2018 2019年初一数学期末试卷及答案推荐
2018-2019学年度第一学期期末考试初一数学试卷

2018-2019学年度第一学期期末考试初一数学试卷一、选择题 (本大题共 10 小题,每题 2 分,共 20分。
每题只有一个选项是正确的,把正确选项前的字母填在下表中 )题号12345678910答案1. 1 的相反数是 (A)3(B) ―3(C) 1(D) ―13332.方程 1 x=3 的解是 (A)x=6(B)x= ―6(C)x=3 (D)x=22233 .在―(―6) ,―(―6) 2 , |―6| ,―6 2 这四个数中,负数的个数为(A)1 个 (B)2 个(C)3 个(D)4 个4 .当 a = ―5, b= ―3 时,代数式 2b 2―5a 的值等于(A)18 (B) ―18(C)43 (D) ―435.假如― 4 x 2a ―1 y 6与―2xy 6 是同类项,则代数式 (a — 2) 2004 ·(2 a — 1) 2005 的值是 5(A)0 (B)1(C) ―1(D)1 或―16 .若 |x|=3 , |y|=2 , xy < 0 ,则 x+y 的值等于(A)5 或―5 (B)1 或―1 (C)5 或 1 (D)―5 或 17 .如图, AB ∥CD ,直线 EF 分别交 AB 、 CD 于点 E 、 F ,BG 均分∠BEF ,∠l=50 °,则∠2 为(A)50 °(B)60 °(C)65 ° (D)70 °8 .下边事倩中必定事情是 (A) 翻开电视机,它正好播广告(B)异号两数相加,和为零(C) 黑暗中我从一大串钥匙中选出一把,用它翻开了门(D) 投掷一枚一般的正方体段子,掷得的数不是奇数就是偶数 9 .以下左侧的正视图和俯视图对应右侧物体中的10 .以下图形中,不行能围成正方体的是二、填空 (本大 共 8 小 ,每小 2分,共 16 分 )11 .某天清晨的气温是― 7 ℃,正午上涨了11 ℃, 正午的气温是 _________℃。
2018-2019 学年度第一学期七年级期末质量检测数学试卷参考答案

CED BCM 90 (已知) ∴ CED ACN (同角的余角相等)-----------8 分
∴AC∥DE(内错角相等,两直线平行)-----------9 分 ∵AC⊥BF(已知)
A
B
M
C
E
N
∴∠ACB=90°(垂直定义)---------------------10 分 又∵AC∥DE(已证)
解得:x=4,-----------------------------------------------------------------------------------------12 分
∴点 P 运动 4 秒时,追上点 Q.------------------------------------------------------------ 13 分
三、解答题
17. 解:原式= 4 1 ( 3) --------------------------------------4 分(绝对值计算 2 分,其他 1 分) 6
=2
------------------------------------------6 分
18. 解法一:原式= 2x 2 y 3x 3y 3x 3y 2x 2 y ---4 分(评分点:每去一个括号正确得 1 分)
2018-2019 学年第一学期七年级期末质量检测 数学试卷参考答案与评分说明
一.选择题(每小题 4 分,共 40 分)
题号
1
2
3
4
5
6
2018-2019学年七年级下学期期末考试数学试卷含答案解析

20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间
2018—2019学年度新人教版七年级数学第一学期期末试卷含有参考答案带解析

2018—2019学年度新人教版七年级数学第一学期期末试卷一、选择题1、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线.能解释这一实际问题的数学知识是( ) A .两点确定一条直线 B .两点之间线段最短C .垂线段最短D .在同一平面内,过一点有且只有一条直线与已知直线垂直2、向北行驶3 km ,记作+3 km ,向南行驶2 km 记作( )A .+2 kmB .-2 kmC .+3 kmD .-3 km 3、若使等式(-4)□(-6)=2成立,则□中应填入的运算符号是( ) A .+ B .- C .× D .÷ 4、下列运算正确的是( )A .5x -3x =2B .2a +3b =5abC .-(a -b)=b +aD .2ab -ba =ab5、如果以x =-5为方程的解构造一个一元一次方程,那么下列方程中不满足要求的是( )A .x +5=0B .x -7=-12C .2x +5=-5D .=-16、张东同学想根据方程10x +6=12x -6编写一道应用题:“几个人共同种一批树苗,________,求参与种树的人数.”若设参与种树的有x 人,那么横线部分的条件应描述为( )A .如果每人种10棵,那么缺6棵树苗;如果每人种12棵,那么剩下6棵树苗未种B .如果每人种10棵,那么剩下6棵树苗未种;如果每人种12棵,那么缺6棵树苗C .如果每人种10棵,那么剩下6棵树苗未种;如果每人种12棵,也会剩下6棵树苗未种D .如果每人种10棵,那么缺6棵树苗;如果每人种12棵,同样也是缺6棵树苗 7、在数轴上,两点M ,N 分别表示数m ,n ,那么M ,N 两点之间的距离等于( ) A .m +n B .m -n C .|m +n| D .|m -n|8、在同一平面上,若∠BOA =60.3°,∠BOC =20°30′,则∠AOC 的度数是( ) A .80.6° B .40° C .80.8°或39.8° D .80.6°或40°9、-7的倒数是( )A .7B .C .-7D .-10、如图,下面几何体,从左边看得到的平面图形是( )A .AB .BC .CD .D二、填空题11、据统计,2014年全国约有939万人参加高考,939万人用科学记数法表示为____________人。
2018-2019学年全国七年级期末数学试卷含答案解析

