二次根式的应用题型
二次根式考试题型汇总

二次根式考试题型汇总二次根式题型一:二次根式的定义例1、(1)求自然数n的值,使得18-n是整数。
2)当x≥-1时,求式子√(x+1)+√(1-x)的值。
题型二:二次根式有意义的条件例2、当x>-1时,二次根式√(x+1)有意义。
例3、已知x、y为实数,y=√(y^2+8y+16-3xy),求y的值。
例4、已知y=√(x-3)+3-√(x+4),求x的值使得有意义。
题型三:二次根式的性质与化简例5、已知实数a,b在数轴上的位置如图所示:化简(1/(a+3))^2-(1/(b-23))^2.例6、计算(1/(x-1))-((1-x)/(x-1)(x+1))。
已知a、b、c为正数,d为负数,化简(ab-c^2d^2)/(ab+cd)^2.例7、化简求值:1)(a^2-a+b)/((c-a)^2+b+c);2) 11/[(2-1)/(2+1)+(2-1-√2)/(2-1+√2)];3)若x<y<z,则x^2-2xy+y^2+z^2-2yz+xz;4)[(x-1)^2+4-(x+1)^2]/(x^2-1);5)化简(a<0)得-1/(a)。
6)当a<0,b<0时,-a+2ab-b可变形为(a-b)^2.题型四:最简二次根式例8、下列式子中,属于最简二次根式的是9,而1/√3和√(9+x^2)都不是最简二次根式。
题型五:二次根式的乘除法例9、已知m=(3/3-2)(3/3+2-1),则有-5<m<-4.例10、计算:1)(5-3+2)(5-3-2);2) (a+3b)/(a+b)-(a-b)/(a+2b);3)(a^2/n-m^2/mn+n)/(a^2b^2);4)(a+b)/(ab+b-a)/(ab-a).a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)2013答案解析:a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)2013解析:a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)20131.求解x的值:$$\frac{x+a}{x^2+a^2}+\frac{2x-x^2+a^2}{x^2-a^2}+\frac{1}{x^2+a^2/2}$$2.若x,y为实数,且$y=1-4x+4x^{-1}+x^{-2}$,求$\frac{x+y}{y+x^2}-2\frac{y}{yx^2}$的值。
(完整版)专题:二次根式重难点综合题型

专题:二次根式重难点综合题型题型一:二次根式的性质1.写出下列各式有意义时x 的取值范围.(1)12--x ; (2) .2.已知:,x y 为实数,且311+-+-<x x y , 化简:23816y y y ---+。
3.已知,a b , 求20152014a a -的值。
4.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(|2|||22b b c c a a a ---++--.题型二:二次根式的化简1.判断下列各式是不是最简二次根式,如果不是,请化简成最简二次根式.(1) (2) (3) (4)2.已知231-=a ,231+=b ,求值: (1)33ab b a - ; (2) 22b ab a ++。
3.化简下列二次根式(1) 549549++- (2)4.已知:625+=+b a ,625-=-b a ,求20152212⎪⎪⎭⎫ ⎝⎛--b a 的值。
题型三:二次根式的运算 1.计算下列各题: (1) (2)(3) (4)(5) (6)2.计算:2004200320032004132231221++++++a1-42+x 38m -()x x --11131+x 356356++-()21341183122⨯-⨯;223b a b a ab ⨯÷-⎪⎪⎭⎫ ⎝⎛-+483814122223321825038a a a a a a -+(1110a b b +--).3218)(8321(-+.)21()21(20092008-+※课后练习1.若53+的小数部分是a ,5-3的小数部分是b ,求a +b 的值。
2.已知411+=-+-y x x ,则xy 的平方根为______.3.已知25-=x ,求4)25()549(2++-+x x 的值.4.计算下列各题:(1)(2)(3) (4)5.已知,23,23-=+=y x求(1)x 2-xy +y 2; (2)x 3y +xy 3的值.6.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.7.已知:11a a +=221a a+的值。
二次根式各种题型核心题40道——韩春成老师

2
八、比较大小 39. 【中】(2011 南京三中期末考试)若 c 1 , x c c 1 , y c 1 c , z c 2 c 1 ,则 x 、 y 、 z 的大小关系是________. 40. 【中】(北京西城区期末)下列判断正确的是( ) 3 A. 2 3 2 B. 2 2 3 3 C.1
原式 2 【答案】C
1 1 1 4x 1≥ 0 ,故 x ,y ,∴ 可知, 1 4 x ≥ 0 , 2 4 2
题型三: a 2b a b 【答案】C
3 【解析】由题意, a 1 a ≥ 0 , 1 a 0 ,∴ a 3≥0 ,即 a ≤ 0 ,
故 a3 1 a a a 1 a 【答案】D 题型四: a a ≥ 0
题不在多,而在于精!
越付出越富有!
【各章节核心题系列——二次根式 40 题】
(韩春成长期班学员内部资料)
第一部分:题型框架(涵盖 8 大题型)
二次根式的概念和性质
一、 二次根式的定义 题型一:二次根式的定义 题型二:二次根式有意义 二、 二次根式的性质 题型一:
a
2
a
题型二: a 2 a 题型三: a 2b a b 题型四: a a ≥ 0 题型五: a ≥ 0 二次根式的运算及化简求值
越付出越富有!
