拉伸试验处理数据
拉伸法测量金属丝弹性模量带数据处理

其中E是弹性模量,F是作用在金属丝上的力,A是金属丝的横截面积,ΔL是伸长量。
3. 误差分析:对于实验结果,需要考虑误差的影响。误差可能来自测量不准确、样品差异以及实验条件的变化。通过对实验数据的方差、标准差等统计指标进行分析,可以评估实验结果的可靠性。
4.重复实验:为了验证实验结果的准确性,可以重复进行实验并比较结果。如果多次实验的结果具有一致性,则可以说明实验方法的可靠性和稳定性。
2.安装样品:将金属丝样品安装在实验装置中
3.测量伸长量:在金属丝样品上标记两个点,然后在拉伸过程中测量两点之间的距离。可以使用光学显微镜或自动测量设备进行测量。
4.记录数据:在拉伸过程中,将金属丝的伸长量和作用在其上的力记录下来。通常,这些数据将以表格或图形的形式保存。
拉伸法测量金属丝弹性模量带数据处理
拉伸法是一种常用的测量金属丝弹性模量的方法。在该方法中,金属丝样品被逐渐拉伸,同时记录其伸长量和作用在其上的力。通过分析这些数据,可以计算出金属丝的弹性模量。下面将详细介绍拉伸法测量金属丝弹性模量的步骤以及如何处理数据。
一、实验步骤
1.样品准备:选择一段具有标准直径和长度的金属丝作为样品。为了避免弹性模量的差异,应选择相同批次生产的金属丝。
三、注意事项
1.选择合适的样品长度和直径:金属丝的长度和直径会对实验结果产生影响。因此,在选择样品时,应确保其具有标准的长度和直径,以减小误差。
2.控制实验条件:实验条件如温度、湿度和环境压力等都会对金属丝的弹性模量产生影响。因此,在整个实验过程中,应尽量控制这些条件保持不变。
3.正确安装样品:金属丝样品的安装质量会对实验结果产生影响。因此,需要仔细操作,确保金属丝样品在拉伸过程中不会发生弯曲或扭曲。
拉伸试验测定结果的数据处理和分析

拉伸试验测定结果的数据处理和分析The Standardization Office was revised on the afternoon of December 13, 2020拉伸试验测定结果的数据处理和分析一、试验结果的处理有以下情况之一者,可判定拉伸试验结果无效:(1)试样断在机械刻划的标距上或标距外,且造成断后伸长率不符合规定的最小值者。
(2)操作不当(3)试验期间仪器设备发生故障,影响了性能测定的准确性。
遇有试验结果无效时,应补做同样数量的试验。
但若试验表明材料性能不合格,则在同一炉号材料或同一批坯料中加倍取样复检。
若再不合格,该炉号材料或该批坯料就判废或降级处理。
此外,试验时出现2个或2个以上的缩颈,以及断样显示出肉眼可见的冶金缺陷(分层、气泡、夹渣)时,应在试验记录和报告中注明二、数值修约(一)数值进舍规则数值的进舍规则可概括为“四舍六入五考虑,五后非零应进一,五后皆零视奇偶,五前为偶应舍去,五前为奇则进一”。
具体说明如下:(1)在拟舍弃的数字中,若左边第一个数字小于5(不包括5)时,则舍去,即所拟保留的末位数字不变。
例如、将13.346修约到保留一位小数,得13.3。
(2)在拟舍弃的数字中,若左边第一个数字大于5(不包括5)时,则进1,即所拟保留的末位数字加1。
例如,将52. 463修约到保留一位小数,得52.5。
(3)在拟舍弃的数字中,若左边第一个数字等于5,其右边的数字并非全部为零时,则进1,所拟保留的末位数字加1。
例如,将2.1502修约到只保留一位小数。
得2.2。
(4)在拟舍弃的数字中若左边第一个数字等于5,其右边无数字或数字皆为零碎时,所拟保留的末位数字若为奇数则进1,若为偶数(包括0)则舍弃。
例如,将下列数字修约到只保留一位小数。
修约前 0.45 0.750 2.0500 3.15修约后 0.4 0.8 2.0 3.2(5)所拟舍弃的数字若为两位数字以上时,不得连续进行多次修约,应根据所拟舍弃数字中左边第一个数字的大小,按上述规则一次修约出结果。
拉伸试验实验报告结论

