固体物理考试习题大全
固体物理练习题

固体物理练习题
一,名词解释:
倒格子,黄昆方程,布洛赫定理的结论与推论,费米面,费米分布函数,本征激发
二,简答题
正格原胞与倒格原胞的体积有什么关系,试证明之。
晶体常数为a 的一维晶格,其电子波函数为:3()cos()x i x a
πψ=,求电子在该状元下的波矢
利用德拜模型计算热容比并讨论与爱因斯坦模型的不同点。
三,计算题
设二维正三角形晶格中原子间距为a ,试根据紧束缚近似的结果,求出s 态电子能量E(k)的表达式。
设一长度为L 的一维简单晶格,原子质量为m ,间距为a ,原子间的相互作用
势可表示成()⎪⎭
⎫ ⎝⎛-=+a A a U δδcos 。
试由简谐近似求 (1)色散关系;
(2)模式密度()ωD ;
(3)晶格热容(列出积分表达式)。
初中固体物理试题及答案

初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体的三种基本类型是()。
A. 晶体、非晶体、准晶体B. 晶体、非晶体、多晶体C. 晶体、非晶体、单晶体D. 晶体、多晶体、准晶体答案:A2. 晶体的特点是()。
A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B3. 非晶体与晶体的主要区别在于()。
A. 原子排列方式B. 原子大小C. 原子种类D. 原子数量答案:A4. 晶体的熔点通常比非晶体的熔点()。
A. 低B. 高C. 相同D. 不可比较答案:B5. 准晶体是一种介于晶体和非晶体之间的固体,其特点是()。
A. 完全无序排列B. 长程有序但不具备周期性C. 规则排列D. 完全有序排列答案:B6. 晶体的X射线衍射图样是()。
A. 无规则的斑点B. 规则的点状图案C. 连续的曲线D. 无规则的条纹答案:B7. 固体的热膨胀系数是指()。
A. 固体在加热时体积不变B. 固体在加热时体积变化的比率C. 固体在冷却时体积变化的比率D. 固体在加热时质量变化的比率答案:B8. 固体的导电性主要取决于()。
A. 原子的质量B. 原子的排列方式C. 原子的体积D. 原子的数量答案:B9. 金属导电的原因是()。
A. 金属内部有自由移动的电子B. 金属内部有自由移动的原子C. 金属内部有自由移动的离子D. 金属内部有自由移动的分子答案:A10. 半导体的导电性介于()之间。
A. 金属和绝缘体B. 金属和非金属C. 非金属和绝缘体D. 金属和晶体答案:A二、填空题(每题2分,共20分)1. 晶体的三种基本类型是单晶体、多晶体和________。
答案:准晶体2. 晶体的原子排列具有________性。
答案:长程有序3. 非晶体的原子排列具有________性。
答案:短程有序4. 晶体的熔点较高是因为其内部________。
答案:原子排列紧密5. 准晶体的原子排列具有________性。
固体物理期末考试题及答案

固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。
晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。
例如,立方晶系的晶格常数a是指立方体的边长。
7. 简述能带理论的基本概念。
能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。
在固体中,电子的能量不是连续的,而是分成一系列的能带。
价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。
8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。
在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。
三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。
求该链的声子频率。
解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。
解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。
固体物理考试习题大全

固体物理考试习题⼤全晶体结构 20 分晶体衍射 10 分晶格振动 20分与晶体的热学性质 18分能带理论和晶体中电⼦在电场磁场中的运动 36 分⾦属电⼦论和半导体电⼦论 5—10分1. 晶体的微观结构、原胞、W-S 原胞、惯⽤单胞的概念、常见的晶体结构、晶⾯与晶向的概念,并能进⾏必要的计算;倒格⼦与布⾥渊区、晶体X 射线衍射,能计算⼏何结构因⼦和衍射极⼤条件。
2. 晶体结合的普遍特性;离⼦键结合和范德⽡⽿斯结合的结合能计算。
3. 简谐近似和最近邻近似,双原⼦链的晶格振动;周期边界条件,晶格振动的量⼦化与声⼦,⾊散关系;爱因斯坦模型和德拜模型,晶体的⽐热,零点振动能计算。
4. 经典⾃由电⼦论:电⼦运动⽅程,⾦属的直流电导,霍⽿效应,⾦属热导率。
量⼦⾃由电⼦论:能态密度,费⽶分布,费⽶能级,电⼦热容量。
5. 布洛赫定理及其证明;近⾃由电⼦近似的思想⼀维和⼆维近⾃由电⼦近似的能带计算,紧束缚近似的思想,紧束缚近似的计算(S 能带的的⾊散关系)。
理解半导体Ge 、Si 的能带结构。
6.波包的准经典运动概念,布洛赫电⼦的速度,加速度和有效质量和相应的计算,空⽳的概念;导体、半导体和绝缘体的能带解释,原⼦能级和能带的对应;朗道能级,回旋共振,德×哈斯—范×阿尔芬效应,碱⾦属和贵⾦属的费⽶⾯。
7.分布函数法和恒定外电场下玻⽿兹曼⽅程的推导。
理解电⼦声⼦相互作⽤,晶格散射和电导,电阻的来源。
8. 半导体基本的能带结构,半导体中的施主和受主杂质,P 型半导体和N 型半导体,半导体中的费⽶统计分布。
PN 结平衡势垒。
