杭电数字信号处理实验7

合集下载

数字信号处理综合实验

数字信号处理综合实验

数字信号处理综合实验一、实验目的本实验旨在通过数字信号处理技术的综合应用,加深对数字信号处理原理和方法的理解,提高学生的实际操作能力和问题解决能力。

二、实验原理数字信号处理是利用数字计算机对摹拟信号进行采样、量化和编码,然后进行数字运算和处理的技术。

本实验主要涉及以下几个方面的内容:1. 信号采集与预处理:通过摹拟信号采集电路将摹拟信号转换为数字信号,然后进行预处理,如滤波、降噪等。

2. 数字滤波器设计:设计和实现数字滤波器,包括FIR滤波器和IIR滤波器,可以对信号进行滤波处理,提取感兴趣的频率成份。

3. 时域和频域分析:对采集到的信号进行时域和频域分析,如时域波形显示、功率谱密度估计等,可以了解信号的时域和频域特性。

4. 信号重构与恢复:通过信号重构算法对采集到的信号进行恢复,如插值、外推等,可以还原信号的原始特征。

三、实验内容根据实验原理,本实验的具体内容包括以下几个部份:1. 信号采集与预处理a. 使用摹拟信号采集电路将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。

b. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。

2. 数字滤波器设计a. 设计并实现FIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。

b. 设计并实现IIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。

3. 时域和频域分析a. 对采集到的信号进行时域分析,绘制信号的时域波形图,并计算信号的均值、方差等统计指标。

b. 对采集到的信号进行频域分析,绘制信号的功率谱密度图,并计算信号的频域特性。

4. 信号重构与恢复a. 使用插值算法对采集到的信号进行重构,恢复信号的原始特征。

b. 使用外推算法对采集到的信号进行恢复,还原信号的原始特征。

四、实验步骤1. 搭建信号采集电路,将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。

2. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。

《数字信号处理》实验

《数字信号处理》实验

《数字信号处理》实验一、实验要求1.上机期间不允许玩游戏。

若发现,以实验不通过记分。

实验不通过者,本课程成绩记为0分。

2.每个同学上机前应认真准备与实验相关的知识,搞清理论概念。

上机期间认真独立完成实验内容,不能相互抄袭。

3.对在3次上机时间内完成实验的同学,采取当场验收方式确定成绩。

否则,需提交所做实验的源程序和结果软件,并同时提交实验报告,两者缺一不可。

4.实验报告要求写明实验内容、实现方法、实验结果(附所有结果曲线)及对相关结果的说明与讨论。

二、实验内容1.利用傅立叶级数展开的方法,自由生成所需的x(t);2.通过选择不同的采样间隔T(分别选T>或<1/2f c),从x(t)获得相应的x(n)(作出x(n)图形);3.对获得的不同x(n)分别作傅立叶变换,分析其频率响应特性(给出幅频与相频特性曲线);4.利用巴特沃思、切比雪夫或椭圆滤波器设计数字滤波器(滤波特性自定),要求通过改变滤波器参数或特性(低通、高通、带通或带阻)设计至少两种数字滤波器,分析所设计滤波器(画出频率特性曲线),并对上述给出的不同x(n)分别进行滤波(画出滤波结果),然后加以讨论;5.利用窗函数设计法或频率采样法设计数字滤波器(滤波特性自定),要求通过改变滤波器参数或特性(低通、高通、带通或带阻等)设计至少两种数字滤波器,分析所设计滤波器(画出频率特性曲线),并对上述给出的不同x(n)分别进行滤波(画出滤波结果),然后加以讨论。

三、实验工具可采用MA TLAB高性能数字计算和可视化软件中的Signal Processing Toolbox 完成上述实验。

四、实验时间、地点11月19日下午2:00(在计算中心E楼205、208机房)、12月17日下午2:00(在计算中心E楼2024、207、208机房)、12月24日上午8:00(在计算中心E楼203、2037、208机房)。