期末数学试卷一、选择题(共10题,每小题3分,满分30分)1.﹣2的相反数是( )A .2B .﹣2C .±2D .2.如图,矩形绕它的一条边MN 所在的直线旋转一周形成的几何体是( )A .B .C .D .3.下列方程组中是二元一次方程组的是( )A .B .C .D .4.下列运用等式性质进行的变形,其中不正确的是( )A .如果a=b ,那么a+3=b+3B .如果a=b ,那么a ﹣=b ﹣C .如果a=b ,那么ac=bcD .如果a=b ,那么5.如图,点A 位于点O 的( )方向上.A.西偏东35°B.北偏西65°C.南偏东65°D.南偏西65°6.下列选项中,是方程x﹣2y=2的解是()A.B.C.D.7.解方程时,去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.2x﹣3(x﹣1)=1 C.3x﹣2(x﹣1)=6 D.2x﹣3(x﹣1)=6 8.下列图形不能围成正方体的是()A.B.C.D.9.设有理数a、b在数轴上对应的位置如图所示,化简|a﹣b|﹣|a|的结果是()A.﹣2a+b B.2a+b C.﹣b D.b10.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b二、填空题(共6小题,每小题3分,共18分)11.在﹣2、0、1、﹣1这四个数中,最大的有理数是.12.据数据显示,2015年某电商的“双十一”全球狂欢节最终以约91200000000元交易额落下帷幕!将91200000000用科学记数法表示为.13.若﹣5x2y m与x2y是同类项,m=.14.一个角的余角是这个角的4倍,则这个角的度数是.15.如图,直线AB,CD相交于点O,∠AOD=3∠BOD+20°,则∠BOD=.16.一组按规律排列的式子:则第1008个式子是.三、解答题(共5小题,满分52分)17.计算(1)(+16)﹣(﹣7)﹣(+11)(2)(﹣3)2×2﹣(﹣4)÷2.18.解方程或方程组:(1)5x+5=9﹣3x(2).19.先化简,再求值3(x2﹣2y)﹣2(x2﹣2y),其中x=﹣1,y=2.20.某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?21.点A、B、C在同一条直线上,AB=6cm,BC=2cm,点M是线段AC的中点,求AM 的长.四、解答题(共4小题,满分50分)22.专车司机小李某天上午从家出发,营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:﹣1,+6,﹣2,+2,﹣7,﹣4(1)将最后一位乘客送到目的地时,小李在出发地的哪一边?距离出发地多少km?(2)若汽车每千米耗油量为0.2升,这天上午小李接送乘客,出租车共耗油多少升?23.某城市自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨的部分且不超过18吨的部分超过18吨的部分收费标准2元/吨 2.5元/吨3元/吨(1)某用户四月份用水量为16吨,需交水费为多少元?(2)某用户五月份交水费50元,所用水量为多少吨?(3)某用户六月份用水量为a吨,需要交水费为多少元?24.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.(1)若∠BEB′=110°,则∠BEC=°,∠AEN=°,∠BEC+∠AEN=°.(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.25.A、B、C为数轴上的三点,动点A、B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点C对应的数为8.(1)若2秒后,a、b满足|a+8|+(b﹣2)2=0,则x=,y=,并请在数轴上标出A、B两点的位置.(2)若动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得|a|=|b|,使得z=.(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC=1.5AB,则t=.2015-2016学年广东省广州市海珠区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10题,每小题3分,满分30分)1.﹣2的相反数是()A.2 B.﹣2 C.±2 D.【考点】相反数.【分析】根据相反数的定义进行解答即可.【解答】解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选A.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.如图,矩形绕它的一条边MN所在的直线旋转一周形成的几何体是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型;压轴题.【分析】矩形旋转一周得到的是圆柱,选择是圆柱的选项即可.【解答】解:矩形绕一边所在的直线旋转一周得到的是圆柱.故选C.【点评】本题考查了点、线、面、体的知识,熟记常见的平面图形转动所成的几何体是解题的关键,此类题目主要考查同学们的空间想象能力.3.下列方程组中是二元一次方程组的是()A.B.C.D.【考点】二元一次方程组的定义.【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【解答】解:A、第一个方程值的xy是二次的,故此选项错误;B、第二个方程有,不是整式方程,故此选项错误;C、含有3个未知数,故此选项错误;D、符合二元一次方程定义,故此选项正确.故选D.【点评】此题主要考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.4.下列运用等式性质进行的变形,其中不正确的是()A.如果a=b,那么a+3=b+3 B.如果a=b,那么a﹣=b﹣C.如果a=b,那么ac=bc D.如果a=b,那么【考点】等式的性质.【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【解答】解:A、如果a=b,那么a+3=b+3,正确;B、如果a=b,那么a﹣=b﹣,正确;C、如果a=b,那么ac=bc,正确;D、因为c不知道是否为零,错误;故选D【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.5.如图,点A位于点O的()方向上.A.西偏东35°B.北偏西65°C.南偏东65°D.南偏西65°【考点】方向角.【分析】根据方向角的定义即可直接解答.【解答】解:A在点O的北偏西65°.故选B.【点评】本题考查了方向角的定义,正确确定基准点是关键.6.下列选项中,是方程x﹣2y=2的解是()A.B.C.D.【考点】二元一次方程的解.