和定理三角形是几何学中的基本图形之一,由三条边和三个内角组成。

在数学中,有许多定理和公式适用于三角形的性质和特征。

本文将介绍三角形内角和定理。

一、三角形的内角和三角形的内角和定理是指三角形内的三个角的度数之和等于180度。

即对于任意三角形ABC,有∠A +∠B +∠C = 180°。

二、三角形内角和定理的证明要证明三角形内角和定理,可以采用如下的方法之一:1. 通过平行线证明:设直线L与边AC平行,交边AB于点D。

则∠ACD与∠A之和为180°(同位角和对内错外角和为180°)。

同理,设直线M与边AB平行,交边AC于点E,则∠ABE与∠C之和为180°。

根据两段式证明原理,可以得出∠ACD + ∠C + ∠ABE = 180°,即∠A + ∠B + ∠C = 180°。

2. 通过角平分线证明:设三角形ABC的内角A的角平分线交边BC于点D。

则∠BAD =∠CAD,由此可得∠B + ∠BAD = ∠C + ∠CAD。

又由三角形内角和定理可知∠A + ∠B + ∠C = 180°,因此可以推出∠A + ∠B + ∠C =∠B + ∠BAD + ∠C + ∠CAD,即∠A + ∠B + ∠C = 180°。

三、三角形内角和定理的应用三角形内角和定理在解决各种与三角形相关的问题时起到了重要的作用。

下面以一些典型的应用为例进行说明:1. 求解缺失的角度:在已知三角形两个角的度数时,可以利用内角和定理求解第三个角的度数。

例如,若已知∠A = 30°,∠B = 60°,则根据内角和定理可得∠C = 180° - ∠A - ∠B = 90°。

2. 判断三角形类型:根据内角和定理,若三角形的内角和等于180°,则可以判断出该三角形是一个普通三角形。

而当内角和小于180°时,表示该图形是一个退化三角形(如直线),当内角和大于180°时,表示该图形不是一个三角形。

三角形内角和证明

三角形内角和证明

三角形内角和等于180度,这个定理可以通过多种方法进行证明。

以下是一些常见的证明方法:
1. 平行线法:在三角形的一边上延长一条线段,然后通过顶点作一条与另一边平行的线。

由于平行线的性质,可以得出三角形的两个内角与这条延长线上的一个平角相等,从而证明三角形内角和为180度。

2. 邻补角法:利用直线上的邻补角之和为180度的原理,将三角形的一个内角与其外角相加,由于外角等于不相邻的两个内角之和,因此可以得出三角形内角和为180度。

3. 折叠法:将三角形的一个角沿着它的对边折叠,使得这个角的顶点落在对边上,然后将另一个角也沿着它的对边折叠,同样使得这个角的顶点落在对边上,最后可以发现三个角的顶点都在一条直线上,形成一个平角,即180度。

4. 勾股定理法:在直角三角形中,直角的度数为90度,而另外两个锐角的和必然等于90度,因此整个三角形的内角和为180度。

虽然这个方法只适用于直角三角形,但它也是证明三角形内角和定理的一种方式。

5. 多边形分割法:将三角形分割成多个三角形,每个小三角形的内角和都是180度,将这些小三角形的内角和相加,再减去多余的角度(如果有的话),也可以得到原三角形的内角和为180度。

