数字图像目标分割与提取研究背景意义目的与现状

合集下载

图像分割 实验报告

图像分割 实验报告

图像分割实验报告《图像分割实验报告》摘要:图像分割是计算机视觉领域的重要研究方向,它在许多领域都有着重要的应用价值。

本实验旨在探究图像分割算法在不同场景下的表现,并对比不同算法的优缺点,为图像分割技术的进一步发展提供参考。

一、实验背景图像分割是指将图像划分成若干个具有独立语义的区域的过程。

图像分割技术在医学影像分析、自动驾驶、图像识别等领域都有着广泛的应用。

因此,对图像分割算法的研究和优化具有重要意义。

二、实验目的本实验旨在通过对比不同图像分割算法在不同场景下的表现,探究其优劣,并为图像分割技术的进一步发展提供参考。

三、实验内容1. 数据准备:收集不同场景下的图像数据,包括自然景观、医学影像、交通场景等。

2. 算法选择:选择常用的图像分割算法,如基于阈值的分割、边缘检测、区域生长等。

3. 实验设计:将不同算法应用于不同场景的图像数据上,对比它们的分割效果和计算速度。

4. 结果分析:对比不同算法的优缺点,并分析其适用场景和改进空间。

四、实验结果通过实验我们发现,在自然景观图像中,基于阈值的分割算法表现较好,能够有效地将图像分割成不同的颜色区域;而在医学影像中,边缘检测算法表现更为出色,能够准确地识别出器官的边缘;在交通场景中,区域生长算法表现较好,能够有效地区分不同的交通标志和车辆。

五、结论不同的图像分割算法在不同场景下有着不同的表现,没有一种算法能够适用于所有场景。

因此,我们需要根据具体的应用场景选择合适的图像分割算法,或者结合多种算法进行优化,以达到更好的分割效果。

六、展望未来,我们将继续探究图像分割算法的优化和改进,以适应不同场景下的需求。

同时,我们还将研究图像分割算法在深度学习和人工智能领域的应用,为图像分割技术的发展贡献力量。

通过本次实验,我们对图像分割算法有了更深入的了解,也为其在实际应用中的选择提供了一定的指导。

希望我们的研究能够为图像分割技术的发展做出一定的贡献。

图像分割开题报告

图像分割开题报告

图像分割开题报告1. 引言图像分割是计算机视觉领域的重要任务之一,其目标是将图像划分成若干个具有特定语义的区域。

图像分割在图像处理、目标识别、图像分析等领域有着广泛的应用。

本文将介绍图像分割的定义和意义,以及目前的研究现状和挑战。

2. 图像分割的定义和意义图像分割是指将图像划分成多个具有特定语义的区域的过程。

通常情况下,图像分割的结果是一个包含不同物体或者场景的分割图像。

图像分割的意义在于提取图像中的感兴趣区域,并进一步对这些区域进行分析和识别。

通过图像分割,我们可以获得更多关于图像中不同部分的信息,进而实现诸如目标检测、目标跟踪和图像分析等相关任务。

3. 目前的研究现状目前,图像分割技术已经取得了重要的进展,主要分为传统方法和深度学习方法两大类。

3.1 传统方法传统的图像分割方法主要基于低级特征、区域生长、边缘检测等手工设计的算法。

这些方法通常依赖于像素间的局部统计信息,并使用一些启发式规则进行分割。

传统方法在一些简单场景下具有较好的效果,但是在复杂的图像中往往难以处理,且对于噪声和光照变化敏感。

3.2 深度学习方法近年来,深度学习方法在图像分割领域取得了巨大的突破。

基于深度学习的图像分割方法主要基于卷积神经网络(Convolutional Neural Network,CNN)进行图像特征的学习和提取。

通过构建全卷积网络(Fully Convolutional Network,FCN),可以实现端到端的图像分割。

此外,一些改进的网络结构如U-Net、SegNet和Deeplab等也取得了很好的分割效果。

深度学习方法相比传统方法,能够更好地处理复杂场景下的图像分割问题,但是其需要大量的标注数据和高性能的计算资源。

4. 图像分割的挑战虽然图像分割技术已经取得了很大的进展,但仍然面临一些挑战。

4.1 复杂场景下的分割对于复杂的场景,例如多物体重叠、光照变化、遮挡等情况,图像分割仍然是一个具有挑战性的问题。

数字图像处理的发展现状及研究内容概述

数字图像处理的发展现状及研究内容概述

数字图像处理的发展现状及研究内容概述数字图像处理的发展现状及研究内容概述人类传递信息的主要媒介是语音和图像。

据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,所以作为传递信息的重要媒体和手段——图像信息是十分重要的,俗话说“百闻不如一见”、“一目了然”,都反映了图像在传递信息中独到之处。