《数字信号处理》实验

《数字信号处理》实验

《数字信号处理》实验一、实验要求1.上机期间不允许玩游戏。

若发现,以实验不通过记分。

实验不通过者,本课程成绩记为0分。

2.每个同学上机前应认真准备与实验相关的知识,搞清理论概念。

上机期间认真独立完成实验内容,不能相互抄袭。

3.对在3次上机时间内完成实验的同学,采取当场验收方式确定成绩。

否则,需提交所做实验的源程序和结果软件,并同时提交实验报告,两者缺一不可。

4.实验报告要求写明实验内容、实现方法、实验结果(附所有结果曲线)及对相关结果的说明与讨论。

二、实验内容1.利用傅立叶级数展开的方法,自由生成所需的x(t);2.通过选择不同的采样间隔T(分别选T>或<1/2f c),从x(t)获得相应的x(n)(作出x(n)图形);3.对获得的不同x(n)分别作傅立叶变换,分析其频率响应特性(给出幅频与相频特性曲线);4.利用巴特沃思、切比雪夫或椭圆滤波器设计数字滤波器(滤波特性自定),要求通过改变滤波器参数或特性(低通、高通、带通或带阻)设计至少两种数字滤波器,分析所设计滤波器(画出频率特性曲线),并对上述给出的不同x(n)分别进行滤波(画出滤波结果),然后加以讨论;5.利用窗函数设计法或频率采样法设计数字滤波器(滤波特性自定),要求通过改变滤波器参数或特性(低通、高通、带通或带阻等)设计至少两种数字滤波器,分析所设计滤波器(画出频率特性曲线),并对上述给出的不同x(n)分别进行滤波(画出滤波结果),然后加以讨论。

三、实验工具可采用MA TLAB高性能数字计算和可视化软件中的Signal Processing Toolbox 完成上述实验。

四、实验时间、地点12月16日晚上(在计算中心E楼202、205机房)、12月17日下午2:00(在计算中心E楼2024、207、208机房)、12月24日上午8:00(在计算中心E楼203、2037、208机房)。

2011年8月30日。

数字信号处理实验(设计性实验修改)

数字信号处理实验(设计性实验修改)

《数字信号处理》实验指导书(实验报告)Digital Signal Processing Laboratory湛柏明编蒋伟荣审班级:姓名:湖北汽车工业学院电子信息科学系二〇〇六年十二月修订前言《信号与系统》、《数字信号处理》是电子信息类专业的两门主要技术基础课程,是电子信息类专业本科生的必修课程,也是电子信息类专业硕士研究生入学必考课程。

该课程的任务在于研究信号与系统理论的基本概念和基本分析方法,使学生初步认识如何建立信号与系统的数学模型,如何经适当的数学分析求解,并对所得结果给予物理解释,赋予物理意义。

该课程的基本理论和方法大量用于计算机信息处理的各个领域,特别是通信、数字语音处理、数字图像处理、数字信号分析等领域应用更为广泛。

通过实验,配合《信号与系统》和《数字信号处理》课程的教学、加强学生对信号与系统理论的感性认识、提高学生的综合能力具有重要的意义。

长期以来,《信号与系统》和《数字信号处理》课程一直采用黑板式的单一教学方式,学生仅依靠做习题来巩固和理解教学内容,对课程中大量的应用性较强的内容不能实际动手设计、调试、分析,严重影响和制约了教学效果。

由于黑板式教学,课程中大量的信号分析结果缺乏可视化的直观表现,学生自己设计系统也不能直观地得到系统特性的可视化测试结果,学生将大量的时间和精力用于繁杂的手工数学运算,而未真正理解所得结果在信号处理中的实际意义。

近年来,计算机多媒体教序手段的运用逐步普及,大量优秀的科学计算和系统仿真软件不断涌现,为我们实现计算机辅助教学和学生上机实验提供了很好的平台。

通过对这些软件的分析和对比,我们选择MATLAB语言作为辅助教学工具,借助MATLAB强大的计算能力和图形表现能力,将《信号与系统》和《数字信号处理》中的概念、方法和相应的结果,以图形的形式直观地展现给学生,大大的方便学生迅速掌握和理解教学内容。

然而,我们意识到,按照之前的《信号与系统》和《数字信号处理》课程的各8个实验学时进行实验,实验效果比较不尽如人意,由于实验学时数太少,没有给学生更的时间先去了解MATLAB语言,以至于使实验课流于形式,由于实验学时太少,也导致我们无法安排更为细致的具有综合型和设计型的实验项目。

数字信号处理实验(民航无线电监测关键技术研究)

数字信号处理实验(民航无线电监测关键技术研究)

《数字信号处理》实验报告实验名称数字信号处理实验(民航无线电监测关键技术研究)实验时间一、实验目的:通过实验,理解和掌握民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术,培养学生对数字信号处理技术的兴趣,并提高学生基于数字信号处理技术的工程应用能力。

二、实验环境:Matlab三、实验原理、内容与分析(包括实验内容、MATLAB程序、实验结果与分析)实验总体框图如上图所示,主要实现民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术。