29. 【中】(北京西城初二下期末)计算:
2( 2 2) ( 7 5)( 7 5)
1 1 1 30. 【中】(沈阳)计算 2 5 1 2 3 3 4 1 2
99 100 1
31. 【中】(湖南省邵阳市中考)阅读下列材料,然后回答问题。 5 2 3 在进行二次根式去处时,我们有时会碰上如 3 , 2 , 3 1 一样的式子,其实我们 还可以将其进一步化简: 5 5 3 5 3 3 ; 3 3 3 (一)
初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。
典型二次根式计算及解析

二次根式计算及解析一.解答题(共40小题)1.计算:÷×2÷2. 2.计算:()﹣||3.计算:×÷. 4.?(÷2).5.. 6..7.计算:. 8.÷×3÷6.9.计算:÷×. 10.计算:×(﹣)×.11.计算:= .12.12.化简:x2?()(x>0,y≥0).13.计算:×(﹣)2×÷.14.计算:×()﹣1÷.15.计算:÷(x>0,y>0).16.计算:×()÷.18.(1)计算下列各式:①;②;(2)通过上面的计算,你一定有所体会吧?请计算:.19.计算:. 20.计算:?.21.化简:. 22..23.(a>0,b>0)24.已知x=,y=,求x2y+xy2的值.25.已知x1=,x2=,求下列代数式的值:(1)x12+x1﹣1;(2)x1+x2+x1x2+1.26.已知a=,b=,求a2b+ab2的值.27.求a=2+,b=3时,代数式a2+b2﹣4a+4的值.28.(1)计算﹣()2+()0﹣+|| (2)已知a=,求﹣的值.29.计算题(1)(2).30.计算:×(+)﹣. 31.计算:()﹣2﹣|2﹣3|+.32.计算:(2﹣)0+|2﹣|+(﹣1)2017﹣×.计算:33.34.先化简,再求值,5x2﹣(3y2+5x2)+(4y2+7xy),其中x=﹣1,y=1﹣.35.计算:.36.计算:37.计算:.计算:(﹣2)2×﹣4(4﹣)+38.39.计算:+(2﹣)0﹣2﹣1+||40.计算:(﹣)﹣1×+(﹣2)2÷(﹣1)﹣3.计算大礼包-学而思期中考试特别订制版参考答案与试题解析一.解答题(共40小题)1.计算:÷×2÷2.【分析】先把除法变成乘法,再根据二次根式的乘法法则进行计算即可.【解答】解:原式=××2×=1.【点评】本题考查了二次根式的乘除法法则,能灵活运用法则进行化简是解此题的关键.2.计算:()﹣||【分析】直接利用二次根式乘法运算法则化简进而利用绝对值的性质化简,再合并求出答案.【解答】解:原式=3﹣﹣(2﹣)=3﹣﹣2+,=1.【点评】此题主要考查了二次根式的乘法以及绝对值的性质,正确掌握运算法则是解题关键.3.计算:×÷.【分析】先进行二次根式的乘除法运算,再进行二次根式的化简即可.【解答】解:原式=÷=.【点评】本题考查了二次根式的乘除法,解答本题的关键在于熟练掌握该知识点的运算法则和二次根式的化简.4.?(÷2).【分析】根据二次根式的乘除法,可得答案.【解答】解:原式=?=.【点评】本题考查了二次根式的乘除法,熟记法则并根据法则计算是解题关键.5..【分析】利用二次根式的乘除法则计算即可得到结果.【解答】解:原式===.【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.6..【分析】先把最后一个二次根式根号外的因式移到根号内,转化成乘法,进而把根号外的式子,根号内的式子,分别进行运算即可.【解答】解:原式=×4÷=×4÷=×4×=×4××=1.【点评】考查二次根式的乘除混合运算;注意应先把乘除混合运算统一成乘法运算.7.计算:.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3××=10.【点评】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.8.÷×3÷6.【分析】先把除法变成乘法,再根据二次根式的乘法法则进行计算即可.【解答】解:原式=××3×=×3=.【点评】本题考查了二次根式的乘除法法则的应用,能灵活运用法则进行计算是解此题的关键.9.计算:÷×.【分析】直接利用二次根式的乘除运算法则化简求出即可.【解答】解:÷×==.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.10.计算:×(﹣)×.【分析】根据二次根式的乘法法则进行运算即可.【解答】解:原式=﹣=﹣4.【点评】本题考查了二次根式的乘法运算,属于基础题,注意掌握?=.11.计算:= .【分析】根据二次根式的乘法法则=,求解即可.【解答】解:原式==.故答案为:.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘法法则=.12.化简:x2?()(x>0,y≥0).【分析】根据二次根式的乘法及二次根式的化简,进行运算即可.【解答】解:原式=x=2xy2.【点评】本题考查了二次根式的乘法运算,属于基础题,解答本题的关键是掌握二次根式的乘法法则.13.计算:×(﹣)2×÷.【分析】先开方及乘方,再从左向右运算即可.【解答】解:×(﹣)2×÷=(﹣1)×3×÷,=(9﹣3),=9﹣3.【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记二次根式的乘除法的法则.14.计算:×()﹣1÷.【分析】先算负指数幂,再从左向右的顺序运算即可.【解答】解:×()﹣1÷=×÷,=3÷,=3.【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记二次根式的乘除法的法则.15.计算:÷(x>0,y>0).【分析】根据二次根式的除法:=,可得答案.【解答】解:原式==.