拉伸试验实验报告结论引言拉伸试验是材料力学基础实验之一,通过施加拉力来研究材料在受力下的变形性能。
本次实验旨在探究不同材料在受力下的拉伸特性,为工程领域应用提供科学依据。
实验方法1. 实验材料:选取三种常见工程材料作为试验样品,包括铝合金、塑料和钢材。
2. 实验仪器:采用万能试验机进行拉伸试验,记录并分析试验数据。
3. 实验过程:将试验样品制成标准试样,在试验机上进行拉伸试验,并记录试验数据。
实验结果通过对三种材料进行拉伸试验,得到了三种材料的应力-应变曲线。
根据试验数据计算得到了每个试样的断裂应变、断裂应力和杨氏模量等性能指标。
铝合金试样在拉伸过程中表现出较高的强度和较小的变形能力。
随着加载的增加,铝合金的应力逐渐上升,然后突然下降到零,试样断裂。
根据试验数据计算得到铝合金的断裂应变为0.2,断裂应力为200MPa,杨氏模量为70GPa。
塑料试样在拉伸过程中呈现出较高的变形能力和较低的强度。
随着加载的增加,塑料的应力逐渐上升,然后逐渐降低,直至试样断裂。
根据试验数据计算得到塑料的断裂应变为0.8,断裂应力为80MPa,杨氏模量为3GPa。
钢材试样在拉伸过程中表现出较高的强度和较小的变形能力。
随着加载的增加,钢材的应力逐渐上升,然后突然下降到零,试样断裂。
根据试验数据计算得到钢材的断裂应变为0.4,断裂应力为400MPa,杨氏模量为210GPa。
结论根据实验结果,可以得出以下结论:1. 不同材料具有不同的拉伸特性:铝合金表现出较高的强度和较小的变形能力,塑料表现出较高的变形能力和较低的强度,钢材表现出较高的强度和较小的变形能力。
2. 材料的断裂应变和断裂应力是评估材料性能的重要指标,这些指标可以用来确定材料在实际工作环境中的可靠性和耐用性。
3. 材料的杨氏模量可用于评估材料的刚度和弹性变形能力,对工程设计和材料选择具有重要意义。
综上所述,通过拉伸试验可以研究材料在受力下的拉伸特性,为工程领域的应用提供科学依据。
拉伸强度检测实验报告

拉伸强度检测实验报告1. 实验目的本实验旨在测量材料的拉伸强度,并通过实验结果评估材料的力学性能。
2. 实验装置与材料实验装置包括拉伸试验机、材料样本和测力计。
材料样本选取优质钢材。
3. 实验步骤1. 将样本固定在拉伸试验机上,确保加压装置与材料表面垂直,并施加适当拉伸预载荷来锚定样本。
2. 设置试验机以逐渐增加拉伸负荷的速度开始实验。
3. 记录拉伸试验期间的拉伸荷重和材料的变形情况,包括材料的延伸长度。
4. 当样本断裂时,停止试验并记录断裂点所受的最大拉伸荷重。
4. 实验数据记录与处理实验数据如下:负荷(N)延伸长度(mm)0 0100 2200 4300 6400 8500 10600 12700 14800 16900 181000 20根据实验数据,可以绘制负荷与延伸长度的关系曲线图。
图中的直线段表示材料的弹性阶段,非线性段表示材料的屈服阶段,而最后的急剧上升表示了材料的破坏阶段。
5. 结果分析与讨论根据负荷与延伸长度的关系曲线,可以得到材料的力学性能参数,包括屈服强度、抗拉强度和延伸率。
屈服强度是材料开始发生屈服时所受的最大拉伸荷重。
根据实验数据,屈服强度为600N。
抗拉强度是材料发生破坏时所受的最大拉伸荷重。
根据实验数据,抗拉强度为1000N。
延伸率是材料在破坏前所发生的延伸相对于初始长度的百分比。
根据实验数据,延伸率为200%。
通过对实验结果的分析,可以评估材料的力学性能。
本次实验所选取的优质钢材在拉伸强度方面表现出色,屈服强度和抗拉强度较高,同时还具有较大的延伸率,这意味着该材料在设计工程中能够承受更大的载荷而不易发生破坏。
6. 实验总结通过本次拉伸强度实验,我们了解了材料力学性能的基本概念和测量方法。
通过实验结果,我们可以对材料进行力学性能的评估,从而为工程设计提供有用的参考数据。
此外,实验过程中还需要注意安全操作规范,以确保实验人员的安全。
参考文献1. 张强. 实验力学[M]. 清华大学出版社, 2008.2. 材料力学实验教程. 张明宇主编. 机械工业出版社, 2005.注意:以上实验报告仅为示例,实际情况可能会有所不同。
金属材料拉伸试验报告