1.1 在结晶学中, 晶胞是按晶体的什么特性选取的?在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性⼜要考虑晶体的宏观对称性.1.2六⾓密积属何种晶系? ⼀个晶胞包含⼏个原⼦?六⾓密积属六⾓晶系, ⼀个晶胞(平⾏六⾯体)包含两个原⼦.1.3在晶体衍射中,为什么不能⽤可见光?晶体中原⼦间距的数量级为1010-⽶,要使原⼦晶格成为光波的衍射光栅,光波的波长应⼩于1010-⽶. 但可见光的波长为7.6?4.0710-?⽶, 是晶体中原⼦间距的1000倍. 因此, 在晶体衍射中,不能⽤可见光.2.1共价结合, 两原⼦电⼦云交迭产⽣吸引, ⽽原⼦靠近时, 电⼦云交迭会产⽣巨⼤的排斥⼒, 如何解释?共价结合, 形成共价键的配对电⼦, 它们的⾃旋⽅向相反, 这两个电⼦的电⼦云交迭使得体系的能量降低, 结构稳定. 但当原⼦靠得很近时, 原⼦内部满壳层电⼦的电⼦云交迭, 量⼦态相同的电⼦产⽣巨⼤的排斥⼒, 使得系统的能量急剧增⼤.2.2为什么许多⾦属为密积结构?⾦属结合中, 受到最⼩能量原理的约束, 要求原⼦实与共有电⼦电⼦云间的库仑能要尽可能的低(绝对值尽可能的⼤). 原⼦实越紧凑, 原⼦实与共有电⼦电⼦云靠得就越紧密, 库仑能就越低. 所以, 许多⾦属的结构为密积结构.3.1什么叫简正振动模式?简正振动数⽬、格波数⽬或格波振动模式数⽬是否是⼀回事?为了使问题既简化⼜能抓住主要⽭盾,在分析讨论晶格振动时,将原⼦间互作⽤⼒的泰勒级数中的⾮线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N 个原⼦构成的晶体的晶格振动, 可等效成3N 个独⽴的谐振⼦的振动. 每个谐振⼦的振动模式称为简正振动模式, 它对应着所有的原⼦都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动⽅式. 原⼦的振动, 或者说格波振动通常是这3N 个简正振动模式的线形迭加.简正振动数⽬、格波数⽬或格波振动模式数⽬是⼀回事, 这个数⽬等于晶体中所有原⼦的⾃由度数之和, 即等于3N .3.2长光学⽀格波与长声学⽀格波本质上有何差别?长光学⽀格波的特征是每个原胞内的不同原⼦做相对振动, 振动频率较⾼, 它包含了晶格振动频率最⾼的振动模式. 长声学⽀格波的特征是原胞内的不同原⼦没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是⼀常数. 任何晶体都存在声学⽀格波, 但简单晶格(⾮复式格⼦)晶体不存在光学⽀格波.3.3温度⼀定,⼀个光学波的声⼦数⽬多呢, 还是声学波的声⼦数⽬多?频率为ω的格波的(平均) 声⼦数为11)(/-=T k B e n ωω .因为光学波的频率O ω⽐声学波的频率A ω⾼, (1/-T k B O e ω )⼤于(1/-T k B A e ω ), 所以在温度⼀定情况下, ⼀个光学波的声⼦数⽬少于⼀个声学波的声⼦数⽬.3.4长声学格波能否导致离⼦晶体的宏观极化?长光学格波所以能导致离⼦晶体的宏观极化, 其根源是长光学格波使得原胞内不同的原⼦(正负离⼦)产⽣了相对位移. 长声学格波的特点是, 原胞内所有的原⼦没有相对位移. 因此, 长声学格波不能导致离⼦晶体的宏观极化.3.5你认为简单晶格存在强烈的红外吸收吗?实验已经证实, 离⼦晶体能强烈吸收远红外光波. 这种现象产⽣的根源是离⼦晶体中的长光学横波能与远红外电磁场发⽣强烈耦合. 简单晶格中不存在光学波, 所以简单晶格不会吸收远红外光波.3.6爱因斯坦模型在低温下与实验存在偏差的根源是什么?按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率⼤约为Hz 1013, 属于光学⽀频率. 但光学格波在低温时对热容的贡献⾮常⼩, 低温下对热容贡献⼤的主要是长声学格波. 也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.3.7在甚低温下, 德拜模型为什么与实验相符?在甚低温下, 不仅光学波得不到激发, ⽽且声⼦能量较⼤的短声学格波也未被激发, 得到激发的只是声⼦能量较⼩的长声学格波.长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在甚低温下, 德拜模型与事实相符, ⾃然与实验相符.4.1 波⽮空间与倒格空间有何关系? 为什么说波⽮空间内的状态点是准连续的?波⽮空间与倒格空间处于统⼀空间, 倒格空间的基⽮分别为321 b b b 、、, ⽽波⽮空间的基⽮分别为32N N / / /321b b b 、、1N , N 1、N 2、N 3分别是沿正格⼦基⽮321 a a a 、、⽅向晶体的原胞数⽬.倒格空间中⼀个倒格点对应的体积为*321) (Ω=??b b b ,波⽮空间中⼀个波⽮点对应的体积为N N b N b N b *332211)(Ω=??,即波⽮空间中⼀个波⽮点对应的体积, 是倒格空间中⼀个倒格点对应的体积的1/N . 由于N 是晶体的原胞数⽬, 数⽬巨⼤, 所以⼀个波⽮点对应的体积与⼀个倒格点对应的体积相⽐是极其微⼩的. 也就是说, 波⽮点在倒格空间看是极其稠密的. 因此, 在波⽮空间内作求和处理时, 可把波⽮空间内的状态点看成是准连续的.4.2在布⾥渊区边界上电⼦的能带有何特点?电⼦的能带依赖于波⽮的⽅向, 在任⼀⽅向上, 在布⾥渊区边界上, 近⾃由电⼦的能带⼀般会出现禁带. 若电⼦所处的边界与倒格⽮n K 正交, 则禁带的宽度)(2n K V E g =, )(n K V 是周期势场的付⾥叶级数的系数.不论何种电⼦, 在布⾥渊区边界上, 其等能⾯在垂直于布⾥渊区边界的⽅向上的斜率为零, 即电⼦的等能⾯与布⾥渊区边界正交4.3当电⼦的波⽮落在布⾥渊区边界上时, 其有效质量何以与真实质量有显著差别?晶体中的电⼦除受外场⼒的作⽤外, 还和晶格相互作⽤. 设外场⼒为F , 晶格对电⼦的作⽤⼒为F l , 电⼦的加速度为)(1l m F F a +=.但F l 的具体形式是难以得知的. 要使上式中不显含F l , ⼜要保持上式左右恒等, 则只有F a *1m =.显然, 晶格对电⼦的作⽤越弱, 有效质量m*与真实质量m 的差别就越⼩. 