【点评】本题考查了二次根式的乘除法,利用了二次根式的除法,注意要化简二次根式.16.计算:×()÷.【分析】根据二次根式乘除法及分母有理化的知识解答即可.【解答】解:原式=b2×(﹣a)÷3=2b×(﹣a)×=﹣a2b.【点评】此题考查了二次根式的乘除法,熟悉二次根式乘除法的法则是解题的关键.17.【分析】运用平方差公式将二次根式展开即可.【解答】解:原式=(+)(﹣)=﹣=3﹣5=﹣2.【点评】此题比较简单,只要熟知平方差公式便可直接解答.18.(1)计算下列各式:①;②;(2)通过上面的计算,你一定有所体会吧?请计算:.【分析】(1)先将各二次根式化为最简二次根式,然后再进行计算;(2)可逆用二次根式的乘法法则:?=,再将所求的二次根式进行化简即可.【解答】解:(1)①原式=2×3=6,(2分)②原式=×4=;(2分)(2)原式===.(2分)【点评】此题主要考查了二次根式的乘法运算,有时先将二次根式化简比较简单(如(1)题),有时运用乘法法则进行计算比较简便(如(2)题),要针对不同题型灵活对待.19.计算:.【分析】先将二次根式化为最简,然后从左至右依次运算即可.【解答】解:原式=4×÷=3÷=.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘除运算法则.20.计算:?.【分析】从左至右依次进行运算即可得出答案.【解答】解:原式=÷==.【点评】本题考查了二次根式的乘除运算,属于基础题,掌握二次根式的乘除法则是解答本题的关键.21.化简:.【分析】先进行二次根式的乘法运算,然后将二次根式化为最简,最后合并即可.【解答】解:原式=﹣5=6﹣5=1.【点评】本题考查了二次根式的乘法运算,属于基础题,掌握二次根式的乘法法则及二次根式的化简是关键.22..【分析】根据二次根式的乘除法则,从左至右依次进行运算即可.【解答】解:原式=6÷15=×=×5=2.【点评】本题考查了二次根式的乘除法则,属于基础题,解答本题的关键是掌握二次根式的乘除法则.23.(a>0,b>0)【分析】先将二次根式化为最简二次根式,然后再进行乘除法的运算.【解答】解:原式=2b?(﹣a)÷3,=﹣3a2b2÷3,=﹣a2b.【点评】本题考查二次根式的乘除法运算,难度不大,注意先将二次根式化为最简再计算.24.已知x=,y=,求x2y+xy2的值.【分析】首先将原式提取公因式xy,进而分解因式求出答案.【解答】解:∵x═2﹣,y=,∴x2y+xy2=xy(x+y)=[(2﹣)+(2+)]×1=4.【点评】此题主要考查了二次根式的化简求值,正确掌握乘法公式是解题关键.25.已知x1=,x2=,求下列代数式的值:(1)x12+x1﹣1;(2)x1+x2+x1x2+1.【分析】(1)把x1的值代入,先利用完全平方公式求解,然后进行加减计算即可;(2)把x1和x2的值代入求解即可.【解答】解:(1))x12+x1﹣1=()2+﹣1=+﹣1=+﹣1=0;(2)原式=++×+1=﹣1++1=﹣1.【点评】本题考查了二次根式的化简求值,正确理解完全平方公式和平方差公式的结构是关键.26.已知a=,b=,求a2b+ab2的值.【分析】先化简a、b的值,然后代入所求的式子中,即可解答本题.【解答】解:∵a=,b=,∴a=,b=,∴a2b+ab2=ab(a+b)===.【点评】本题考查二次根式的化简求值的方法,解题的关键是明确二次根式化简求值的方法.27.求a=2+,b=3时,代数式a2+b2﹣4a+4的值.【分析】可用完全平方公式对代数式进行整理即:a2+b2﹣4a+4=(a﹣2)2+b2,然后再代入求值.【解答】解:a2+b2﹣4a+4=(a﹣2)2+b2,当a=2+,b=3时,得原式=(2+﹣2)2+(3)2=29.【点评】本题考查了二次根式的化简求值,在计算时,巧用公式能化繁为简,起到简化计算得作用.28.(1)计算﹣()2+()0﹣+||(2)已知a=,求﹣的值.【分析】(1)利用二次根式的化简,零指数幂,绝对值的性质,算术平方根的性质运算即可;(2)首先将原式化简,在将a的值分母有理化,代入可得结果.【解答】解:(1)﹣()2+()0﹣+||=+1+2=﹣3;(2)﹣=﹣=(a﹣1)﹣,∵a==2﹣,∴a﹣1=2﹣﹣1=1﹣<0,∴原式=(a﹣1)﹣=a﹣1,把a=2﹣代入上式得,a﹣1=1﹣=3.【点评】本题主要考查了二次根式的化简求值,零指数幂的运算等,先化简再代入求值是解答此题的关键.29.计算题(1)(2).【分析】(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.【解答】解:(1)=3﹣2+﹣3=﹣;(2)=4××=.【点评】本题考查的是二次根式的混合运算,掌握二次根式乘法、除法及加减法运算法则是解题的关键.30.计算:×(+)﹣.【分析】先把括号内的各二次根式化为最简二次根式,然后合并后进行二次根式的乘除法运算.【解答】解:原式=(+)﹣=?﹣=3﹣1=2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.31.计算:()﹣2﹣|2﹣3|+.【分析】根据负整数指数幂的意义和分母有理化得到原式=4+2﹣3+,然后合并同类二次根式即可.【解答】解:原式=4+2﹣3+=1+.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂.32.计算:(2﹣)0+|2﹣|+(﹣1)2017﹣×.【分析】根据零指数幂的意义和绝对值的意义进行计算.【解答】解:原式=1+﹣2﹣1﹣=﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.33.计算:【分析】根据实数的运算法则依次进行计算即可.【解答】解:原式=﹣4×2+9﹣12﹣+1=﹣8+9﹣11﹣=﹣11.