【分析】根据使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解进行分析即可.【解答】解:A、5﹣2×2≠2,因此不是方程x﹣2y=2的解,故此选项错误;B、0﹣2×1≠2,因此不是方程x﹣2y=2的解,故此选项错误;C、4﹣2×1=2,是方程x﹣2y=2的解,故此选项正确;D、﹣2﹣2×2=﹣6≠2,因此不是方程x﹣2y=2的解,故此选项错误;故选:C.【点评】此题主要考查了二元一次方程的解,关键是掌握二元一次方程解的定义.7.解方程时,去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.2x﹣3(x﹣1)=1 C.3x﹣2(x﹣1)=6 D.2x﹣3(x﹣1)=6 【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程﹣=1,去分母得:2x﹣3(x﹣1)=6,故选D【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.下列图形不能围成正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】当六个正方形出现“田”字,“凹”字状时,不能组成正方体【解答】解:所有选项中只有C选项出现“凹”字状,所以不能组成正方体故选:C.【点评】能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.9.设有理数a、b在数轴上对应的位置如图所示,化简|a﹣b|﹣|a|的结果是()A.﹣2a+b B.2a+b C.﹣b D.b【考点】整式的加减;数轴;绝对值.【分析】根据各点在数轴上的位置判断出a、b的符号,再去括号,合并同类项即可.【解答】解:∵由图可知,a<0<b,∴a﹣b<0,|a|=﹣a,∴原式=b﹣a+a=b.故选D.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.10.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b【考点】整式的加减;列代数式.【专题】几何图形问题.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选B【点评】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,每小题3分,共18分)11.在﹣2、0、1、﹣1这四个数中,最大的有理数是1.【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得1>0>﹣1>﹣2,∴在﹣2、0、1、﹣1这四个数中,最大的有理数是1.故答案为:1.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.据数据显示,2015年某电商的“双十一”全球狂欢节最终以约91200000000元交易额落下帷幕!将91200000000用科学记数法表示为9.12×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:91 200 000 000=9.12×1010,故答案为:9.12×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.若﹣5x2y m与x2y是同类项,m=1.【考点】同类项.【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:由﹣5x2y m与x2y是同类项,得m=1,故答案为:1.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.14.一个角的余角是这个角的4倍,则这个角的度数是18°.【考点】余角和补角.【分析】利用题中“一个角的余角是这个角的4倍”作为相等关系列方程求解即可.【解答】解:设这个角是x,则90°﹣x=4x,解得x=18°.故答案为18°.【点评】主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180度.解此题的关键是能准确的从图中找出角之间的数量关系,从而计算出结果.15.如图,直线AB,CD相交于点O,∠AOD=3∠BOD+20°,则∠BOD=40°.【考点】对顶角、邻补角.【分析】根据已知用同一未知数表示出∠AOD,再利用邻补角的定义得出等式求出答案.【解答】解:设∠BOD=x,则∠AOD=3x+20°,故x+3x+20°=180°,解得:x=40°.故答案为:40°.【点评】此题主要考查了邻补角定义,正确用未知数表示出∠AOD是解题关键.16.一组按规律排列的式子:则第1008个式子是.【考点】单项式.【专题】规律型.【分析】观察分子、分母的变化规律,总结出一般规律即可求解.【解答】解:a2,a4,a6,a8…,分子可表示为:a2n,1,3,5,7,…分母可表示为2n﹣1,则第n个式子为:.故第1008个式子是.故答案为:.【点评】本题考查了单项式的知识,属于基础题,关键是观察分子、分母的变化规律.三、解答题(共5小题,满分52分)17.计算(1)(+16)﹣(﹣7)﹣(+11)(2)(﹣3)2×2﹣(﹣4)÷2.【考点】有理数的混合运算.【专题】计算题.【分析】(1)根据有理数的混合运算顺序,从左向右依次计算,求出算式(+16)﹣(﹣7)﹣(+11)的值是多少即可.(2)根据有理数的混合运算顺序,首先计算乘方、乘法、除法,然后计算减法,求出算式(﹣3)2×2﹣(﹣4)÷2的值是多少即可.【解答】解:(1)(+16)﹣(﹣7)﹣(+11)=16+7﹣11=23﹣11=12(2)(﹣3)2×2﹣(﹣4)÷2=9×2﹣(﹣2)=18+2=20【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.18.解方程或方程组:(1)5x+5=9﹣3x(2).【考点】解二元一次方程组;解一元一次方程.【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:(1)5x+5=9﹣3x,移项得,5x+3x=9﹣5,合并同类项得,8x=4,把x的系数化为1得,x=;(2),①+②得4x=8,解得x=2,把x=2代入①得2+2y=9,解得y=3.5,故方程组的解为.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.19.