相反, 晶格对电⼦的作⽤越强, 有效质量m *与真实质量m 的差别就越⼤. 当电⼦的波⽮落在布⾥渊区边界上时, 与布⾥渊区边界平⾏的晶⾯族对电⼦的散射作⽤最强烈. 在晶⾯族的反射⽅向上, 各格点的散射波相位相同, 迭加形成很强的反射波. 正因为在布⾥渊区边界上的电⼦与晶格的作⽤很强, 所以其有效质量与真实质量有显著差别4.4电⼦的有效质量*m 变为∞的物理意义是什么?仍然从能量的⾓度讨论之. 电⼦能量的变化m E m E m E 晶格对电⼦作的功外场⼒对电⼦作的功外场⼒对电⼦作的功)d ()(d )(d *+=[]电⼦对晶格作的功外场⼒对电⼦作的功)d ()(d 1E E m -=.从上式可以看出,当电⼦从外场⼒获得的能量⼜都输送给了晶格时, 电⼦的有效质量*m 变为∞. 此时电⼦的加速度01*==F a m , 即电⼦的平均速度是⼀常量. 或者说, 此时外场⼒与晶格作⽤⼒⼤⼩相等, ⽅向相反.4.5紧束缚模型下, 内层电⼦的能带与外层电⼦的能带相⽐较, 哪⼀个宽? 为什么?以s 态电⼦为例. 由图5.9可知, 紧束缚模型电⼦能带的宽度取决于积分s J 的⼤⼩, ⽽积分r R r R r r r d )()]()([)(*n at s n at N at s s V V J ----=Ω的⼤⼩⼜取决于)(r at s ?与相邻格点的)(n at s R r -?的交迭程度. 紧束缚模型下, 内层电⼦的)(r at s ?与)(n at s R r -?交叠程度⼩, 外层电⼦的)(r at s ?与)(n at s R r -?交迭程度⼤. 因此, 紧束缚模型下, 内层电⼦的能带与外层电⼦的能带相⽐较, 外层电⼦的能带宽.4.6等能⾯在布⾥渊区边界上与界⾯垂直截交的物理意义是什么?将电⼦的波⽮k 分成平⾏于布⾥渊区边界的分量//k 和垂直于布⾥渊区边界的分量k ┴. 则由电⼦的平均速度)(1k E k ?=ν得到////1k E=ν,⊥⊥??=k E 1ν. 等能⾯在布⾥渊区边界上与界⾯垂直截交, 则在布⾥渊区边界上恒有⊥??k E /=0, 即垂直于界⾯的速度分量⊥ν为零. 垂直于界⾯的速度分量为零, 是晶格对电⼦产⽣布拉格反射的结果. 在垂直于界⾯的⽅向上, 电⼦的⼊射分波与晶格的反射分波⼲涉形成了驻波.5.1⼀维简单晶格中⼀个能级包含⼏个电⼦?设晶格是由N 个格点组成, 则⼀个能带有N 个不同的波⽮状态, 能容纳2N 个电⼦. 由于电⼦的能带是波⽮的偶函数, 所以能级有(N /2)个. 可见⼀个能级上包含4个电⼦.5.2本征半导体的能带与绝缘体的能带有何异同?在低温下, 本征半导体的能带与绝缘体的能带结构相同. 但本征半导体的禁带较窄, 禁带宽度通常在2个电⼦伏特以下. 由于禁带窄, 本征半导体禁带下满带顶的电⼦可以借助热激发, 跃迁到禁带上⾯空带的底部, 使得满带不满, 空带不空, ⼆者都对导电有贡献.6.1你是如何理解绝对零度时和常温下电⼦的平均动能⼗分相近这⼀点的?⾃由电⼦论只考虑电⼦的动能. 在绝对零度时, ⾦属中的⾃由(价)电⼦, 分布在费密能级及其以下的能级上, 即分布在⼀个费密球内. 在常温下, 费密球内部离费密⾯远的状态全被电⼦占据, 这些电⼦从格波获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上, 能够发⽣能态跃迁的仅是费密⾯附近的少数电⼦, ⽽绝⼤多数电⼦的能态不会改变. 也就是说, 常温下电⼦的平均动能与绝对零度时的平均动能⼀定⼗分相近.6.2为什么温度升⾼, 费密能反⽽降低?当0≠T 时, 有⼀半量⼦态被电⼦所占据的能级即是费密能级. 温度升⾼, 费密⾯附近的电⼦从格波获取的能量就越⼤, 跃迁到费密⾯以外的电⼦就越多, 原来有⼀半量⼦态被电⼦所占据的能级上的电⼦就少于⼀半, 有⼀半量⼦态被电⼦所占据的能级必定降低. 也就是说, 温度升⾼, 费密能反⽽降低.6.3为什么价电⼦的浓度越⼤, 价电⼦的平均动能就越⼤?由于绝对零度时和常温下电⼦的平均动能⼗分相近,我们讨论绝对零度时电⼦的平均动能与电⼦浓度的关系.价电⼦的浓度越⼤价电⼦的平均动能就越⼤, 这是⾦属中的价电⼦遵从费密-狄拉克统计分布的必然结果. 在绝对零度时, 电⼦不可能都处于最低能级上, ⽽是在费密球中均匀分布. 由(6.4)式3/120)3(πn k F =可知, 价电⼦的浓度越⼤费密球的半径就越⼤,⾼能量的电⼦就越多, 价电⼦的平均动能就越⼤. 这⼀点从(6.5)和(6.3)式看得更清楚. 电⼦的平均动能E 正⽐与费密能0F E , ⽽费密能⼜正⽐与电⼦浓度3/2n :()3/22232πn m E F =,()3/2220310353πn m E E F ==.所以价电⼦的浓度越⼤, 价电⼦的平均动能就越⼤.6.4对⽐热和电导有贡献的仅是费密⾯附近的电⼦, ⼆者有何本质上的联系?对⽐热有贡献的电⼦是其能态可以变化的电⼦. 能态能够发⽣变化的电⼦仅是费密⾯附近的电⼦. 因为, 在常温下, 费密球内部离费密⾯远的状态全被电⼦占据, 这些电⼦从格波获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上, 能够发⽣能态跃迁的仅是费密⾯附近的电⼦, 这些电⼦吸收声⼦后能跃迁到费密⾯附近或以外的空状态上.对电导有贡献的电⼦, 即是对电流有贡献的电⼦, 它们是能态能够发⽣变化的电⼦. 由(6.79)式 )(00ε+=v τe E f f f可知, 加电场后,电⼦分布发⽣了偏移. 正是这偏移)(0εv τe E f部分才对电流和电导有贡献. 这偏移部分是能态发⽣变化的电⼦产⽣的. ⽽能态能够发⽣变化的电⼦仅是费密⾯附近的电⼦, 这些电⼦能从外场中获取能量, 跃迁到费密⾯附近或以外的空状态上. ⽽费密球内部离费密⾯远的状态全被电⼦占拒, 这些电⼦从外场中获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上. 对电流和电导有贡献的电⼦仅是费密⾯附近电⼦的结论从(6.83)式x k S x x ES v e j F ετπ?