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并,相乘的时候,被开方数简单的直接让被开方数相乘,再化简,较大的也可先化简,再相乘,灵活对待.34.先化简,再求值,5x2﹣(3y2+5x2)+(4y2+7xy),其中x=﹣1,y=1﹣.【分析】去括号,合并同类项,化为最简式,再代入数据计算求值.【解答】解:5x2﹣(3y2+5x2)+(4y2+7xy),=5x2﹣3y2﹣5x2+4y2+7xy,=y2+7xy,当x=﹣1,y=1﹣时原式=(1﹣)2+7×(﹣1)×(1﹣)=1﹣2+2﹣7+7=﹣4+5.【点评】本题考查了去括号法则,熟练掌握法则是解本题的关键.35.计算:.【分析】先化简二次根式,能合并的合并,再做乘法.【解答】解:====.【点评】此题考查二次根式的运算,注意运算顺序.36.计算:【分析】先把根式化为最简二次根式,再根据实数的运算法则进行计算.【解答】解:原式=(3+1﹣2)+=4﹣2+4+2=8.【点评】二次根式的混合运算,一般应先化简成最简二次根式,再进行计算,比较简单.37.计算:.【分析】先做乘法、分母有理化,再合并同类二次根式.【解答】解:原式=3++2﹣=5.【点评】此题考查二次根式的运算,注意正确确定有理化因式.38.计算:(﹣2)2×﹣4(4﹣)+【分析】先将各式化为最简二次根式,分母中含有根式的要分母有理化,然后再进行计算.【解答】解:原式=4×2﹣16+12+16+8=28.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.39.计算:+(2﹣)0﹣2﹣1+||【分析】零指数幂、负整数指数幂以及分母有理化得到原式=﹣﹣1+1﹣+﹣,然后合并同类二次根式.【解答】解:原式=﹣﹣1+1﹣+﹣=﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.40.计算:(﹣)﹣1×+(﹣2)2÷(﹣1)﹣3.【分析】先根据负整数指数幂的意义得到原式=×+4÷(﹣1),再分母有理化得到原式=(+)×﹣4,然后进行二次根式的乘法后合并即可.【解答】解:原式=×+4÷(﹣1)=(+)×﹣4=3+﹣4=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂.。
清单05 二次根式 全章复习(3个考点梳理+11种题型+10类型)(解析版)

清单05二次根式全章复习(3个考点梳理+10种题型+10类型)考点一二次根式的相关概念二次根式的概念:一般地,我们把形如(≥0)的式子叫做二次根式,“”称为二次根号,二次根号下的数叫做被开方数.二次根式有意义的条件:当a≧0时,即被开方数大于或等于0,二次根式有意义.最简二次根式:开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.最简二次根式必须同时满足以下两个条件:①开方数所含因数是整数,因式是整式(分母中不应含有根号);②不含能开得尽方的因数或因式的二次根式,即被开方数的因数或因式的指数都为1.同类二次根式的概念:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式.【考试题型1】二次根式有意义的条件1.(20-21九年级上·吉林长春·在实数范围内有意义的条件是.x的值.2.(2023·浙江杭州·1.(22-23七年级下·广东汕头·m的最小值是()A.2B.3C.8D.11∴12m -是完全平方数,当120m -=时,即12m =,当121m -=时,即11m =,当124m -=时,即8m =,当129m -=时,即3m =,综上所述,自然数m 的值可以是3、8、11、12,所以m 的最小值是3,故答案选:B .【点睛】本题考查了二次根式的化简及自然数的定义,掌握二次根式的化简法则及自然数是指大于等于0的整数是解答本题的关键.2.(22-23八年级下·福建莆田·开学考试)若实数a ,b 4b +,则a b -=.3.(20-21七年级下·广东广州·期中)若()230a -+=,则a b -的立方根是.【点睛】本题考查平方、二次根式的非负性以及求立方根,得到30a -=,50b +=是解题的关键.4.(20-21八年级上·四川达州·期中)已知a ,b 0b =(1)a=_______,b=______(2)把a ,b 的值代下以下方程并求解关于x 的方程()221a xb a ++=-1.(23-24八年级上·上海青浦·)ABC D2.(23-24八年级上·山东滨州·期末)下列各式化成最简二次根式正确的是()A=B =C =D 10=()A .2个B .3个C .4个D .5个4.(22-23八年级下·海南省直辖县级单位·是同类二次根式,则=a .【答案】5-【分析】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键,化成最简二1.(23-24九年级上·四川宜宾·a 的值可能是()A .16B .0C .2D .任意实数2.(22-23九年级上·四川遂宁·是同类二次根式,则m 的值为()A .4m =B .3m =C .5m =D .6m =3.(22-23八年级下·山东泰安·是最简二次根式,则m,n的值为()A.0,1-B.1-,0C.1,1-D.0,04.(21-22八年级下·江西赣州·期中)若考点二二次根式的性质与化简二次根式的化简方法:1)利用二次根式的基本性质进行化简;2)利用积的算术平方根的性质和商的算术平方根的性质进行化简.a =•(≥0,≥0)(≥0,>0)化简二次根式的步骤:1)把被开方数分解因式;2)利用积的算术平方根的性质,把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;3)化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【考试题型5】利用二次根式的性质化简【类型一】数形结合法1.