先化简,再求值3(x2﹣2y)﹣2(x2﹣2y),其中x=﹣1,y=2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=3x2﹣6y﹣2x2+4y=x2﹣2y,当x=﹣1,y=2时,原式=1﹣4=﹣3.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?【考点】一元一次方程的应用.【分析】首先设每天加工大齿轮的有x人,则每天加工小齿轮的有(84﹣x)人,再利用1个大齿轮与2个小齿轮刚好配成一套得出等式求出答案.【解答】解:设每天加工的大齿轮的有x人,则每天加工的小齿轮的有(84﹣x)人,根据题意可得;2×16x=10(84﹣x),解得:x=20,则84﹣20=64(人).答:每天加工的大齿轮的有20人,每天加工的小齿轮的有64人.【点评】此题主要考查了一元一次方程的应用,利用1个大齿轮与2个小齿轮刚好配成一套进而得出等式是解题关键.21.点A、B、C在同一条直线上,AB=6cm,BC=2cm,点M是线段AC的中点,求AM 的长.【考点】两点间的距离.【分析】分点C在线段AB的延长线上和点C在线段AB上两种情况、结合图形计算即可.【解答】解:如图1,当点C在线段AB的延长线上时,∵AB=6cm,BC=2cm,∴AC=8cm,∵点M是线段AC的中点,∴AM=AC=4cm,如图2,当点C在线段AB上时,∵AB=6cm,BC=2cm,∴AC=4cm,∵点M是线段AC的中点,∴AM=AC=2cm,答:AM的长为2cm或4cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.四、解答题(共4小题,满分50分)22.专车司机小李某天上午从家出发,营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:﹣1,+6,﹣2,+2,﹣7,﹣4(1)将最后一位乘客送到目的地时,小李在出发地的哪一边?距离出发地多少km?(2)若汽车每千米耗油量为0.2升,这天上午小李接送乘客,出租车共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以行驶路程等于耗油量,可得答案.【解答】解:(1)(﹣1)+6+(﹣2)+2+(﹣7)+(﹣4)=﹣6,答:将最后一位乘客送到目的地时,小李在出发地的西边,距离出发地6km处;(2))(|﹣1|+6+|﹣2|+2+|﹣7|+|﹣4|)×0.2=22×0.2=4.4(升),答:这天上午小李接送乘客,出租车共耗油4.4升.【点评】本题考查了正数和负数,利用单位耗油量乘以行驶路程等于耗油量是解题关键.23.某城市自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨的部分且不超过18吨的部分超过18吨的部分收费标准2元/吨 2.5元/吨3元/吨(1)某用户四月份用水量为16吨,需交水费为多少元?(2)某用户五月份交水费50元,所用水量为多少吨?(3)某用户六月份用水量为a吨,需要交水费为多少元?【考点】一元一次方程的应用.【分析】(1)首先得出16吨,应分两段交费,再利用已知表格中数据求出答案;(2)利用五月份交水费50元,可以判断得出应分3段交费,再利用已知表格中数据得出等式求出答案;(3)利用分类讨论利用①当a≤12时,②当12<a≤18时,③当a>18时,求出答案.【解答】解:(1)∵12<16<18,∴2×12+2.5×(16﹣12)=24+10=34(元),答:四月份用水量为16吨,需交水费为34元;(2)设五月份所用水量为x吨,依据题意可得:2×12+6×2.5+(x﹣18)×3=50,解得;x=21,答:五月份所有水量为21吨;(3)①当a≤12时,需交水费2a元;②当12<a≤18时,需交水费,2×12+(a﹣12)×2.5=(2.5a﹣6)元,③当a>18时,需交水费2×12+6×2.5+(a﹣18)×3=(3a﹣15)元.【点评】此题主要考查了一元一次方程的应用以及列代数式,正确利用分段表示出水费的总额是解题关键.24.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.(1)若∠BEB′=110°,则∠BEC=55°,∠AEN=35°,∠BEC+∠AEN=90°.(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.【考点】翻折变换(折叠问题).【分析】(1)根据折叠的性质可求出∠BEC和∠AEN的度数,然后求出两角之和;(2)不变.根据折叠的性质可得∠BEC=∠B'EC,根据∠BEB′=m°,可得∠BEC=∠B'EC=∠BEB′=m°,然后求出∠AEN,最后求和进行判断;(3)根据折叠的性质可得∠B'CF=∠B'CE,∠B'CE=∠BCE,进而得出∠B'CF=∠B'CE=∠BCE,求出其度数,在Rt△BCE中,可知∠BEC与∠BCE互余,然后求出∠BEC的度数,最后根据平角的性质和折叠的性质求解.【解答】解:(1)由折叠的性质可得,∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=110°,∴∠AEA'=180°﹣110°=70°,∴∠BEC=∠B'EC=∠BEB′=55°,∠AEN=∠A'EN=∠AEA'=35°.∴∠BEC+∠AEN=55°+35°=90°;(2)不变.由折叠的性质可得:∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=m°,∴∠AEA'=180°﹣m°,可得∠BEC=∠B'EC=∠BEB′=m°,∠AEN=∠A'EN=∠AEA'=(180°﹣m°),∴∠BEC+∠AEN=m°+(180°﹣m°)=90°,故∠BEC+∠AEN的值不变;(3)由折叠的性质可得:∠B'CF=∠B'CE,∠B'CE=∠BCE,∴∠B'CF=∠B'CE=∠BCE=×90°=30°,在Rt△BCE中,∵∠BEC与∠BCE互余,∴∠BEC=90°﹣∠BCE=90°﹣30°=60°,∴∠B'EC=∠BEC=60°,∴∠AEA'=180°﹣∠BEC﹣∠B'EC=180°﹣60°﹣60°=60°,∴∠AEN=∠AEA'=30°,∴∠ANE=90°﹣∠AEN=90°﹣30°=60°,∴∠ANE=∠A'NE=60°,∴∠DNA'=180°﹣∠ANE﹣∠A'NE=180°﹣60°﹣60°=60°.故答案为:55,35,90.【点评】本题考查了翻折变换,涉及了折叠的性质、余角和补角的知识,根据条件求出各角的度数是解答本题的关键.25.A、B、C为数轴上的三点,动点A、B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点C对应的数为8.