1.有限长单位脉冲(FIR)滤波器的设计FIR 数字滤波器是一种非递归系统,其冲激响应h(n)是有限长序列,其差分方程表达式为:系统传递函数可表达为:N-1 为FIR 滤波器的阶数。

在数字信号处理应用中往往需要设计线性相位的滤波器,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性。

为了使滤波器满足线性相位条件,要求其单位脉冲响应h(n)为实序列,且满足偶对称或奇对称条件,即h(n)=h(N-1-n)或h(n)=-h(N-1-n)。

这样,当N 为偶数时,偶对称线性相位FIR 滤波器的差分方程表达式为:由上可见FIR 滤波器不断地对输入样本x(n)延时后,再做乘法累加算法,将滤波器结果y(n)输出,因此,FIR 实际上是一种乘法累加运算。

而对于线性相位FIR 而言,利用线性相位FIR 滤波器系数的对称特性,可以采用结构精简的FIR 结构将乘法器数目减少一半。

2.AM 调制解调AM 调制解调过程如下:3.多采样率数字信号处理一般认为,在满足采样定理的前提下,首先将以采样率F1 采集的数字信号进行D/A 转换, 变成模拟信号,再按采样率F2 进行A/D 变换,从而实现从F1 到F2 的采样率转换。

但这样较麻烦,且易使信号受到损伤,所以实际上改变采样率是在数字域实现的。

数字信号处理实验(1-7)原始实验内容文档(含代码)

数字信号处理实验(1-7)原始实验内容文档(含代码)

实验要求1.每个实验进行之前须充分预习准备,实验完成后一周内提交实验报告;2.填写实验报告时,分为实验题目、实验目的、实验内容、实验结果、实验小结五项;3.实验报告要求:实验题目、实验目的、实验内容、实验结果四项都可打印;但每次实验的实验内容中的重要代码(或关键函数)后面要用手工解释其作用。

实验小结必须手写!(针对以前同学书写实验报告时候抄写代码太费时间的现象,本期实验报告进行以上改革)。

实验一信号、系统及系统响应实验目的:1. 掌握使用MATLAB进行函数、子程序、文件编辑等基本操作;2. 编写一些数字信号处理中常用序列的3. 掌握函数调用的方法。

实验内容:1.在数字信号处理的基本理论和MATLAB信号处理工具箱函数的基础上,可以自己编写一些子程序以便调用。

(1)单位抽样序列δ(n-n0)的生成函数impseq.m(2)单位阶跃序列u(n-n0)的生成函数stepseq.m(3)两个信号相加的生成函数sigadd.m(4)两个信号相乘的生成函数sigmult.m(5)序列移位y(n)=x(n-n0)的生成函数sigshift.m(6)序列翻褶y(n)=x(-n)生成函数sigfold.m(7)奇偶综合函数evenodd.m(8)求卷积和2.产生系列序列,并绘出离散图。

(1) x1(n)=3δ(n-2)-δ(n+4) -5≤n≤5(2) x3(n)=cos(0.04πn)+0.2w(n) 0≤n≤50其中:w(n)是均值为0,方差为1 的白噪声序列。

3.设线性移不变系统的抽样响应h(n)=(0.9)^n*u(n),输入序列x(n)=u(n)-u(n-10),求系统的输出y(n).实验二 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

最新数字信号处理实验报告

最新数字信号处理实验报告

最新数字信号处理实验报告一、实验目的本次实验旨在加深对数字信号处理(DSP)理论的理解,并通过实践操作掌握数字信号处理的基本方法和技术。

通过实验,学习如何使用相关软件工具进行信号的采集、分析、处理和重构,提高解决实际问题的能力。

二、实验内容1. 信号采集与分析- 使用数字示波器采集模拟信号,并将其转换为数字信号。

- 利用傅里叶变换(FFT)分析信号的频谱特性。

- 观察并记录信号的时域和频域特性。

2. 滤波器设计与实现- 设计低通、高通、带通和带阻滤波器。

- 通过编程实现上述滤波器,并测试其性能。

- 分析滤波器对信号的影响,并调整参数以优化性能。

3. 信号重构实验- 应用所学滤波器对采集的信号进行去噪处理。

- 使用逆傅里叶变换(IFFT)重构经过滤波处理的信号。

- 比较重构信号与原始信号的差异,评估处理效果。

三、实验设备与材料- 计算机及DSP相关软件(如MATLAB、LabVIEW等)- 数字示波器- 模拟信号发生器- 数据采集卡四、实验步骤1. 信号采集- 连接并设置好数字示波器和模拟信号发生器。