(22-23八年级下·四川绵阳·阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简2a b b c --+.【答案】a-【分析】本题考查了数轴的定义、二次根式的运算、绝对值运算.观察数轴可得0c b a <<<,从而得到0,0,0a b c a b c ->-<+<,再根据二次根式的运算、绝对值运算计算即可.【详解】解:观察数轴得:0c b a <<<,2.(23-24八年级上·重庆万州·阶段练习)已知实数x 、y 、z 在数轴上的对应点如图所示:(1)若5x =-,y =x 对应的点与z 对应的点恰好关于y 对应的点对称,求z 的值.(2)2+3.(23-24八年级上·湖北襄阳·开学考试)已知实数x ,y ,z 在数轴上的对应点如图所示,试化简:.【类型二】估值法方法简介:先运用二次根式的运算法则化简,再将最后的化简结果化成根式再确定取值范围.1.(2023·重庆·(最接近的整数是()A .7B .8C .9D .10A .5m <-B .54m -<<-C .43m -<<-D .3m >-3.(23-24九年级上·四川宜宾·阶段练习)若a ,则a 的值所在的范围为()A .2a ≥B .2a >C .12a <<D .01a <<【类型三】公式法方法简介:根据题目已知条件,通过变形、凑元等方法,凑成可用乘法公式,快速求解.1.(23-24九年级上·河南周口·阶段练习)已知2M=,2N,则M与N的关系为()A.相等B.绝对值相等C.互为相反数D.互为倒数2.(23-24八年级上·云南文山·阶段练习)计算题:;(2)【类型四】换元法方法简介:根据已知条件,利用未知变量替换有规律表达式,寻找规律,快速求解.1.(19-20八年级上·福建泉州·期中)若ab=1,我们称a与b1与1互为倒数:方法一:∵)22111211+-=-=-=1+1互为倒数.()2211111211⋅--====--111互为倒数.(1)互为倒数;(2)若()21x x -=,求21x x ⎛⎫- ⎪⎝⎭的值;(3)利用“换元法”求((101022⨯的值.=1.【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质是,选择合适的解题途径,往往能事半功倍.【类型五】拆项法【类型六】整体代入法方法简介:由已知条件,通过加减乘除运算,得到与求解表达式相关的表达数值,整体代入.1.(23-24八年级下·云南昭通·期中)已知x =2(8x x -+的值.2.(23-24八年级下·海南省直辖县级单位·期中)已知33a b ==-求下列各式的值:(1)a b +和ab ;(2)22a ab b ++.22(1)223x xy y ++(2)x y y x +【类型七】因式分解法【类型八】配方法1.(23-24八年级下·北京·期中)阅读材料:材料一:数学上有一种根号内又带根号的数,它们能通过完全平方式及二次根式的性质化去一层(或多层)1===-.材料二:配方法是初中数学思想方法中的一种重要的解题方法,配方法的最终目的就是配成完全平方式,利用完全平方式来解决问题,它的应用非常广泛,在解方程、化简根式、因式分解等方面都经常用到.如:(2222311x x x++=+++=+,(20x+≥,(211x∴+≥,即231x++≥.23x∴++的最小值为1.阅读上述材料解决下面问题:_______=______;(2)求211x++的最值;(3)2-2.阅读材料:材料一:数学上有一种根号内又带根号的数,它们能通过完全平方式及二次根式的性质化去一层(或多层)根号,1材料二:配方法是初中数学思想方法中的一种重要的解题方法,配方法的最终目的就是配成完全平方式,利用完全平方式来解决问题,它的应用非常广泛,在解方程、化简根式、因式分解等方面都经常用到.如:2222321(x 1x x x ++=+++=+∵2(0x ≥,∴2(11x ++≥,即231x ++≥∴23x ++的最小值为1阅读上述材料解决下面问题:(1=,=;(2)求211x ++的最值;(3)已知x =221(41)54x y xy -++-的最值.【类型九】辅元法【类型十】先判断后化解解题的关键.【考试题型6】分母有理化1.(新疆维吾尔自治区克孜勒苏柯尔克孜自治州2023-2024学年八年级下学期4月期中考试数学试题)在进样的式子,这样的式子我们可以将其进一步化简:行二次根式化简时,我们有时会碰上如1==;====.以上这种化简的方法叫做分母有理化,通过观察请利用分母有理化解答下列问题:(1)利用你观察到的规律,化简L(2)2.(23-24八年级下·山东济宁·期中)【阅读材料】(材料一)细心观察图形,认真分析各式,总结其中蕴含的规律.22212OA =+=,112S =(1S 是12RtA A O △的面积);22313OA =+=,22S =(2S 是23Rt A A O △的面积);22414OA =+=,32S =(3S 是34Rt A A O △的面积);.==【问题解决】利用你总结的规律,解答下面的问题:(1)填空:100S =_________,11OA =_________;(2)求11111S S S S S S S S S S +++++++++的值.3.(23-24七年级下·上海嘉定·期中)阅读下列解题过程:1⨯-()()221⨯===-请回答下列问题:(1)=______()2n≥.(2)利用上面所提供的解法,请化简:+(3)模仿上面所提供的解法,试一试化简:+考点三二次根式的运算乘法法则:两个二次根式相乘,把被开方数相乘,根指数不变.即:a =•(≥0,≥0).除法法则:=加减法法则:先把各个二次根式化为最简二次根式后,再将被开方数相同的二次根式合并.【口诀】一化、二找、三合并.