金属材料拉伸试验报告一、实验目的。
本次实验旨在通过对金属材料进行拉伸试验,了解金属材料在受力作用下的变形和破坏规律,掌握金属材料的拉伸性能参数,为材料的选用和设计提供依据。
二、实验原理。
拉伸试验是通过在金属试样上施加拉力,使试样产生塑性变形,最终达到破坏的一种试验方法。
在拉伸试验中,通常会测定材料的抗拉强度、屈服强度、断裂伸长率等指标。
三、实验步骤。
1. 准备试样,按照标准制备金属试样,保证试样的尺寸符合要求。
2. 安装试验机,将试样安装在拉伸试验机上,并调整好试验机的参数。
3. 进行拉伸试验,开始施加拉力,记录拉力-位移曲线,直至试样发生破坏。
4. 测定参数,根据拉力-位移曲线,测定材料的抗拉强度、屈服强度、断裂伸长率等参数。
四、实验数据及结果分析。
通过拉伸试验得到的数据如下:1. 抗拉强度,XXX MPa。
2. 屈服强度,XXX MPa。
3. 断裂伸长率,XX%。
根据实验数据分析可得,材料在受拉力作用下,首先表现出线性的弹性变形,随后进入塑性变形阶段,最终发生破坏。
在拉伸试验中,抗拉强度是材料抵抗拉伸破坏的能力,屈服强度是材料开始发生塑性变形的临界点,断裂伸长率则反映了材料的延展性能。
五、实验结论。
通过本次拉伸试验,我们得出了材料的抗拉强度、屈服强度、断裂伸长率等重要参数。
这些参数对于材料的选用和工程设计具有重要意义。
在实际工程中,我们应该根据材料的拉伸性能参数,合理选择材料,并设计合适的结构,以确保工程的安全可靠。
六、实验总结。
拉伸试验是对金属材料力学性能进行评价的重要手段,通过拉伸试验可以全面了解材料在受拉力作用下的性能表现。
因此,掌握拉伸试验的原理和方法,对于材料工程师和设计人员来说是非常重要的。
在今后的工作中,我们将继续深入学习材料力学知识,不断提高对材料性能的认识,为工程实践提供更加可靠的技术支持。
七、参考文献。
1. 《金属材料拉伸试验方法》。
2. 《金属材料力学性能测试手册》。
以上就是本次金属材料拉伸试验的报告内容,希望能对大家有所帮助。
拉伸试验测定结果的数据处理和分析

拉伸试验测定结果的数据处理和分析一、试验结果的处理有以下情况之一者,可判定拉伸试验结果无效:(1)试样断在机械刻划的标距上或标距外,且造成断后伸长率不符合规定的最小值者。
(2)操作不当(3)试验期间仪器设备发生故障,影响了性能测定的准确性。
遇有试验结果无效时,应补做同样数量的试验。
但若试验表明材料性能不合格,则在同一炉号材料或同一批坯料中加倍取样复检。
若再不合格,该炉号材料或该批坯料就判废或降级处理。
此外,试验时出现2个或2个以上的缩颈,以及断样显示出肉眼可见的冶金缺陷(分层、气泡、夹渣)时,应在试验记录和报告中注明二、数值修约(一)数值进舍规则数值的进舍规则可概括为“四舍六入五考虑,五后非零应进一,五后皆零视奇偶,五前为偶应舍去,五前为奇则进一”。
具体说明如下:(1)在拟舍弃的数字中,若左边第一个数字小于5(不包括5)时,则舍去,即所拟保留的末位数字不变。
例如、将13.346修约到保留一位小数,得13.3。
(2)在拟舍弃的数字中,若左边第一个数字大于5(不包括5)时,则进1,即所拟保留的末位数字加1。
例如,将52. 463修约到保留一位小数,得52.5。
(3)在拟舍弃的数字中,若左边第一个数字等于5,其右边的数字并非全部为零时,则进1,所拟保留的末位数字加1。
例如,将2.1502修约到只保留一位小数。
得2.2。
(4)在拟舍弃的数字中若左边第一个数字等于5,其右边无数字或数字皆为零碎时,所拟保留的末位数字若为奇数则进1,若为偶数(包括0)则舍弃。
例如,将下列数字修约到只保留一位小数。
修约前 0.45 0.750 2.0500 3.15修约后 0.4 0.8 2.0 3.2(5)所拟舍弃的数字若为两位数字以上时,不得连续进行多次修约,应根据所拟舍弃数字中左边第一个数字的大小,按上述规则一次修约出结果。
例如,将17.4548修约成整数。
正确的做法是:17.4548→17不正确的做法是:17.455→17.46→17.5→18(二)非整数单位的修约试验数值有时要求以5为间隔修约。
材料力学拉伸试验数据记录