目前,图像处理技术发展迅速,其应用领域也愈来愈广,有些技术已相当成熟并产生了惊人的效益,当前图像处理面临的主要任务是研究心的处理方法,构造新的处理系统,开拓更广泛的应用领域。

数字图像处理(Digital Image Processing)又称为计算机数字图像处理,它是指将数字图像信号转换成数字信号并利用计算机对其进行处理的过程。

数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和数字图像信息。

数字图像处理作为一门学科大约形成于20世纪60年代初期。

早期的数字图像处理的目的是改善数字图像的质量,它以人为对象,以改善人的视觉效果为目的。

数字图像处理中,输入的是质量低的数字图像,输出的是改善质量后的数字图像,常用的数字图像处理方法有数字图像增强、复原、编码、压缩等。

1:数字图像处理的现状及发展数字图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使数字图像处理成为一门引人注目、前景远大的新型学科。

随着数字图像处理技术的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。

人们已开始研究如何用计算机系统解释数字图像,实现类似人类视觉系统理解外部世界,这被称为数字图像理解或计算机视觉。

很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。

其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。

医学图像分割的意义、概念、分类和研究现状

医学图像分割的意义、概念、分类和研究现状

第1章绪论1.1 引言当今社会,是知识经济的社会,高新科技飞速发展。

入们在迅速发展新科技的同时,也越来越关注自身的生活环境与医疗条件。

健康,越来越成为每一个入倾心关注和孜孜追求的意境。

然焉,群学技术是一把双刃剑,它带给人们得到的同时也在破坏着我们赖以生存的环境,从而严重威害人类的健康。

堪愧的环境,沉重的压力以及激烈的竞争,都侵入们的健康走入低餐,从而健康成为全人类共同关注的目标。

因此医学的发展面临严重的挑战,作为医生诊断和治疗重要手段的医学影像学也得到了相应的发展。

现今,医学图像在医疗诊断中起着不可低估的重要作用。

计算机断层扫描、核磁共振(Magnetic Resonance,MR)、超声(Ultras叫nd)以及其它成像技术等,都是无侵害性的器宫体外成像的有力手段。

但是,医学图像还有一个显著的特点,由于受成像设备的影响、局部体效应(同一个体素中包含多种组织)、患者的体位运动和检查床的匀速直线运动,使得医学图像不可避免地盘现噪声和伪影,边缘模糊和信号强度不均匀现缓,例如信号强度在同一种组织中会出现大幅度的变化或在同一个物体中也不均匀。

此外,在图像形成和传输的过程中,图像的像质也会受到一定的影响,这些都给医生下达准确的诊断造成了一定的障碍。

为了提高医学图像的可读性,使得医生可以对人体的解割结构以及病变部位进行更有效的观察和诊断,提离诊断的准确率,医学图像处理从而成为了一门应用性很强的学科而且得到了长足的发展。

1.2 医学图像分割的意义、分类及其研究现状1.2.1 医学图像分割的意义医学图像分割在医学研究、临床诊断、病理分析、手术计划、影像信息处理、计算机辅助手术等医学研究与实践领域中有着广泛的应用和研究价值,具体表现为以下几个方面:(1) 用于感兴趣区域提取,便于医学图像的分析和识别。