分母有理化:通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程.【分母有理化方法】==2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分.==混合运算顺序:先乘方、再乘除,最后加减,有括号的先算括号里的(或先去掉括号).【考试题型7】二次根式的乘除运算1.(2024·陕西西安·三模)计算:)()02252π---2.(23-24八年级下·安徽铜陵·00)b ⎛÷⨯>> ,3.(23-24八年级下·全国·课后作业)计算:(1)÷;()0,0x y ⎫÷>>⎪⎪⎭.1.(23-24八年级下·吉林松原·期中)计算:((-.2.(23-24八年级下·广东阳江·期中)已知b=-,求22a=+,11a b+的值.3.(23-24八年级下·北京海淀·这个数叫做黄金分割数,著名数学家华罗庚优选法中就应用了黄金分割数.设a=b=(1)直接写出a b+和ab的值:a b+=______,ab=______;(2)求1111sa b=+的值.2.(23-24九年级下·山东烟台·期中)计算:(2)3.(23-24八年级下·辽宁营口·期中)(1)先化简,再求值:111a a -⎛⎫-÷⎪--⎝⎭,其中,2a =.1.(23-24八年级下·浙江金华·的计算,将分母转化为有理数,这就是“分母有理化()22==;()()2232++====+--.类似地,将分子转化为有理数,就称为“分子有理化21===()222111+-==.根据上述知识,请你解答下列问题:(1)(2)的大小,并说明理由.2.(23-24八年级下·福建福州·期中)如图,正方形A,B的面积分别为25cm和27cm,现将正方形A的边长分别增加2cm和3cm得到矩形甲;将正方形B的边长都增加2cm得到一个新的正方形乙,请通过计算比较甲、乙两个图形的面积的大小.【答案】矩形甲的面积小于矩形乙的面积.【分析】此题考查了二次根式混合运算的应用,根据题意表示出矩形甲和乙的面积,然后相减得到3.(23-24八年级下·江苏扬州·阶段练习)观察下列等式:1==-;==;==;……像)221-=()0a a =≥,)()1110b b -=-≥,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.11,与-答下列问题:(1)化简:(2)=___________(n为正整数).(3)计算:)1+ =___________;(4)已知a==b试比较a、b的大小,则a___________b.(填“<”“>”或“=”)1.(23-24八年级下·甘肃庆阳·期中)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛出的物体下落的时间t(单位:s)和高度h(单位:m)近似满足t=(不考虑风速的影响).(1)从30m高处抛下的物体落地所需的时间1t=s;从60m高处抛下的物体落地所需的时间2t=s(2)2t是1t的多少倍?(3)若从高空抛下的物体经过4s落地,则该物体下落的高度是多少?2.(23-24八年级下·江西宜春·阶段练习)有一块长方形木板,木工师傅采用如图所示的方式,在木板上截出面积分别为218dm 和232dm 的两块正方形木板.(1)截出的两块正方形木板的边长分别为______dm ,______dm ;(2)求剩余木板的面积;(3)如果木工师傅想从剩余的木板中截出长为1.5dm 、宽为1.2dm 的长方形木条,最多能截出______个这样的木条. 1.414≈)3.(23-24八年级下·广东东莞·期中)小乐是一个善于思考的学生,学习完“二次根式”和“勾股定理”后,他发现可以有多种方法求三角形的面积,以下是他的数学笔记,请认真阅读并完成任务,的面积;(1)请根据思路1的公式,求ABC(2)请你结合思路2,在如图所示的网格中(正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点),完成下列任务,,要求三个顶点都在格点上;①画出ABC面积的计算过程.②结合图形,写出ABC②过点A 作AD CB ⊥∴4.(23-24八年级下·广西南宁·期中)安全问题,时刻警醒.高空坠物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.经过查阅相关资料,小南同学得到高空坠物下落的时间t (单位:s )和高度h (单位:m )近似满足公式t 10N /kg g ≈)(1)求从45m 高空抛物到落地的时间;(2)已知高空拋物动能(单位:J )10=(单位:N /kg )⨯物体质量(单位:kg )⨯高度(单位:m ),某质量为0.2kg 的玩具在高空被抛出后经过4s 后落在地上,根据以上信息,小南判断这个玩具产生的动能会伤害到楼下的行人,请通过计算说明小南的判断是否正确.(注:伤害无防护人体只需要65J 的动能)5.(23-24八年级下·安徽铜陵·期中)铜陵市各小区都有“禁止高空抛物”的宣传标语,高空抛物极其危险,是我们必须杜绝的行为.据研究,从高度为h(单位:m)的高空抛出的物体下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响).(1)从50m高空抛出的物体从抛出到落地所需时间1t,从100m高空抛出的物体从抛出到落地所需时间2t,那么2t是1t的多少倍?(2)从足够高的高空抛出物体,经过1.5s,所抛物体下落的高度是多少?6.(23-24八年级下·湖北孝感·期中)学习完《二次根式》后,聪聪发现了下面这类有趣味的试题,请你根据他的探索过程,解答下列问题:(1)具体运算,发现规律:131711122236=+==+=⨯⨯11313412=+=⨯,…计算:=(2)观察归纳,写出结论=(1n ≥且n 为正整数)(3)灵活运用,提升能力请利用你所发现的规律,。
二次根式知识点归纳及题型总结