《材料力学》低碳钢拉伸试验数据处理
组别成员:
试验编号试验材料试验方法试验员试样形状录入时间温度开环/闭环
2008级1班1组试验1金属拉伸圆形2010-6-23
试验编号试样序号闭环/开环直径宽度原始标距厚度引伸计标距
2008级1班1组试验119.960100050
试验编号面积面积平行长度上屈服力(N)上屈服强度(MPa)下屈服力(N)下屈服强度(MPa) 2008级1班1组试验177.912877.912811032794.5420.9124015.5308.24
试验编号弹性模量(GPa)非比例应力(MPa)最大力(N)抗拉强度(MPa)断裂伸长率(%)断后直径最大力总伸长率(%) 2008级1班1组试验1219.2431534773446.3135.25 5.910
试验编号断裂强度(MPa)屈服点延伸率(%)规定总延伸强度(MPa)断面收缩率(%)吸收功(N.m)断后标距最大力非比例伸长率(%) 2008级1班1组试验101064.79491.27135.2522.78
试验编号横梁速度(mm/min)断裂百分比(%)R值
2008级1班1组试验12300
%)。
材料的拉伸试验实验报告

材料的拉伸试验实验内容及目的(1)测定低碳钢材料在常温、静载条件下的屈服强度s σ、抗拉强度b σ、伸长率δ和断面收缩率ψ。
(2)掌握万能材料试验机的工作原理和使用方法。
实验材料及设备低碳钢、游标卡尺、万能试验机。
试样的制备按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。
其中最常用的是圆形截面试样和矩形截面试样。
如图1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。
平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。
圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。
定标距试样的l 与A 之间无上述比例关系。
过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。
夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。
对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。
(a )(b )图1 拉伸试样(a )圆形截面试样;(b )矩形截面试样实验原理进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。
低碳钢具有良好的塑性,低碳钢断裂前明显地分成四个阶段:弹性阶段:试件的变形是弹性的。
在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。
屈服(流动)阶段:应力应变曲线上出现明显的屈服点。
这表明材料暂时丧失抵抗继续变形的能力。
这时,应力基本上不变化,而变形快速增长。
通常把下屈服点作为材料屈服极限(又称屈服强度),即AF ss =σ,是材料开始进入塑性的标志。
结构、零件的应力一旦超过屈服极限,材料就会屈服,零件就会因为过量变形而失效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用origin9处理拉伸试验的数据,拉伸试验用了引伸计,求材料的屈服强度和抗拉强度。
一、数据的导入和画图。
1.将拉伸数据导入origin9中。
点击如图所示的按钮。
然后在跳出来的Import Wizard-Source
对话框里选择拉伸试验的路径的文件,Add File(s)并OK,再点击Import Wizard-Source对话框中的Finish按钮。
数据导入后,选中不要的数据的行点击鼠标右键Delete。
2.处理试验的数据的拉力和伸长量,将数据改为应力和应变数据。
将拉力/试样的横截面积,伸长量/标距*100。
选中拉力的列,右击下图:
输入计算公式,得到正应力(2.00和12.30为试验样品的厚度和宽度)。
伸长的列操作类似,如下图:
*100是因为在坐标中需要%为横坐标。
3.将应力的列设为Y,应变的列设为X。
操作如下,选中应力的列右击set as为Y。
应变的列设为X。
4.选中两列并用Line做出曲线。
并对曲线的横纵轴进行调整为0为起点。
二、进行直线的拟合并求出材料的弹性模型。
1.选中应力应变曲线中需要拟合的线段的范围。
点击Data Selector旁边的图案,拖动红色选择适当范围,并双击红线确认范围。
3.点击Analysis,Fitting, Linear fit,Open Dialog。
在Fit Options中的Fix Intercept打钩固定
截距为0,使拟合的直线过原点。
点击Ok拟合选中范围的曲线。
在随后跳出来的对话框里选择No。
4.将0.2%塑性应变时的应力作为屈服指标。
点击Graph, Add Function Graph,输入Y=(x-2)*slope, slope为斜率(材料的弹性模量)。
用读入这条直线与应力应变的交点就是屈服强度。
5.用Excel找出纵坐标的最大值,就是抗拉强度。