如不同形式或来源的医学图像配准与融合,解剖结构的定量度量、细胞的识别与计数、器官的运动跟踪及同步等;(2)用于人体器官、组织或病灶的尺寸、体积或容积的测量。

基于深度学习的图像分割与分析技术研究

基于深度学习的图像分割与分析技术研究

基于深度学习的图像分割与分析技术研究一、引言近年来,深度学习技术在图像处理领域的应用取得了巨大的进展,尤其是在图像分割和分析方面。

基于深度学习的图像分割技术能够自动地将数字化图像分成若干个互不重叠的区域,并将每个区域赋予相应的语义标签。

它具有很强的鲁棒性和适应性,可以用于各种不同类型的图像,比如医学影像、自然图像等。

本文将着重探讨基于深度学习的图像分割与分析技术在各领域的应用和研究进展。

二、图像分割技术的研究现状及发展趋势图像分割是指将数字化图像中的像素划分成不同的区域,并给每个区域赋予一个标签,如前景、背景、物体等。

目前,图像分割技术已被广泛应用于各个领域,例如医学成像、自然图像处理、人脸识别、智能交通系统和机器人等领域。

传统的图像分割方法主要是基于像素颜色信息、纹理信息和边缘信息等特征,而这些方法在复杂情况下会出现失效的情况。

而基于深度学习的图像分割算法以其卓越的表现和高精度被越来越多地应用。

当前,基于深度学习的图像分割技术主要有三种方法,即FCN、U-Net和Mask R-CNN。

FCN(Fully Convolutional Networks)是第一种基于深度学习的图像分割算法,它使用全卷积神经网络模型将任何尺寸的图像转换为同样大小的分割结果。

U-Net是改进后的FCN,可以对图像进行更加细致的像素级分割。

Mask R-CNN是一种全新的基于深度学习的分割模型,能够同时进行目标检测和分割。

三、医学影像分析技术的研究现状及发展趋势医学影像分析技术是目前图像分割领域的重要应用方向之一,其主要目的是对医学图像中的病变区域进行分割和识别。

这一领域的主要研究方向是癌症图像的分割和诊断,涉及到肿瘤结构分析、病灶标定、图像配准、肿瘤细胞分类等。

基于深度学习的医学影像分析技术已经成为识别医学影像中病变区域的有效方法。

例如,使用U-Net模型对医学影像进行肺部结节分割,可以获得极高的准确率。

此外,基于深度学习的医学影像分析技术还可以实现癌症治疗方案的个性化制定,为临床医生提供更好的决策支持。

数字图像目标分割与提取研究背景意义目的与现状

数字图像目标分割与提取研究背景意义目的与现状

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 数字图像目标分割与提取研究背景意义目的与现状数字图像目标分割与提取研究背景意义目的与现状 1 背景数字图像目标分割与提取是数字图像处理和计算机视觉领域中一个备受关注的研究分支。

因为在目标分割与提取过程中可以利用大量的数字图像处理的方法,加上其在计算机视觉、模式识别等领域中的广泛应用,都吸引了众多研究者的注意。

相信对这一问题的深入研究不仅会不断完善对这一问题的解决,而且必将推动模式识别、计算机视觉、人工智能等计算机科学分支的发展。

图像分割和边缘检测的问题在近二十年中得到了广泛的关注和长足的发展,国内外很多研究人士提出了很多方法,在不同的领域取得了一定的成果。

但是对于寻找一种能够普遍适用于各种复杂情况的准确率很高的分割和检测算法,还有很大的探索空间。

边缘提取和分割是图像分析的经典研究课题之一,目前的理论和方法仍存在许多不足之处,仍在不断改进和发展。

由于图像的多义性和复杂性,许多分割的工作无法依靠计算机自动完成,而手工分割又存在工作量大,定位不准确的难题,因此,人们提出了一些人工交互和计算机自动定位相结合的方法,利用各自的优势,实现目标轮廓的快速定位。

1/ 7相信这些交互式方法的应用,必将推动图像目标分割与提取这一既具有广阔的应用前景又具有重要的学术价值的课题的进一步研究,也必将成为一个更为独立和活跃的研究领域[1]。

近年来, DSP 技术的发展不断将数字信号处理领域的理论研究成果应用到实际系统中,并且推动了新的理论和应用领域的发展,对图像处理等领域的技术发展也起到了十分重要的推动作用。

基于 DSP 的图像处理系统也被广泛的应用于各种领域。

从图像处理技术的发展来看,实时性在实际中有着广泛的应用。

图像分割算法的研究的开题报告

图像分割算法的研究的开题报告

图像分割算法的研究的开题报告一、选题背景图像分割是计算机视觉领域中的一个重要分支,它的目标是将图像分成若干个部分或区域,每个部分或区域可以代表图像中的不同对象或区域。