- 生成一系列不同频率和幅度的模拟信号。

- 通过数据采集卡将模拟信号转换为数字信号。

2. 滤波器设计- 在DSP软件中设计所需的滤波器,并编写相应的程序代码。

- 调整滤波器参数,如截止频率、增益等,以达到预期的滤波效果。

3. 信号处理与重构- 应用设计的滤波器对采集的数字信号进行处理。

- 利用IFFT对处理后的信号进行重构。

- 通过对比原始信号和重构信号,评估滤波器的性能。

五、实验结果与分析- 展示信号在时域和频域的分析结果。

- 描述滤波器设计参数及其对信号处理的影响。

- 分析重构信号的质量,包括信噪比、失真度等指标。

六、实验结论- 总结实验中所学习到的数字信号处理的基本概念和方法。

- 讨论实验中遇到的问题及其解决方案。

- 提出对实验方法和过程的改进建议。

七、参考文献- 列出实验过程中参考的书籍、文章和其他资源。

数字信号处理实验

数字信号处理实验

FG 708S信号源
►功能按键(改变输出波形) ►Fstep/衰减按键(使用衰减项改变输出衰减) ►幅度旋钮 (幅度微调) ►大旋钮(改变各功能项的取值) ►当使用幅度微调旋钮无法使信号幅度进一步
减小时,可将信号源输出衰减设置为20dB或 40dB。
示波器简介
►手动示波器自检测 ►观察信号波形 ►测量信号幅度
Ext Bus
FG-506信号源
► Mode/Func(模式 /函数) ► Range/Attn(频率范围粗调/衰减) ► Frequency (频率微调) ► Amplitude (幅度微调) ► 注意:实验中需要用信号源产生的信号应满足峰峰
值小于1V的条件,否则实验板将无法正常对其处理, 甚至影响电路板正常运行,导致实验不能顺利完成。 ► 当使用幅度微调旋钮无法使信号幅度进一步减小时, 可将信号源输出衰减设置为20dB或40dB。
实验安排
► 两人一组合作完成实验,第一次实验选定的实验桌 和实验设备,以后的实验应继续选用;
► 不得随意调换实验时间,如遇特殊情况需调换时间, 应提前向指导教师说明;
► 实验经过指导教师检查并允许后才可离开,离开前 应将实验桌上的器材收拾整齐;
► 最后完成实验的三组同学负责打扫卫生。
实验内容及考核方法
实验电路板JTAG插座 <==>
带JTAG插头的仿真盒 <==>
JTAG电缆(USB电缆) <==>
USB
PC机端口(USB端口)
电缆
USB电缆和仿真盒之间的接插口是有方向的!
JTAG
► 连接正确后,再给DSP电路板加电 !
仿真盒
► 拆除仿真连接时,先给DSP硬件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号、系统与信号处理实验Ⅱ
实验报告
*名:**
学号:********
班级:14083413
上课时间:周五-六七八
实验名称:用双线性变换法设计IIR数字滤波器
一、实验目的
熟悉模拟巴特沃兹滤波器设计和用双线性变换法设计IIR数字滤波器的方法
二、实验原理与要求
实验原理
利用双线性变换法设计IIR数字滤波器,首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得要设计的IIR数字滤波器的系统函数H(z),如果给定的指标为数字滤波器的指标,直接利用模拟滤波器的低通原理,通过式子
到式子
的频率变换关系,可一步完成数字滤波器的设计。

式中是低通模拟滤波器的截止频率
实验要求
(1)编写用双线性变换法设计的巴特沃兹低通IIR滤波器的程序,要求通带内频率低于,容许幅度误差在1dB之内,频率在到之间的阻带衰减大于10dB。

(2)用法设计的巴特沃兹低通IIR滤波器,要求使用buttord,butter和biliner函数,滤波器技术指标:取样频率为1Hz;通带内衰减小于1Db;
阻带临界频率0.3Hz,阻带内衰减大于25dB。