二次根式知识点及题型归纳1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时,a 才有意义.2. 二次根式的性质1. 非负性:)0(≥a a 是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a3. ⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.4. 二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算——分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化。
2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。
3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
二次根式计算专题-30题(教师版含答案解析)

完美WORD格式二次根式计算专题1.计算:⑴ 3 6 4 2 3 6 4 2 ⑵ 2 0( 3) ( 3) 27 3 2 【答案】(1)22; (2) 6 4 3【解析】试题分析:(1) 根据平方差公式,把括号展开进行计算即可求出答案.(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) 3 6 4 2 3 6 4 22 2(3 6) (4 2)=54-32=22.(2) 2 0( 3) ( 3) 27 3 23 1 3 3 2 36 4 3考点: 实数的混合运算.2.计算(1)﹣×(2)(6 ﹣2x )÷ 3 .【答案】(1)1;(2)【解析】1 3试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)20 5 15 3122 5 5 35 32 33 21;(2)(6 2 1 ) 3xx x 4x6 x 2x x( ) 32 xx(3 x 2 x) 3 xx 3 x专业知识分享13.考点: 二次根式的混合运算.3.计算:13 12 2 48 2 33.【答案】【解析】14 3.试题分析:先将二次根式化成最简二次根式, 再算括号里面的, 最后算除法.试题解析:13 12 2 48 2 332=(6 3 3 4 3) 2 332833 2 3143.考点:二次根式运算.64.计算: 3 6 2 32【答案】 2 2 .【解析】试题分析:先算乘除、去绝对值符号, 再算加减.试题解析:原式=3 2 3 3 2= 2 2考点:二次根式运算.5.计算: 2 18 3( 3 2)【答案】 3 3.【解析】试题分析:先将二次根式化成最简二次根式, 再化简.试题解析: 2 18 3( 3 2)= 2 3 2 3 3 6 3 3.考点:二次根式化简.6.计算:1 4 323 .22 2【答案】.2【解析】试题分析:根据二次根式的运算法则计算即可.试题解析:1 4 32 2 3234 2 2 22 2 2 2.考点:二次根式的计算.试卷第 2 页,总10 页完美WORD格式7.计算:1262(31)(31).【答案】32.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:1262(31)(31)=23331=32.考点:二次根式的化简.8.计算:12236322【答案】0.【解析】试题分析:根据二次根式运算法则计算即可.试题解析:36331 12226660.2222考点:二次根式计算.9.计算:0+1123.【答案】13.【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:0+1123123313.考点:二次根式的化简.10.计算:83130.53433【答案】3222【解析】.试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2333223=232222.考点:二次根式的化简.11.计算:(1)2712451 3(2)020141182014223专业知识分享【答案】(1)1 15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,. 绝对值 4 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:( 1 )1 1 127 12 45 3 3 2 3 3 5 3 3 3 5 3 1 153 3 3.(2)020141 18 20142 23 1 3 2 1 2 2 3 3 2 .考点:1. 实数的运算;2. 有理数的乘方;3. 零指数幂;4. 二次根式化简;5. 绝对值.12.计算:( 3 2)( 3 2) (1 03) 2 1 2【答案】 2 .【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式= 3 2 1 2= 2考点:二次根式的混合运算.13.计算:327 ( 2013) | 2 3 |3.【答案】4 3 1. 【解析】试题分析:解:327 ( 2013) | 2 3 |33 3 3 1 2 34 3 1.考点:二次根式化简.214.计算(3 24 8) 123【答案】2 6- + .2 3试卷第 4 页,总10 页完美WORD格式【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:2(3 - 24 + 8) ? 12 ( 6 - 2 6 +22) ? 2 3 (2 2 - 6) ? 2 332 6= - +2 3考点: 二次根式的混合运算.15.