=?d 4222和⽴⽅结构⾦属的电导率E S v e k S xF ?=?d 4222τπσ看得更清楚. 以上两式的积分仅限于费密⾯, 说明对电导有贡献的只能是费密⾯附近的电⼦.总之, 仅仅是费密⾯附近的电⼦对⽐热和电导有贡献, ⼆者本质上的联系是: 对⽐热和电导有贡献的电⼦是其能态能够发⽣变化的电⼦, 只有费密⾯附近的电⼦才能从外界获取能量发⽣能态跃迁.6.5为什么价电⼦的浓度越⾼, 电导率越⾼?电导σ是⾦属通流能⼒的量度. 通流能⼒取决于单位时间内通过截⾯积的电⼦数(参见思考题18). 但并不是所有价电⼦对导电都有贡献, 对导电有贡献的是费密⾯附近的电⼦. 费密球越⼤, 对导电有贡献的电⼦数⽬就越多. 费密球的⼤⼩取决于费密半径3/12)3(πn k F =.可见电⼦浓度n 越⾼, 费密球越⼤, 对导电有贡献的电⼦数⽬就越多, 该⾦属的电导率就越⾼.6.6磁场与电场, 哪⼀种场对电⼦分布函数的影响⼤? 为什么?磁场与电场相⽐较, 电场对电⼦分布函数的影响⼤. 因为磁场对电⼦的作⽤是洛伦兹⼒, 洛伦兹⼒只改变电⼦运动⽅向, 并不对电⼦做功. 也就是说, 当只有磁场情况下, ⾮磁性⾦属中价电⼦的分布函数不会改变. 但在磁场与电场同时存在的情况下, 由于产⽣了附加霍⽿电场, 磁场对⾮磁性⾦属电⼦的分布函数的影响就显现出来. 但与电场相⽐, 磁场对电⼦分布函数的影响要弱得多.⼆. (25分)1. 证明⽴⽅晶系的晶列[hkl ]与晶⾯族(hkl )正交.2. 设晶格常数为a , 求⽴⽅晶系密勒指数为(hkl )的晶⾯族的⾯间距.三. (25分)设质量为m 的同种原⼦组成的⼀维双原⼦分⼦链, 分⼦内部的⼒系数为β1, 分⼦间相邻原⼦的⼒系数为β2, 分⼦的两原⼦的间距为d , 晶格常数为a,1. 列出原⼦运动⽅程.2. 求出格波的振动谱ω(q ).四. (30分)对于晶格常数为a 的SC 晶体1. 以紧束缚近似求⾮简并s 态电⼦的能带.2. 画出第⼀布⾥渊区[110]⽅向的能带曲线, 求出带宽.3.当电⼦的波⽮k =a πi +a πj 时,求导致电⼦产⽣布拉格反射的晶⾯族的⾯指数.⼀. 填空(20分, 每题2分)1.对晶格常数为a 的SC 晶体,与正格⽮R =a i +2a j +2a k 正交的倒格⼦晶⾯族的⾯指数为( 122 ), 其⾯间距为( a 32π2.典型离⼦晶体的体积为V , 最近邻两离⼦的距离为R , 晶体的格波数⽬为( 33R V), 长光学波的( 纵 )波会引起离⼦晶体宏观上的极化.3. ⾦刚⽯晶体的结合类型是典型的(共价结合)晶体, 它有( 6 )⽀格波.4. 当电⼦遭受到某⼀晶⾯族的强烈反射时, 电⼦平⾏于晶⾯族的平均速度(不为 )零, 电⼦波⽮的末端处在(布⾥渊区)边界上.5. 两种不同⾦属接触后, 费⽶能级⾼的带(正)电.对导电有贡献的是 (费⽶⾯附近)的电⼦.⼆. (25分)1.设d 为晶⾯族()hkl 的⾯间距为, n 为单位法⽮量, 根据晶⾯族的定义,晶⾯族()hkl 将c b a 、、分别截为l k h 、、等份,即 a =?n a cos (a ,n )==a cos (a ,n )=hd ,b =?n b cos (b ,n )= a cos (b ,n ) =kd ,c =?n c cos (c ,n )= a cos (c ,n ) =ld .于是有n =a d h i +a d k j +a d l k =a d(h i +k j +l k ). (1)其中, i 、j 、k 分别为平⾏于c b a 、、三个坐标轴的单位⽮量. ⽽晶列[]hkl 的⽅向⽮量为=R ha i +ka j +la k=a (h i +k j +l k ). (2)由(1)、(2)两式得n =2a dR ,即n 与R 平⾏. 因此晶列[]hkl 与晶⾯()hkl 正交.2. ⽴⽅晶系密勒指数为(hkl )的晶⾯族的⾯间距22222222l k h a al a k a h d hkl hkl ++=++==k j i K πππππ三. (25分)1.原⼦运动⽅程(2t qna i n Ae u ω-=)(12t qna i n Be u ω-+=1. 1. 格波的振动谱ω(q )=()2/12/1222121222212sin 16422??+-±+qa m m m m ββββββ四. (30分)1. 紧束缚近似⾮简并s 态电⼦的能带()a k a k a k J C E E z y x s s ats s cos cos cos 2)(++--=k2. 第⼀布⾥渊区[110]⽅向的能带曲线[110]⽅向的能带曲线带宽为8J s 。
固体物理40题

1. 设晶体中的每个振子的零点振动能.试用德拜模型求晶体的零点振动能.证明:根据量子力学零点能是谐振子所固有的,与温度无关,故T=0K 时振动能0E 就是各振动模零点能之和。
()()()000012mE E g d E ωωωωωω==⎰将和()22332s V g v ωωπ=代入积分有402339168m m s V E N v ωωπ==,由于098m B D B D k E Nk ωθθ==得 一股晶体德拜温度为~210K ,可见零点振动能是相当大的,其量值可与温升数百度所需热能相比拟.2. 试画出二维长方格子的第一、第二布里渊区.3. 证明:在磁场中运动的布洛赫电子,在K 空间中,轨迹面积A n 和在r 空间的轨迹面积S n之间的关系A n= (qB hc)2S n()d k d rc qv B q B dt dt⋅=-⨯=--⋅解: dk qB dr dt c dt∴=⋅ t k qBr c两边对积分,即 =22()()n n A r c S k qB∴== 4. 证明:面心立方晶格的倒格子为体心立方. 解:面心立方晶格的基矢为()()()a a aa j ,b ,c 222k i k i j =+=+=+ 则面心立方原胞体积3V []4a abc ⋅⨯==a 2bc V π*⨯=面心立方倒格矢 ()()2384a i k i j a π=⋅+⨯+()ai j k π-++2=()b a i j k π*=-+2同理: ,()ac i j k π*=+-2 a b c ***显然,,为体心立方原胞基矢,因此面心立方晶格倒格子为体心立方 5. 证明:根据倒格子的定义证明简单立方格子体积与其倒格子体积成反比解:设简单立方晶格常数为a ,则基矢为a ,b ,c ,V a ai a j ak ===3体积=其倒格矢2312b 2a a i V aππ⨯==,3122b 2a a j V a ππ⨯==,1232b 2a a k V a ππ⨯== 则倒格子体积()31232[]V b b b Vπ*=⋅⨯=6. 是否存在与库伦力无关的晶型,为什么?答:不存在与库仑力无关的晶型,因为①共价结合中电子虽不能脱离电负性 的原子,但靠近的两个原子各给出一个电子,形成电子共有的形状,位于两原子之间通过库仑力把两个原子结合起来。