目前,图像分割已经被广泛应用于机器视觉、自然语言处理、医学图像分析、智能交通等领域。

然而,由于图像的复杂性和多样性,有效的图像分割算法一直是计算机视觉领域的一个重要研究课题。

因此,本文将探讨图像分割算法的研究,并对其进行深入分析和研究。

二、选题目的和意义图像分割算法是计算机视觉领域的一个核心问题,它不仅可以用于目标检测和识别,还可以用于图像处理、图像识别等相关领域。

因此,本文的目的是探索图像分割算法的研究,深入分析算法的优缺点,并提出一种改进的算法。

本文研究的结果可以为计算机视觉领域的相关研究和开发提供参考,同时也可以为未来的医疗、智能交通等领域带来越来越多的创新和应用。

因此,本文具有重要的理论和实践意义。

三、研究内容和方法本文将从以下几个方面对图像分割算法进行研究:1. 了解和分析目前常用的图像分割算法,并比较它们的优缺点;2. 探讨图像分割算法的基本原理和数学模型;3. 提出一种改进的图像分割算法,并对其进行测试和评估;4. 分析和总结算法改进的效果和局限性。

在研究方法方面,本文将采用文献调查、实验和数学建模等方法。

通过对已有研究成果的分析和总结,我们可以提出一种改进的算法,并通过实验验证其可行性和优越性。

四、论文预期成果本文预期的成果包括:1. 对目前常用的图像分割算法进行分析和比较,并总结其优缺点;2. 对图像分割算法的基本原理和数学模型进行探讨和分析;3. 提出一种改进的图像分割算法,并对其进行测试和评估;4. 分析和总结算法改进的效果和局限性,并提出未来的研究方向。

五、研究进度安排1. 第一周:对图像分割算法的历史和现状进行调研,并撰写相关调研报告。

2. 第二周:研究和分析常用的图像分割算法,并撰写比较和总结报告。

3. 第三周:探讨图像分割算法的基本原理和数学模型,并撰写研究报告。

遥感数字图像处理图像分割与线性地物信息提取实验报告

遥感数字图像处理图像分割与线性地物信息提取实验报告

(2)线性地物信息提取效果较好,能够准确地提取出不同的线性地物信息,如 道路、河流等。
1.
实验总结与展望
通过本次实验,我们学习了利用 ENVI 软件进行 RS 图像分割和线性地物信息提
取的方法。我们发现,分割和信息提取的效果都受到算法和参数的选择影响。因
此,在实际应用中,需要根据不同的场景和需求选择合适的算法和参数,以达到
最佳的处理效果。同时,我们也需要注意图像预处理的重要性,它能够有效地提
高后续处理的准确性和可靠性。
未来,随着遥感技术的不断发展和应用场景的扩大,RS 图像分割和信息提取的 需求也将越来越大。因此,我们需要不断学习和掌握最新的算法和技术,以应对 不同场景和需求的处理要求,并且不断完善和优化处理流程,提高处理效率和精 度。
1.
实验背景与目的
遥感图像是一种重要的地学信息获取手段,可以获取大面积的地表信息。但是, 由于图像中存在着大量的地物信息,对于这些信息的快速、准确的提取是遥感研
究中的一个重要问题。本实验旨在利用 ENVI 软件对 RS 图像进行分割,并提取 其中的线性地物信息,为遥感图像处理提供实际的应用。
1.
实验步骤
(1)数据准备:获取需要处理的遥感图像,并导入 ENVI 软件中。
(2)图像预处理:对导入的遥感图像进行预处理,包括辐射校正、大气校正、 几何校正等,以便于后续的处理。
(3)图像分割:利用 ENVI 软件提供的图像分割工具,对遥感图像进行分割。 其中,可以根据需要选择不同的分割算法和参数设置,以达到最佳的分割效果。
(4)线性地物信息提取:根据已分割好的图像,利用 ENVI 软件提供的特征提
取工具,提取其中的线性地物信息。其中,可以根据需要选择不同的特征提取算 法和参数设置,以达到最佳的信息提取效果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像目标分割与提取研究背景意义目的与现状
1 背景
数字图像目标分割与提取是数字图像处理和计算机视觉领域中一个备受关注的研究分支。