计算:12 1 2 1- -2 3【答案】4 3 2- .3 2【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.试题解析:1 12 234 3 2 12 - - 2 = 2 3 - - = -2 3 2 3 3 2考点: 二次根式的运算.50 32 16.化简:(1)8(2)( 6 2 15) 3 6 1 2【答案】(1)【解析】92;(2) 6 5 .试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式= 5 2 4 2 922 2;(2)原式= 6 3 2 15 3 3 2 3 2 6 5 3 2 6 5 .考点:二次根式的混合运算;17.计算(1)27 3 3 22 12 3(2)【答案】(1)3 3 ; (2)3.【解析】试题分析:(1)根据运算顺序计算即可;专业知识分享(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)27 3 3 2 3 3 3 2 3 3 3 .(2)2 2 212 3 2 3 3 3 3 .考点:二次根式化简.18.计算:18(3 2 1)(1 3 2)2 4【答案】17. 【解析】试题分析:先化简12和84,运用平方差公式计算(3 2 1)(1 3 2) ,再进行计算求解 .试题解析:原式==172 218 12 2考点: 实数的运算.119.计算:( 3) 27 |1 2 |32【答案】 2 3 .【解析】试题分析:本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 3 3 2 1 3 2 2 3考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:1 2 0②16 3 2 48 123①8 2③2 a 1 2a3a 32 2 3【答案】① 2 1;②【解析】143;③a3.试题分析:①针对算术平方根,绝对值,零指数 3 个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.试题解析:①18 2 =2 2 2 1 2 1.2试卷第 6 页,总10 页完美WORD格式②1 2 28 14 6 3 2 48 12 6 3 3 4 3 2 3 3 2 33 3 3 3.③ 2 a 1 2a 1 2 2 2a 1 2 1 a3a 3 = 3a = 4a 2a2 23 6 a 3 6 6 3. 考点:1. 二次根式计算; 2. 绝对值; 3.0 指数幂.21.计算:(1)2012 1 1 3 0( 1) 5 ( ) 27 ( 2 1)2(2)1 13 12 3 48 273 2【答案】(1)0;(2)43.【解析】试题分析:(1)原式=1 5 2 3 1 0;(2)原式=6 3 3 2 3 3 3 4 3 .考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1)327 33(2) 2(3 5) (4 7)(4 7)【答案】(1)2 3 1;(2)6 5 5 .【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0 指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1)3 027 3 3 3- 3 1 2 3 1.3(2)23 54 7 4 7 9 65 5 167 6 5 5 .考点:1. 二次根式化简; 2.0 指数幂; 3. 完全平方公式和平方差公式. 23.(1) 2 8 2 18(2)1212713(3)212 33(1 03)(4)(2 3 3 2 )(2 3 3 2)【答案】(1) 3 2 ;(2) 16 39【解析】;(3)6;(4) 6试题分析:本题主要考查根式的根式的混合运算和0 次幂运算. 根据运算法则先算乘除专业知识分享法,是分式应该先将分式转化为整式,再按运算法则计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的应用
1/二次根式的加减
•[ 初三数学]
•题型:解答题
已知根号下5整数部分是x,小数部分是y,则x减y等于?问题症结:完全没思绪啊
考查知识点:
•二次根式的实际应用
难度:中
已知根号下5整数部分是x,小数部分是y,则x减y等于?解析过程:
规律方法:
表示出x,y可解。
2、求代数式的值
•[ 初三数学]
•题型:解答题
考查知识点:
•
•二次根式的实际应用
难度:中
解析过程:
解:∵1-8x≥0且8x-1≥0
∴解得:x≤1/8且x≥1/8
∴ x=1/8
∴y=1/2
∴原式=(5/2)-(3/2)=1
如有疑问请递交讨论,祝学习进步!
规律方法:
利用二次根式的非负性先求x的值,再求出y值;最后带入解答
本题知识点:
概述
所属知识点:
[二次根式]
包含次级知识点:
二次根式的实际应用
相关课程:
初三上学期数学课程| 二次根式
知识点总结
二次根式的应用主要体现在两个方面:1.利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;2.利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。
这个过程需要用到二次根式的计算,其实就是化简求值。
常见考法
(1)设计一些规律探索问题提高学生的想象力和创造力;(2)联系生活实际设计一些方案探究题。
误区提醒
(1)不能通过观察,归纳、猜想寻找出共同的规律,并运用这种规律解决问题;
(2)不会应用数学的知识解决实际生活中的问题。
【典型例题】小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长、宽比为3:2,不知道能否裁出来,正在发愁你能帮他解决吗?。