固体物理考试试题

1、解理面:矿物晶体在外力作用下严格沿着一定结晶方向破裂,并且能裂出光滑平面的性质称为解理,这些平面称为解理面。
性质:解理面一般光滑平整,一般平行于面间距最大,面网密度最大的晶面,因为面间距大,面间的引力小,这样就造成解理面一般的晶面指数较低,如Si的解理面为(111)。
晶体中原子的排列是长程有序的,这种现象称为晶体内部结构的周期性。
晶体内部结构的周期性可以用晶格来形象地描绘。
晶格是由无数个相同单元周期性地重复排列组成的。
2、晶格场中电子运动状态:在周期性势场中,属于某个原子的电子既可以在该原子附近运动,也可以在其它的原子附近运动,即可以在整个晶体中运动。
即局域化运动、共有化运动。
晶体中(也就是周期性势场中)的电子的运动是既有局域化的特征又有共有化特征。
3、固体热容组成:固体的热容是原子振动在宏观性质上的一个最直接的表现。
杜隆·伯替定律------在室温和更高的温度,几乎全部单原子固体的热容接近3NkB。
在低温热容与T3成正比。
(晶格热振动)晶格热容固体的热容(电子的热运动)电子热容每一个简谐振动的平均能量是kBT ,若固体中有N个原子,则有3N个简谐振动模,总的平均能量: E=3NkBT热容: Cv = 3NkB热容的本质:反映晶体受热后激发出的晶格波与温度的关系;对于N个原子构成的晶体,在热振动时形成3N个振子,各个振子的频率不同,激发出的声子能量也不同;温度升高,原子振动的振幅增大,该频率的声子数目也随着增大;温度升高,在宏观上表现为吸热或放热,实质上是各个频率声子数发生变化。
影响热容的因素:1. 温度对热容的影响高于德拜温度时,热容趋于常数,低于德拜温度时,与(T / D)3成正比。
2. 键强、弹性模量、熔点的影响德拜温度约为熔点的0.2—0.5倍。
3. 无机材料的热容对材料的结构不敏感混合物与同组成单一化合物的热容基本相同。
4. 相变时,由于热量不连续变化,热容出现突变。
5. 高温下,化合物的摩尔热容等于构成该化合物的各元素原子热容的总和(c=niCi)ni :化合物中i元素原子数;Ci:i元素的摩尔热容。
固体物理题目总汇

固体物理题目总汇填空题1、根据固体材料中原子排列的方式可以将固体材料分为晶体、非晶体和准晶体。
2、晶体结构=点阵+基元3、晶体的比热包括晶格比热和电子比热。
4、结晶学中,属于立方晶系的布拉维晶胞有简单立方、体心立方和面心立方三种。
5、密堆结构有两种:六方密堆积和立方密堆积。
6、原子电负性在一个周期内由左到右不断升高,周期表由上到下,负电性逐渐降低。
7、限定波矢q的取值范围在第一布里渊区8、金属的未满能带叫价带或导带。
1、人们利用某射线衍射测定晶体结构。
3、晶体的热学性质,如比热、热膨胀和热传导等就与晶格振动密切有关。
4、声子是一种准粒子,不具有通常意义下的动量,常把q称为声子的准动量。
5、根据晶体缺陷在空间延伸的线度晶体缺陷可分为点缺陷~线缺陷、面缺陷和体缺陷。
6、V心是F心的反型体。
1、晶体的基本结构单元称为基元2、面心立方晶胞的晶格常数为a,其倒格子原胞的体积等于323/a33、布拉维空间点阵共有14种,归为7种晶系。
5、一维双原子链的色散关系中频率较低的一支叫声学支(声频支),它很像单原子链中的声学支,;频率较高的一支则叫光学支(光频支)。
6、面缺陷有堆垛层错、小角晶界和晶粒间界三种主要形式。
8、一般情况下晶体电子的近似质量是张量,自由电子的惯性质量是标量。
9、对复式晶格,格波可分为声学波和光学波。
1、体心立方结构的第一布里渊区是菱形十二面体。
2、已知某晶体的基矢取为a1、a2、a3,某一晶面在三个基矢上的截距分别为3,2,-1,则该晶面的晶面指数为2363、倒格矢体现了晶面的面间距和法向。
8、晶体中的载流子是电子和空穴2、正格子原胞体积与倒格子原胞体积之积为233、金刚石晶体的基元含有2个原子,其晶胞含有8个碳原子。
6、准晶是介于周期性晶体和非晶玻璃之间的一种新的固体物质形态。
8、晶格振动的简化模型主要有爱因斯坦模型和德拜模型。
1、面心立方结构的第一布里渊区是十四面体。
2、代表基元中的几何点称为格点。
固体物理学考试题及答案

固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。
A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。
A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。
A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。
A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。
A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。
A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。
A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。
A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。