因为在目标分割与提取过程中可以利用大量的数字图像处理的方法,加上其在计算机视觉、模式识别等领域中的广泛应用,都吸引了众多研究者的注意。

相信对这一问题的深入研究不仅会不断完善对这一问题的解决,而且必将推动模式识别、计算机视觉、人工智能等计算机科学分支的发展。

图像分割和边缘检测的问题在近二十年中得到了广泛的关注和长足的发展,国内外很多研究人士提出了很多方法,在不同的领域取得了一定的成果。

但是对于寻找一种能够普遍适用于各种复杂情况的准确率很高的分割和检测算法,还有很大的探索空间。

边缘提取和分割是图像分析的经典研究课题之一,目前的理论和方法仍存在许多不足之处,仍在不断改进和发展。

由于图像的多义性和复杂性,许多分割的工作无法依靠计算机自动完成,而手工分割又存在工作量大,定位不准确的难题,因此,人们提出了一些人工交互和计算机自动定位相结合的方法,利用各自的优势,实现目标轮廓的快速定位。

相信这些交互式方法的应用,必将推动图像目标分割与提取这一既具有广阔的应用前景又具有重要的学术价值的课题的进一步研究,也必将成为一个更为独立和活跃的研究领域[1]。

近年来,DSP技术的发展不断将数字信号处理领域的理论研究成果应用到实际系统中,并且推动了新的理论和应用领域的发展,对图像处理等领域的技术发展也起到了十分重要的推动作用。

基于DSP的图像处理系统也被广泛的应用于各种领域。

从图像处理技术的发展来看,实时性在实际中有着广泛的应用。

实时图像处理系统设计的难点是如何在有限的时间内完成大量图像数据的处理。

因为要对图像进行实时处理,所以为了实现实时和快速,高效的处理,在这个系统中要求我们的图像处理速度要达到一定的速度,而图像处理的速度是由算法的执行时间、视频输入输出延迟以及外部数据存储器与DSP的数据交换效率等因素决定。

算法执行时间与CPU 速度有关;图像处理的速度既图像处理所要用的时间,它主要是由算法决定的。

算法执行的指令的多少决定了处理速度。

而图像的处理的算法包含有大量的算法指令,为了快速的处理大数据量的多媒体信息,特别是活动图像信息,同时又能灵活的支持多种不同的应用,DSP的应用势在必行。

相比于通用的DSP,用于多媒体应用的专用DSP集成了许多专用模块,这些模块用硬件加速很多通用的多媒体方面的大量算法明晰的处理、实时性强等要求.由于图像处理的数据量大,数据处理相关性高,实时的应用环境决定严格的帧、场时间限制,因此实时图像处理系统必须具有强大的运算能力。

各种高性能DSP不仅
可以满足在运算性能方面的需要,而且由于DSP的可编程性,还可以在硬件一级获得系统设计的极大灵活性。

实时图像处理技术在目标跟踪、机器人视觉、智能交通监控中都得到越来越多的应用。

2 实时图像处理系统国内外现状
实时图像处理系统技术随着图像处理与计算机视觉的广泛应用而异军突起,这种系统已广泛应用于各行各业。

它们反过来也促进了图像处理与计算机视觉理论的进一步深入、提高。

2.1 实时图像处理系统的发展和现状
图像处理的发展与计算机以及硬件技术的发展是紧密联系的。

最早发表有关计算机处理图像信息文章的时间要追溯到20世纪50年代,随着计算机以及硬件技术的高速发展,性能大幅度提高,而价格却大幅度下降,有力地推动了图像处理技术的发展,实时图像处理系统的发展大致上可以划分为四个阶段。

①图像处理系统发展的第一阶段
第一阶段的时间大体上是20世纪60年代到80年代中期,这个时期的图像处理系统采用机箱式结构,主流计算机采用小型机,并采用双屏操作方式,所以系统的体积比较大,功能也比较强,当然价格也比较贵。

②图像处理系统发展第二阶段
第二阶段的时间大体上是20世纪80年代中期到90年代初期,这个阶段的主要特点是小型化,外形不再是机箱式而是插卡式,绝大部分都采用PC系列微机构成图像处理系统,计算机总线采用ISA(Industrial Standard Architecture)总线,并采用双屏操作方式。

图像卡的体积较小,一般图像卡都是采用大规模集成电路甚至是制作专用集成电路,从而使价格降低了。

③图像处理系统发展第三阶段
第三阶段的时间大体上是从20世纪90年代初开始,这一阶段图像处理系统突出特点是单屏方式,以微机PCI总线(Peripheral Component Interconnect bus)为支持的单屏方式和以图像压缩传输为特点的图像通信方式成为主流方式,但仍然主要是依靠微机来进行图像处理,在Windows平台上编制图像处理软件包。