6. 角度转换法:利用角度的性质,将三角形的一个内角转换为另外两个内角的和,从而证明三个内角的和为180度。

7. 数学归纳法:这种方法涉及到更高级的数学概念,通过数学归纳法证明对于任意多边形成立的角度和公式,再应用于三角形的情况。

以上只是几种证明方法的简要介绍,每种方法都有其独特的数学逻辑和几何意义。

在学习数学的过程中,理解和掌握这些证明方法不仅能够帮助我们更好地理解三角形内角和定理,还能够锻炼我们的逻辑思维能力和空间想象能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形内角和180°证明方法
1.如图,证明∠B+∠C+∠BAC=180°
证明:过A点作DE∥BC
∵DE∥BC
∴∠B=∠DAB,∠C=∠EAC
(两直线平行,内错角相等)
∵D,A,E三点共线
∴∠DAE=180°
∵∠DAE=∠DAB+∠BAC+∠CAE
∴∠DAB+∠BAC+∠CAE=180°
∴∠B+∠C+∠BAC=180°
2.如图,证明:∠B+∠A+∠ACB=180°
证明:过C点作CD∥AB,延长BC交CD于C
∵CD∥AB
∴∠A=∠ACD(两直线平行,内错角相等)∠B=∠DCE(两直线平行,同位角相等)∵B,C,E三点共线
∴∠BCE=180°
∵∠BCE=∠ACB+∠ACD+∠DCE
∴∠ACB+∠ACD+∠DCE=180°
∴∠A+∠B+∠ACB=180°
3.如图,证明:∠C+∠BAC+∠B=180°
证明:过A点作AD∥BC
∵AD∥BC
∴∠C=∠ADC(两直线平行,内错角相等)
C
B
D
B C
D
E
A
∠DAC+∠B=180°(两直线平行,同旁内角互补) ∵∠DAC=∠DAC+∠CAB ∴∠DAC+∠CAB+∠B=180° ∵∠C=∠ADC
∴∠C+∠CAB+∠B=180°
4.如图,证明:∠BAC+∠C+∠B=180°
证明:过A 点作DE ∥BC ,延长AC 、BC 交DE 于A 点
∵DE ∥BC
∴∠C=∠FDA ,∠B=∠GAE (两直线平行,同位角相等) ∵D,A,E 三点共线 ∴∠DAE=180°
∵∠DAE=∠DFA+∠FAG+∠GAE ∴∠DFA+∠FAG+∠GAE=180° ∵·∠GAE=∠BAC (对顶角相等) ∴∠BAC+∠C+∠B=180°
5.如图,证明:∠A+∠C+∠B=180° 证明:作直线DE ∥AC ,FE ∥AB 交BC 于E
∵DE ∥AC
∴∠AFE+∠DEF=180°(两直线平行,同旁内角互补) ∠C=∠DEB (两直线平行,同位角相等) ∵FE ∥AB
∴∠AFE+∠A=180°(两直线平行,同旁内角互补) ∠B=∠FEC (两直线平行,同位角相等) ∴∠A=∠DEF
B
C
B
C
F
G
B
A
C E
∵B,C,E三点共线
∴∠BCE=180°
∵∠BCE=∠DEB+∠DEF+∠FEC
∴∠DEB+∠DEF+∠FEC =180°
∴∠A+∠C+∠B=180°
6.如图,证明:∠A+∠B+∠C=180°
证明:作DE∥AC,FG∥AB,MN∥BC,都交于点O
∵DE∥AC
∴∠AFO+∠FOD=180°(两直线平行,同旁内角互补)
∵FG∥AB
∴∠AFO+∠A=180°
(两直线平行,同旁内角互补)
∴∠A=∠FOD
∵MN∥BC
∴∠C=∠FNO
∵DE∥AC
∴∠FNO=∠DOM(两直线平行,同位角相等)∴∠C=∠DOM
∵MN∥BC
∴∠B=∠DMO(两直线平行,同位角相等)∵FG∥AB
∴∠DMO=∠FON(两直线平行,同位角相等)∴∠B=∠FNO
∵M,O,N三点共线
∴∠MON=180°
∵∠MON=∠DOM+∠DOF+∠FON B
C
G
E
∴∠DOF+∠DOM+∠FON=180° ∴∠A+∠B+∠C=180°
7. 如图,证明:∠BAC+∠CBA+∠ACB=180° 证明:作DE ∥AC ,FG ∥AB ,MN ∥BC ,都交于点O
延长AC 交FG 于点K ,延长AB 到点L ,延长BC 交FG 于点P
∵ MN ∥BC
∴∠ABC=∠AHN ,∠ACB=∠ANM (两直线平行,同位角相等) ∵ AB ∥FG
∴∠AHN=∠FON ,∠BAC=∠AKO (两直线平行,同位角相等)
∴∠ABC=∠FON ∵ DE ∥AC ∴∠ANM=∠DOM
(两直线平行,同位角相等) ∠OKA=∠DOF
(两直线平行,内错角相等) ∴∠ACB=∠DOM ∵ FG ∥AB
∴∠BAC=∠OKA (两直线平行,同位角相等) ∴∠BAC=∠DOF ∵ M,O,N 三点共线 ∴∠MON=180°
∵∠MON=∠DOM+∠DOF+∠FON ∴∠DOM+∠DOF+∠FON=180° ∴∠BAC+∠CBA+∠ACB=180°
C
B E
F
G
P。

相关文档
最新文档