(1)若2秒后,a、b满足|a+8|+(b﹣2)2=0,则x=4,y=1,并请在数轴上标出A、B两点的位置.(2)若动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得|a|=|b|,使得z=.(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC=1.5AB,则t=.【考点】一元一次方程的应用;数轴;绝对值.【专题】几何动点问题;动点型;方程思想;一次方程(组)及应用.【分析】(1)先根据|a+8|+(b﹣2)2=0求出a、b的值,再用距离÷时间=速度,可求出x、y 的值;(2)先根据题意表示出向正方向运动z秒后a、b所表示的数,再列方程可求得z;(3)分别表示出AC、BC、AB,再根据AC+BC=1.5AB列出方程,解方程可得t的值.【解答】解:(1)∵|a+8|+(b﹣2)2=0,∴a+8=0,b﹣2=0,即a=﹣8,b=2,则x=|﹣8|÷2=4,y=2÷2=1(2)动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后a=﹣8+4z,b=2+z,∵|a|=|b|,∴|﹣8+4z|=2+z,解得;(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒后点A表示:﹣8+2t,点B表示:2+2t,点C表示:8,∴AC=|﹣8+2t﹣8|=|2t﹣16|,BC=|2+2t﹣8|=|2t﹣6|,AB=|﹣8+2t﹣(2+2t)|=10,∵AC+BC=1.5AB∴|2t﹣16|+|2t﹣6|=1.5×10,解得;【点评】此题考查了一元一次方程的应用,解题关键是表示出运动后所表示的数,根据题目给出的条件列出方程,再求解,属中档题.。
2018-2019人教版七年级数学上册期末试卷及答案(10套)

2018-2019学年度上学期期末考试(1)七年级数学试卷(时间:120分钟满分:120分)一、选择题(每小题3分, 满分30分,请将正确答案的序号填写在下表内)一、选择题(本大题共10个小题,每小题3分,共30分;每题只有一个选项正确)1、如果高出海平面20米,记作+20米,那么-30米表示().A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米2、“比a的2倍大1的数”,列式表示是().A.2(a+1)B.2(a-1)C. 2a+1 D. 2a-13、单项式-3πxy²z³的系数和次数分别是().A.-π,5B. -1,6C.-3π,6D.-3,74、2012年6月,我国首台载人潜水器“蛟龙号”在太平洋马里亚纳海沟,进行7000米级海试第四次下载试验中成功突破7000米深度,再创我国载人深潜新纪录。
7000这个数据用科学记数法表示为().A.70×102B. 0.7×104C. 7×103D. 7×1045、下列格式:-(-3);-|-3|;-32;-(-3)2,,计算结果为负数的有().A.4个B.3个C.2个D.1个6、冬季某天我国三个城市的最高气温分别是-10℃,1℃, -7℃,它们任意两城市中最大的温差是().A.11℃B.7℃C.8℃D.3℃7、下列各对数中,互为相反数的是().A.-(+3)和+(-3)B.–(-3)和+(-3)C.–(-3) 和+|-3|D.+(-3)和–|-3|8、已知x-2y=-2,则3+2x-4y的值是().A 、0B 、-1C 、3D 、59、若x +y <0, x y <0, x >y ,则有( ).A .x >0,y <0 , x 绝对值较大 B. x >0,y <0 , y 绝对值较大C . x <0,y >0 , x 绝对值较大D . x <0,y >0 , y 绝对值较大10 、已知a +b =0, a ≠b ,则化简a b (a +1)+ba (b +1)得( ). A .2a B . 2b C. +2 D. –2二、填空题(本大题共10个小题,每题3分,共30分)11、─5的相反数是12、▕ 3.14─π▕─(+π13、在─42,+0.01,π,0个数中正有理数是14、若单项式n y x 23与32y x m -是同类项,则n m +=_____15、绝对值不大于4且不小于π的整数分别有16、近似数1.50×510 精确到 位。
2018-2019学年度第一学期七年级期末考试数学试卷参考答案
2018-2019学年度第一学期七年级期末考试数学试卷参考答案二、填空题(本大题共 5 小题,每小题4分,满分20分)11. 两点确定一条直线 12. 百 13. 4232'︒ 14.1003xx += 15. 60°或120°三、解答题(本大题共8小题,满分90分)16.(6分)计算题: 232123(2)(6)()3-+⨯---÷-解:原式=143(8)(6)9-+⨯---÷ (4分)42454=--+=26 (6分)17.(12分)解方程或方程组:(1)解方程:2131168x x ---= (2)解方程组:633594x y x y -=-⎧⎨-=⎩解:4(21)3(31)24x x ---= (3分) 解:将①⨯3得1899x y -=- ③ 25x -= 将③-②得1313x =-,解得1x =- (3分) 25x = (6分) 将1x =-代入②解得1y =- (4分) 所以此方程组解为11x y =-⎧⎨=-⎩(6分) 注:其他方法也可18.(10分)先化简,再求值:解:原式=223[223]x y xy xy x y xy --++=xy - (6分)当13,3x y ==-时,原式=13()13-⨯-= (10分)19.(10分)解:(1)∵多项式222,6,A x xy B x xy =-=+-∴2244(2)(6)A B x xy x xy -=--+-22846x xy x xy =---+2756x xy =-+ (6分)(2)∵由(1)知,24756A B x xy -=-+∴当1,2x y ==-时,原式=27151(2)6⨯-⨯⨯-+=7106++=23 (10分)20.(12分)解:设购得茶壶x 只,则需茶杯(30-x )只,根据题意得: (1分) 153[(30)]171x x x +--= (6分) 解得 x =9答:小王买了茶壶9只。
2018-2019学年七年级(下)期末数学试卷及答案详解