A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。
A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。
答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。
答案:带隙3. 金属导电的原因是金属原子的价电子可以______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体结构 20 分晶体衍射 10 分晶格振动 20分与晶体的热学性质 18分能带理论和晶体中电子在电场磁场中的运动 36 分金属电子论和半导体电子论 5—10分1. 晶体的微观结构、原胞、W-S 原胞、惯用单胞的概念、常见的晶体结构、晶面与晶向的概念,并能进行必要的计算;倒格子与布里渊区、晶体X 射线衍射,能计算几何结构因子和衍射极大条件。
2. 晶体结合的普遍特性;离子键结合和范德瓦耳斯结合的结合能计算。
3. 简谐近似和最近邻近似,双原子链的晶格振动;周期边界条件,晶格振动的量子化与声子,色散关系;爱因斯坦模型和德拜模型,晶体的比热,零点振动能计算。
4. 经典自由电子论:电子运动方程,金属的直流电导,霍耳效应,金属热导率。
量子自由电子论:能态密度,费米分布,费米能级,电子热容量。
5. 布洛赫定理及其证明;近自由电子近似的思想一维和二维近自由电子近似的能带计算,紧束缚近似的思想,紧束缚近似的计算(S 能带的的色散关系)。
理解半导体Ge 、Si 的能带结构。
6.波包的准经典运动概念,布洛赫电子的速度,加速度和有效质量和相应的计算,空穴的概念;导体、半导体和绝缘体的能带解释,原子能级和能带的对应;朗道能级,回旋共振,德×哈斯—范×阿尔芬效应,碱金属和贵金属的费米面。
7.分布函数法和恒定外电场下玻耳兹曼方程的推导。
理解电子声子相互作用,晶格散射和电导,电阻的来源。
8. 半导体基本的能带结构,半导体中的施主和受主杂质,P 型半导体和N 型半导体,半导体中的费米统计分布。
PN 结平衡势垒。
1.1 在结晶学中, 晶胞是按晶体的什么特性选取的?在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性.1.2六角密积属何种晶系? 一个晶胞包含几个原子?六角密积属六角晶系, 一个晶胞(平行六面体)包含两个原子.1.3在晶体衍射中,为什么不能用可见光?晶体中原子间距的数量级为1010-米,要使原子晶格成为光波的衍射光栅,光波的波长应小于1010-米. 但可见光的波长为7.6−4.0710-⨯米, 是晶体中原子间距的1000倍. 因此, 在晶体衍射中,不能用可见光.2.1共价结合, 两原子电子云交迭产生吸引, 而原子靠近时, 电子云交迭会产生巨大的排斥力, 如何解释?共价结合, 形成共价键的配对电子, 它们的自旋方向相反, 这两个电子的电子云交迭使得体系的能量降低, 结构稳定. 但当原子靠得很近时, 原子内部满壳层电子的电子云交迭, 量子态相同的电子产生巨大的排斥力, 使得系统的能量急剧增大.2.2为什么许多金属为密积结构?金属结合中, 受到最小能量原理的约束, 要求原子实与共有电子电子云间的库仑能要尽可能的低(绝对值尽可能的大). 原子实越紧凑, 原子实与共有电子电子云靠得就越紧密, 库仑能就越低. 所以, 许多金属的结构为密积结构.3.1什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N 个原子构成的晶体的晶格振动, 可等效成3N 个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N 个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由度数之和, 即等于3N .3.2长光学支格波与长声学支格波本质上有何差别?长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波.3.3温度一定,一个光学波的声子数目多呢, 还是声学波的声子数目多?频率为ω的格波的(平均) 声子数为11)(/-=T k B e n ωω .因为光学波的频率O ω比声学波的频率A ω高, (1/-T k B O e ω )大于(1/-T k B A e ω ), 所以在温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目.3.4长声学格波能否导致离子晶体的宏观极化?长光学格波所以能导致离子晶体的宏观极化, 其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移. 长声学格波的特点是, 原胞内所有的原子没有相对位移. 因此, 长声学格波不能导致离子晶体的宏观极化.3.5你认为简单晶格存在强烈的红外吸收吗?实验已经证实, 离子晶体能强烈吸收远红外光波. 这种现象产生的根源是离子晶体中的长光学横波能与远红外电磁场发生强烈耦合. 简单晶格中不存在光学波, 所以简单晶格不会吸收远红外光波.3.6爱因斯坦模型在低温下与实验存在偏差的根源是什么?按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率大约为Hz 1013, 属于光学支频率. 但光学格波在低温时对热容的贡献非常小, 低温下对热容贡献大的主要是长声学格波. 也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.3.7在甚低温下, 德拜模型为什么与实验相符?在甚低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在甚低温下, 德拜模型与事实相符, 自然与实验相符.4.1 波矢空间与倒格空间有何关系? 为什么说波矢空间内的状态点是准连续的?