④基于DSP的图像处理系统
随着微型计算机的发展和普及,现代图像处理方式越来越向高速、小型、简洁的方向发展,图像处理逐渐由专用、笨重的图像处理机过渡到通用、小型方式,但是由于图像数据量大,算法复杂,使用软件来处理时,软件往往局限于计算机的配置,使得图像处理速度比较慢、实时性差、价格高,不能适应恶劣工作环境。

与此同时数字信号处理各种算法日趋完善,特别是运算能力很强的数字信号处理器(DSP)的问世,使现代图像处理系统进入了和计算机紧密结合的全数字体制的阶段。

以DSP为核心的硬件系统同样可以用来进行图像处理,为这个问题的解决带来了新的途径。

DSP的运算速度和运算精度不断地提高,片内的存储容量不断地加大,系统功能、数据处理能力以及与外部设备的通信功能不断地增强,完全可以脱离PC 机开发出基于DSP的图像系统。

这种设计方案的优点是设计简单、灵活,成本比较低,便于实际中使用。

2.2 图像分割概述
图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,至今已提出上千种分割算法,但因尚无通用的分割理论,现提出的分割算法大都是针对具体问题的,并没有一种适合所有图像的通用分割算法。

另外,还没有制定出选择适用分割算法的标准,这给图像分割技术的应用带来许多实际问题。

最近几年又出现了许多新思路、新方法或改进算法,对一些经典方法和新出现的方法作了概述。

并将图像分割方法分为阈值分割方法、边缘检测方法、区域提取方法和结合特定理论工具的分割方法。

早期的图像研究中,图像的分割方法主要可以分为两大类。

一类是边界方法,这种方法的假设是图像分割结果的某个子区域在原来的图像中一定会有边缘存在;一类是区域方法,这种方法的假设是图像分割结果的子区域一定会有相同的性质,而不同区域的像素没有共同的性质。

这两种方法都有缺点和优点,有的学者也试图把两者结合起来进行图像分割,随着计算机处理能力的提高,很多方法不断涌现,如基于彩色分量分割、纹理图像分割。

所使用的教学工具和实验手段也是不断的扩展,从时域信号到频域信号处理,近来小波变换也应用在图像分割当中。

3 DSP实时图像分割的目的和意义
在现代工业自动化生产中,涉及到产品检验、生产监视和零部件缺陷识别等多方面的应用,例如对零部件批量生产过程中的尺寸缺陷检测,零件的缺陷检查,IC上的自动字符识别,自动装配过程中的完整性检查,电子装配线的自动定位,机器人的引导和零件的识别等。

利用图像处理的方法,对感兴趣区域进行分割从而进一步的分析。

军事上对图像处理的应用是最早的。

对地球上所有感兴趣的地区进行空中摄影后,每天得到成千上万张照片,以前雇佣成千上万人对照片进行分处理,现在则可以用DSP技术进行处理。

另一方面,在六十年代中期以后,发射了陆地卫星
和天空实验室,都是对地球进行资源遥感的,他们利用卫星拍摄的图像进行处理,将数据用于资源普查、农业规划、农作物产量估算、病虫害监测、森林调查等许许多多的方面。

图像处理在模式识别中的应用场所的安全保障。

比如对人员进行身份验证,如新兴的虹膜图像识别门禁系统。

这其具有唯一性、稳定性、可采集性、非接触性等优点被广泛的认为是最有前途的生物识别技术。

将虹膜图像识别技术应用于门禁系统可以增强安全防范手段,为银行、保密设施、档案室等机要部门的现代化管理、监测、控制提供重要安全技术手段。

另外基于DM642图像分割技术广泛应用于医学地理勘探等很多领域。

综上所述,利用通用可编程DSP芯片实现图像处理较之其它方式具有一定的优越性,而且DSP芯片的可编程性和强大的数据处理能力,可以快速的实现信号处理算法,成为目前图像处理系统的最佳选择。

本文对基于DSP实时图像处理平台进行深入研究,并针对具体的应用,开发出相应的软件、硬件系统。

相关文档
最新文档