2018-2019学年七年级(下)期末数学试卷一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .47.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .210.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)11.(3分)如果点(3,1)P m m ++在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,4)-12.(3分)如图,若12∠=∠,//DE BC ,则:①//FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠,⑥FGC DEC DCE ∠=∠+∠,其中正确的结论是( )A .①②③B .①②⑤⑥C .①③④⑥D .③④⑥13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为( )A .2531B .3635C .47D .626314.(3分)定义:直线a 与直线b 相交于点O ,对于平面内任意一点M ,点M 到直线a 与直线b 的距离分别为p 、q ,则称有序实数对(,)p q 是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是( )A .1B .2C .3D .4二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 .16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 .17.(3分)点(,)p q 到y 轴距离是 .18.(3 3.65 1.91036.5 6.042365000≈ .19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 .三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= ( )又1A ∠=∠(已 知) ,//AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .26.(12分)ABC ∆与△A B C '''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ;B ' ;C ' ;(2)说明△A B C '''由ABC ∆经过怎样的平移得到? .(3)若点(,)P a b 是ABC ∆内部一点,则平移后△A B C '''内的对应点P '的坐标为 ;(4)求ABC ∆的面积.参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对【分析】根据垂线段的性质,可得答案.【解答】解:把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是垂线段最短,故选:A .【点评】本题考查了垂线段最短,利用垂线段的性质是解题关键.2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 【分析】根据立方根的定义进行解答.【解答】解:3(3)27-=-,27∴-3273-=-,故选:A .【点评】本题主要考查了立方根的定义,找出立方等于27-的数是解题的关键.3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--【分析】根据平面直角坐标系内各象限内点的坐标特点解答即可.【解答】解:由图可知小猫位于坐标系中第四象限,所以小猫遮住的点的坐标应位于第四象限,故选:C .【点评】本题主要考查点的坐标,掌握平面直角坐标系内各象限内点的坐标特点是解题的关键.4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠【分析】利用同位角、内错角及同旁内角的定义分别判断后即可确定正确的选项.【解答】解:A 、BAC ∠和ACB ∠是同旁内角,不符合题意;B 、B ∠和DCE ∠是同位角,符合题意;C 、B ∠和BAD ∠是同旁内角,不符合题意;D 、B ∠和ACD ∠不属于同位角、内错角及同旁内角的任何一种,不符合题意,故选:B .【点评】本题考查了同位角、内错角及同旁内角的知识,牢记它们的定义是解答本题的关键,难度不大.5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .【分析】根据对等角相等可得13∠=∠,再由12∠=∠,可得32∠=∠,根据同位角相等, 两直线平行可得//AB CD .【解答】解:13∠=∠,12∠=∠,32∴∠=∠,//AB CD ∴,故选:B .【点评】此题主要考查了平行线的判定, 关键是掌握平行线的判定定理 .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .4【分析】(1)根据无理数的定义即可判定;(2)根据无理数的定义即可判定;(3)根据无理数的分类即可判定;(4)根据无理数和数轴上的点对应关系即可判定.【解答】解:(1)开方开不尽的数是无理数,但是无理数不仅仅是开方开不尽的数,故(1)说法错误;(2)无理数是无限不循环小数,故(2)说法正确;(3)0是有理数,故(3)说法错误;(4)无理数都可以用数轴上的点来表示,故(4)说法正确.故选:B .【点评】此题主要考查了无理数的定义.无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001⋯,等有这样规律的数.7.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-【分析】首先根据题意得到P 点的横坐标为负,纵坐标为正,再根据到x 轴的距离与到y 轴的距离确定横纵坐标即可. 【解答】解:点P 在第二象限,P ∴点的横坐标为负,纵坐标为正,到x 轴的距离是4,∴纵坐标为:4,到y 轴的距离是3,∴横坐标为:3-,(3,4)P ∴-,故选:C .【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒【分析】先根据135∠=︒,//a b 求出3∠的度数,再由AB BC ⊥即可得出答案.【解答】解://a b ,135∠=︒,3135∴∠=∠=︒.AB BC ⊥,290355∴∠=︒-∠=︒.故选:C .