波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为321 b b b 、、, 而波矢空间的基矢分别为32N N / / /321b b b 、、1N , N 1、N 2、N 3分别是沿正格子基矢321 a a a 、、方向晶体的原胞数目.倒格空间中一个倒格点对应的体积为*321) (Ω=⨯⋅b b b ,波矢空间中一个波矢点对应的体积为N N b N b N b *332211)(Ω=⨯⋅,即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N . 由于N 是晶体的原胞数目, 数目巨大, 所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的. 也就是说, 波矢点在倒格空间看是极其稠密的. 因此, 在波矢空间内作求和处理时, 可把波矢空间内的状态点看成是准连续的.4.2在布里渊区边界上电子的能带有何特点?电子的能带依赖于波矢的方向, 在任一方向上, 在布里渊区边界上, 近自由电子的能带一般会出现禁带. 若电子所处的边界与倒格矢n K 正交, 则禁带的宽度)(2n K V E g =, )(n K V 是周期势场的付里叶级数的系数.不论何种电子, 在布里渊区边界上, 其等能面在垂直于布里渊区边界的方向上的斜率为零, 即电子的等能面与布里渊区边界正交4.3当电子的波矢落在布里渊区边界上时, 其有效质量何以与真实质量有显著差别?晶体中的电子除受外场力的作用外, 还和晶格相互作用. 设外场力为F , 晶格对电子的作用力为F l , 电子的加速度为)(1l m F F a +=.但F l 的具体形式是难以得知的. 要使上式中不显含F l , 又要保持上式左右恒等, 则只有F a *1m =.显然, 晶格对电子的作用越弱, 有效质量m*与真实质量m 的差别就越小. 相反, 晶格对电子的作用越强, 有效质量m *与真实质量m 的差别就越大. 当电子的波矢落在布里渊区边界上时, 与布里渊区边界平行的晶面族对电子的散射作用最强烈. 在晶面族的反射方向上, 各格点的散射波相位相同, 迭加形成很强的反射波. 正因为在布里渊区边界上的电子与晶格的作用很强, 所以其有效质量与真实质量有显著差别4.4电子的有效质量*m 变为∞的物理意义是什么?仍然从能量的角度讨论之. 电子能量的变化m E m E m E 晶格对电子作的功外场力对电子作的功外场力对电子作的功)d ()(d )(d *+=[]电子对晶格作的功外场力对电子作的功)d ()(d 1E E m -=.从上式可以看出,当电子从外场力获得的能量又都输送给了晶格时, 电子的有效质量*m 变为∞. 此时电子的加速度01*==F a m , 即电子的平均速度是一常量. 或者说, 此时外场力与晶格作用力大小相等, 方向相反.4.5紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 哪一个宽? 为什么?以s 态电子为例. 由图5.9可知, 紧束缚模型电子能带的宽度取决于积分s J 的大小, 而积分r R r R r r r d )()]()([)(*n at s n at N at s s V V J ----=⎰ϕϕΩ的大小又取决于)(r at s ϕ与相邻格点的)(n at s R r -ϕ的交迭程度. 紧束缚模型下, 内层电子的)(r at s ϕ与)(n at s R r -ϕ交叠程度小, 外层电子的)(r at s ϕ与)(n at s R r -ϕ交迭程度大. 因此, 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 外层电子的能带宽.4.6等能面在布里渊区边界上与界面垂直截交的物理意义是什么?将电子的波矢k 分成平行于布里渊区边界的分量//k 和垂直于布里渊区边界的分量k ┴. 则由电子的平均速度)(1k E k ∇=ν 得到////1k E∂∂=ν,⊥⊥∂∂=k E 1ν. 等能面在布里渊区边界上与界面垂直截交, 则在布里渊区边界上恒有⊥∂∂k E /=0, 即垂直于界面的速度分量⊥ν为零. 垂直于界面的速度分量为零, 是晶格对电子产生布拉格反射的结果. 在垂直于界面的方向上, 电子的入射分波与晶格的反射分波干涉形成了驻波.5.1一维简单晶格中一个能级包含几个电子?设晶格是由N 个格点组成, 则一个能带有N 个不同的波矢状态, 能容纳2N 个电子. 由于电子的能带是波矢的偶函数, 所以能级有(N /2)个. 可见一个能级上包含4个电子.5.2本征半导体的能带与绝缘体的能带有何异同?在低温下, 本征半导体的能带与绝缘体的能带结构相同. 但本征半导体的禁带较窄, 禁带宽度通常在2个电子伏特以下. 由于禁带窄, 本征半导体禁带下满带顶的电子可以借助热激发, 跃迁到禁带上面空带的底部, 使得满带不满, 空带不空, 二者都对导电有贡献.6.1你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近.6.2为什么温度升高, 费密能反而降低?当0≠T 时, 有一半量子态被电子所占据的能级即是费密能级. 温度升高, 费密面附近的电子从格波获取的能量就越大, 跃迁到费密面以外的电子就越多, 原来有一半量子态被电子所占据的能级上的电子就少于一半, 有一半量子态被电子所占据的能级必定降低. 也就是说, 温度升高, 费密能反而降低.6.3为什么价电子的浓度越大, 价电子的平均动能就越大?由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子浓度的关系.价电子的浓度越大价电子的平均动能就越大, 这是金属中的价电子遵从费密-狄拉克统计分布的必然结果. 在绝对零度时, 电子不可能都处于最低能级上, 而是在费密球中均匀分布. 由(6.4)式3/120)3(πn k F =可知, 价电子的浓度越大费密球的半径就越大,高能量的电子就越多, 价电子的平均动能就越大. 这一点从(6.5)和(6.3)式看得更清楚. 