(3)以pi/64为取样间隔,在屏幕上打印出数字滤波器的频率区间[0 pi]上的幅频响应特性曲线。

(4)在屏幕上打印出H(z)的分子,分母多项式系数。

三、实验程序与结果
1. 用双线性变换法设计的巴特沃兹低通IIR滤波器的程序,要求通带内频率低于,容许幅度误差在1dB之内,频率在到之间的阻带衰减大于10dB。

clear;clc;close all;
Rp=1;
Rs=10;
Fs=1;
Ts=1/Fs
;
wp1=0.2*pi; ws1=0.3*pi;
wp2=2*Fs*tan(wp1/2); ws2=2*Fs*tan(ws1/2);
[N,Wn]=buttord(wp2,ws2,Rp,Rs,'s'); [Z,P,K]=buttap(N);
[Bap,Aap]=zp2tf(Z,P,K); [b,a]=lp2lp(Bap,Aap,Wn); [bz,az]=bilinear(b,a,Fs); [H,W]=freqz(bz,az); subplot(2,1,1) plot(W/pi,abs(H)); grid
xlabel('频率'); ylabel('幅度'); subplot(2,1,2)
plot(W/pi,20*log10(abs(H))); grid
xlabel('频率'); ylabel('幅度(dB)');
结果:
00.10.20.30.4
0.50.60.70.80.91
0.5
1
1.5
频率
幅度
00.10.20.30.4
0.50.60.70.80.91
-300
-200-1000
100频率
幅度(d B )
2. 用法设计的巴特沃兹低通IIR滤波器,要求使用buttord,butter和biliner函数,滤波器技术指标:取样频率为1Hz;通带内衰减小于1Db;阻带临界频率0.3Hz,阻带内衰减大于25dB。

以pi/64为取样间隔,在屏幕上打印出数字滤波器的频率区间[0 pi]上的幅频响应特性曲线。

在屏幕上打印出H(z)的分子,分母多项式系数。

clear;clc;close all;
wp=0.2*2*pi;
ws=0.3*2*pi;
Rp=1;
Rs=25;
Fs=1;
Ts=1/Fs;
wp1=wp*Ts;
ws1=ws*Ts;
wp1pi=wp1/pi;
ws1pi=ws1/pi;
wp2=2*Fs*tan(wp1/2);
ws2=2*Fs*tan(ws1/2);
[N,Wn]=buttord(wp2,ws2,Rp,Rs,'s');
[b,a]=butter(N,Wn,'s');
[bz,az]=bilinear(b,a,Fs)
[H,W]=freqz(bz,az);
subplot(2,1,1)
plot(W/pi,abs(H));
grid
xlabel('频率');
ylabel('幅度');
subplot(2,1,2)
plot(W/pi,20*log10(abs(H)));
grid
xlabel('频率');
ylabel('幅度(dB)');
Wi=0:1/64:1-1/64;
Hi=H(1:8:end);
figure
subplot(2,1,1)
stem(Wi,abs(Hi));
grid
xlabel('频率');
ylabel('幅度');
subplot(2,1,2)
stem(Wi,20*log10(abs(Hi)));
grid
xlabel('频率');
ylabel('幅度(dB)');
问题二结果:
00.10.20.30.4
0.50.60.70.80.91
0.5
11.5
频率
幅度
00.10.20.30.4
0.50.60.70.80.91
-300
-200-1000
100X: 0.4004Y: -0.6064
频率
幅度(d B )
X: 0.6016Y: -25.27
问题三结果:
0.10.20.30.4
0.50.60.70.80.91
00.51
1.5
频率
幅度
00.10.20.30.4
0.50.60.70.80.91
-300
-200-1000
100频率
幅度(d B )
问题四结果:
四、仿真结果分析
问题1中频率在0.2*pi内衰减为1dB,在0.2*pi外衰减10dB以上,其都符合设计要求。

问题2中0.2Hz是数字频率0.4*pi,0.3Hz是数字频率0.6*pi。

从图上看出频率在0.4*pi内衰减为0.6dB,在0.2*pi外衰减25dB以上其都符合设计要求。

问题4设计的滤波器分子分母都有7项,因为其符合设计要求的滤波器是6阶,所以阶数从0到6有7项。

脉冲响应不变法和双线性变换法设计IIR的优缺点:
脉冲响应不变法的优点:1,模拟频率到数字频率的转换时线性的;2,数字滤波器单位脉冲响应的数字表示近似原型的模拟滤波器单位脉冲响应,因此时域特性逼近好。

缺点:会产生频谱混叠现象,只适合带限滤波器
双线性变换法优点:克服多值映射得关系,可以消除频率的混叠。

缺点:时域到频域的变换是非线性的,在高频处有较大的失真。

五、实验问题解答与体会
一次数字信号处理实验,虽然题目看起来简单,但是编程的时候却会有陷阱,加上自己的粗心用了好久才完成。

以后做实验一定不能大意,一定要预习,特别是例程,例程能很好地表达函数用法,使逻辑更加清楚。

另外,在以后实验的时候一定要带上数字信号处理的教材,因为实验能很好地实践验证教材所教的东西,加深自己的理解,纠正自己的错误观念,结合教材去验证加深知识,而不是一味为完成实验而做实验。

相关文档
最新文档