【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 80不是无理数;3π3273=不是无理数;227不是无理数;1.1010010001⋯是无理数,故选:C .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.10.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 【分析】根据A 点的坐标及对应点的坐标可得线段AB 向右平移4个单位,然后可得B '点的坐标.【解答】解:(1,1)A --平移后得到点A '的坐标为(3,1)-,∴向右平移4个单位,(1,2)B ∴的对应点坐标为(14,2)+,即(5,2).故选:B .【点评】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.11.(3分)如果点(3,1)++在x轴上,则点P的坐标为()P m mA.(0,2)B.(2,0)C.(4,0)D.(0,4)-【分析】根据点P在x轴上,即0y=,可得出m的值,从而得出点P的坐标.【解答】解:点(3,1)++在x轴上,P m m∴=,y∴+=,m10解得:1m=-,∴+=-+=,3132m∴点P的坐标为(2,0).故选:B.【点评】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m 的值是解题关键.12.(3分)如图,若12∠=∠,//∠=∠;③CD平FG DC;②AED ACBDE BC,则:①//分ACB∠=∠+∠,其中正∠=∠,⑥FGC DEC DCE∠+∠=︒;⑤BFG BDC∠;④190B确的结论是()A.①②③B.①②⑤⑥C.①③④⑥D.③④⑥【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出∠=∠,得出//FG DC,①正确;由平行线的性质得出⑤正确;进而得出⑥2DCB∠=∠+∠正确,即可得出结果.FGC DEC DCE【解答】解://DE BC,∠=∠,故②正确;1∴∠=∠,AED ACBDCB∠=∠,12∴∠=∠,2DCBFG DC∴,故①正确;//∴∠=∠,故⑤正确;BFG BDC∴∠=∠+∠,故⑥正确;FGC DEC DCE而CD不一定平分ACB∠,1B∠+∠不一定等于90︒,故③,④错误;故选:B.【点评】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为()A.2531B.3635C.47D.6263【分析】观察数据,发现第n个数为221nn-,再将6n=代入计算即可求解.【解答】解:观察该组数发现:1,43,97,1615,⋯,第n个数为221nn-,当6n=时,22664 21217nn==--.故选:C.【点评】本题考查了数字的变化类问题,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是发现第n个数为221nn-.14.(3分)定义:直线a与直线b相交于点O,对于平面内任意一点M,点M到直线a与直线b的距离分别为p、q,则称有序实数对(,)p q是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1B.2C.3D.4【分析】画出两条相交直线,到a的距离为1的直线有2条,到b的距离为2的直线有2条,看所画的这些直线的交点有几个即为所求的点的个数.【解答】解:如图所示,所求的点有4个,故选:D.【点评】综合考查点的坐标的相关知识;得到到直线的距离为定值的直线有2条是解决本题的突破点.二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 3± .【分析】根据平方根、算术平方根的定义即可解决问题.【解答】解:819=,9的平方根是3±,∴81的平方根是3±.故答案为3±.【点评】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型.16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 7 .【分析】根据角平分线的定义可得EBD EBC ∠=∠,ECF ECB ∠=∠,再根据两直线平行,内错角相等可得EBC BED ∠=∠,ECB CEF ∠=∠,然后求出EBD DEB ∠=∠,ECF CEF ∠=∠,再根据等角对等边可得ED BD =,EF CF =,即可得出DF BD CF =+;求出ADF ∆的周长AB AC =+,然后代入数据进行计算即可得解.【解答】解:E 是ABC ∠,ACB ∠平分线的交点,EBD EBC ∴∠=∠,ECF ECB ∠=∠,//DF BC ,DEB EBC ∴∠=∠,FEC ECB ∠=∠,DEB DBE ∴∠=∠,FEC FCE ∠=∠,DE BD ∴=,EF CF =,DF DE EF BD CF ∴=+=+,即DE BD CF =+,ADF ∴∆的周长()()AD DF AF AD BD CF AF AB AC =++=+++=+,4AB =,3AC =,ADF ∴∆的周长437=+=,故答案为7.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.17.(3分)点(,)p q 到y 轴距离是 ||p .【分析】点到y 轴的距离等于横坐标的绝对值.【解答】解:点(,)p q 到y 轴距离||p =故答案为||P .【点评】本题考查点的坐标,记住点到坐标轴的距离与坐标的关系是解题的关键.18.(3 3.65 1.91036.5 6.042365000≈ 604.2 .【分析】根据被开方数扩大100倍,算术平方根扩大10倍,可得答案. 3.65 1.910≈36.5 6.042≈365000604.2,故答案为:604.2.【点评】本题考查了算术平方根,利用被开方数与算术平方根的关系是解题关键.19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 (1,2)或(7,2)- .【分析】在平面直角坐标系中与x 轴平行,则它上面的点纵坐标相同,可求B 点纵坐标;与x 轴平行,相当于点A 左右平移,可求B 点横坐标.【解答】解://AB x 轴,∴点B 纵坐标与点A 纵坐标相同,为2,又4AB =,可能右移,横坐标为341-+=-;可能左移横坐标为347--=-,B ∴点坐标为(1,2)或(7,2)-,故答案为:(1,2)或(7,2)-.【点评】此题考查平面直角坐标系中平行特点和平移时坐标变化规律,解决本题的关键是分类讨论思想.