电子的平均动能E 正比与费密能0F E , 而费密能又正比与电子浓度3/2n :()3/22232πn m E F =,()3/2220310353πn m E E F ==.所以价电子的浓度越大, 价电子的平均动能就越大.6.4对比热和电导有贡献的仅是费密面附近的电子, 二者有何本质上的联系?对比热有贡献的电子是其能态可以变化的电子. 能态能够发生变化的电子仅是费密面附近的电子. 因为, 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的电子, 这些电子吸收声子后能跃迁到费密面附近或以外的空状态上.对电导有贡献的电子, 即是对电流有贡献的电子, 它们是能态能够发生变化的电子. 由(6.79)式 )(00ε⋅∂∂+=v τe E f f f可知, 加电场后,电子分布发生了偏移. 正是这偏移)(0ε⋅∂∂v τe E f部分才对电流和电导有贡献. 这偏移部分是能态发生变化的电子产生的. 而能态能够发生变化的电子仅是费密面附近的电子, 这些电子能从外场中获取能量, 跃迁到费密面附近或以外的空状态上. 而费密球内部离费密面远的状态全被电子占拒, 这些电子从外场中获取的能量不足以使其跃迁到费密面附近或以外的空状态上. 对电流和电导有贡献的电子仅是费密面附近电子的结论从(6.83)式x k S x x ES v e j F ετπ∇=⎰d 4222和立方结构金属的电导率E S v e k S xF ∇=⎰d 4222τπσ看得更清楚. 以上两式的积分仅限于费密面, 说明对电导有贡献的只能是费密面附近的电子.总之, 仅仅是费密面附近的电子对比热和电导有贡献, 二者本质上的联系是: 对比热和电导有贡献的电子是其能态能够发生变化的电子, 只有费密面附近的电子才能从外界获取能量发生能态跃迁.6.5为什么价电子的浓度越高, 电导率越高?电导σ是金属通流能力的量度. 通流能力取决于单位时间内通过截面积的电子数(参见思考题18). 但并不是所有价电子对导电都有贡献, 对导电有贡献的是费密面附近的电子. 费密球越大, 对导电有贡献的电子数目就越多. 费密球的大小取决于费密半径3/12)3(πn k F =.可见电子浓度n 越高, 费密球越大, 对导电有贡献的电子数目就越多, 该金属的电导率就越高.6.6磁场与电场, 哪一种场对电子分布函数的影响大? 为什么?磁场与电场相比较, 电场对电子分布函数的影响大. 因为磁场对电子的作用是洛伦兹力, 洛伦兹力只改变电子运动方向, 并不对电子做功. 也就是说, 当只有磁场情况下, 非磁性金属中价电子的分布函数不会改变. 但在磁场与电场同时存在的情况下, 由于产生了附加霍耳电场, 磁场对非磁性金属电子的分布函数的影响就显现出来. 但与电场相比, 磁场对电子分布函数的影响要弱得多.二. (25分)1. 证明立方晶系的晶列[hkl ]与晶面族(hkl )正交.2. 设晶格常数为a , 求立方晶系密勒指数为(hkl )的晶面族的面间距.三. (25分)设质量为m 的同种原子组成的一维双原子分子链, 分子内部的力系数为β1, 分子间相邻原子的力系数为β2, 分子的两原子的间距为d , 晶格常数为a,1. 列出原子运动方程.2. 求出格波的振动谱ω(q ).四. (30分)对于晶格常数为a 的SC 晶体1. 以紧束缚近似求非简并s 态电子的能带.2. 画出第一布里渊区[110]方向的能带曲线, 求出带宽.3.当电子的波矢k =a πi +a πj 时,求导致电子产生布拉格反射的晶面族的面指数.一. 填空(20分, 每题2分)1.对晶格常数为a 的SC 晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族的面指数为( 122 ), 其面间距为( a 32π).2.典型离子晶体的体积为V , 最近邻两离子的距离为R , 晶体的格波数目为( 33R V), 长光学波的( 纵 )波会引起离子晶体宏观上的极化.3. 金刚石晶体的结合类型是典型的(共价结合)晶体, 它有( 6 )支格波.4. 当电子遭受到某一晶面族的强烈反射时, 电子平行于晶面族的平均速度(不为 )零, 电子波矢的末端处在(布里渊区)边界上.5. 两种不同金属接触后, 费米能级高的带(正)电.对导电有贡献的是 (费米面附近)的电子.二. (25分)1.设d 为晶面族()hkl 的面间距为, n 为单位法矢量, 根据晶面族的定义,晶面族()hkl 将c b a 、、分别截为l k h 、、等份, 即 a =⋅n a cos (a ,n )==a cos (a ,n )=hd ,b =⋅n b cos (b ,n )= a cos (b ,n ) =kd ,c =⋅n c cos (c ,n )= a cos (c ,n ) =ld .于是有n =a d h i +a d k j +a d l k =a d(h i +k j +l k ). (1)其中, i 、j 、k 分别为平行于c b a 、、三个坐标轴的单位矢量. 而晶列[]hkl 的方向矢量为=R ha i +ka j +la k=a (h i +k j +l k ). (2)由(1)、(2)两式得n =2a dR ,即n 与R 平行. 因此晶列[]hkl 与晶面()hkl 正交.2. 立方晶系密勒指数为(hkl )的晶面族的面间距22222222l k h a al a k a h d hkl hkl ++=++==k j i K πππππ三. (25分)1.原子运动方程)(2t qna i n Ae u ω-=)(12t qna i n Be u ω-+=1. 1. 格波的振动谱ω(q )=()2/12/1222121222212sin 16422⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-±+qa m m m m ββββββ四. (30分)1. 紧束缚近似非简并s 态电子的能带()a k a k a k J C E E z y x s s ats s cos cos cos 2)(++--=k2. 第一布里渊区[110]方向的能带曲线[110]方向的能带曲线带宽为8J s 。