三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= C ∠ ( )又1A ∠=∠(已 知) , //AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)【分析】先根据两直线平行, 得出同位角相等, 再根据内错角相等, 得出两直线平行, 进而得出内错角相等, 最后根据等量代换得出结论 .【解答】证明://BE CD (已 知)2C ∴∠=∠(两 直线平行, 同位角相等)又1A ∠=∠(已 知)//AC DE ∴(内 错角相等, 两直线平行)2E ∴∠=∠(两 直线平行, 内错角相等)C E ∴∠=∠(等 量代换)【点评】本题主要考查了平行线的性质, 解题时注意区分平行线的性质与平行线的判定的区别, 条件与结论不能随意颠倒位置 .21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.【分析】(1)利用平方根的定义,即可求得32x +,即可转化成一元一次方程即可求得x 的值;(2)利用立方根的定义,即可转化成一元一次方程即可求得x 的值.【解答】解:(1)2(32)16x +=,324x +=±, 23x ∴=或2x =;(2)3(21)27x -=-,213x -=-,1x ∴=-.【点评】本题考查了平方根与立方根的定义,理解定义是关键.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: BOD ∠ ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.【分析】(1)根据对顶角和邻补角的定义直接写出即可;(2)根据对顶角相等求出BOD ∠的度数,再根据:2:3BOE EOD ∠∠=求出BOE ∠的度数,然后利用互为邻补角的两个角的和等于180︒即可求出AOE ∠的度数.【解答】解:(1)AOC ∠的对顶角是BOD ∠,EOB ∠的邻补角是AOE ∠,故答案为:BOD ∠,AOE ∠;(2)70AOC ∠=︒,70BOD AOC ∴∠=∠=︒,:2:3BOE EOD ∠∠=, 2702832BOE ∴∠=⨯︒=︒+, 18028152AOE ∴∠=︒-︒=︒.AOE ∴∠的度数为152︒.【点评】本题主要考查了对顶角和邻补角的定义,利用对顶角相等的性质和互为邻补角的两个角的和等于180︒求解是解答此题的关键.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.【分析】根据题意建立平面直角坐标系进而得出各点坐标即可.【解答】解:如图所示:实验楼(2,2)-,行政楼(2,2)--,大门(0,4)-,食堂(3,4),图书馆(4,2)-.【点评】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .【分析】根据平行线的性质及三角形内角定理解答 .【解答】解: 由三角板的性质, 可知45EAD ∠=︒,30C ∠=︒,90BAC ADE ∠=∠=︒.因为//AE BC ,所以30EAC C ∠=∠=︒,所以453015DAF EAD EAC ∠=∠-∠=︒-︒=︒,所以180180901575AFD ADE DAF ∠=︒-∠-∠=︒-︒-︒=︒.【点评】本题考查的是平行线的性质及三角形内角和定理, 解题时注意: 两直线平行, 内错角相等 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .【分析】先根据题意得出132E ∠+∠=∠+∠,再由25E ∠+∠=∠可知,135∠+∠=∠,即5ADC ∠=∠,据此可得出结论.【解答】证明:12∠=∠,3E ∠=∠,132E ∴∠+∠=∠+∠.25E ∠+∠=∠,135∴∠+∠=∠,5ADC ∴∠=∠,//AD BE ∴.【点评】本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行.26.(12分)ABC∆与△A B C'''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A'(3,1)-;B';C';(2)说明△A B C'''由ABC∆经过怎样的平移得到?.(3)若点(,)P a b是ABC∆内部一点,则平移后△A B C'''内的对应点P'的坐标为;(4)求ABC∆的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A'的变化写出平移方法即可;(3)根据平移规律逆向写出点P'的坐标;(4)利用ABC∆所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)(3,1)A'-;(2,2)B'--;(1,1)C'--;(2)先向左平移4个单位,再向下平移2个单位;或:先向下平移2个单位,再向左平移4个单位;(3)(4,2)P a b'--;(4)ABC∆的面积111 23131122 222=⨯-⨯⨯-⨯⨯-⨯⨯6 1.50.52=---2=.故答案为:(1)(3,1)-,(2,2)--,(1,1)--;(2)先向左平移4个单位,再向下平移2个单位;(3)(4,2)a b--.【点评】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.。
2018-2019学年度七年级下期末数学试卷及答案
12AE D BC2018---2019学年度第二学期期末考试七年级数学试卷一、选择题(每小题3分,本题共30分)1.一个一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集为 A .2x -> B . 3≤x C .32<≤-x D .32≤<-x 2. 下列计算中,正确的是A .3412()x x =B .236a a a ⋅=C .33(2)6a a =D .336a a a += 3. 已知a b <,下列不等式变形中正确的是A .22a b ->-B .22a b ->-C .22a b> D .3131a b +>+ 4. 下列各式由左边到右边的变形中,是因式分解的是A. 2632(3)3xy xz x y z ++=++B. 36)6)(6(2-=-+x x xC.)(2222y x x xy x +-=--D. )b a (3b 3a 32222+=-5. 如图,点C 是直线AB 上一点,过点C 作⊥CD CE ,那么图中1∠和2∠的关系是 A. 互为余角 B. 互为补角 C. 对顶角 D. 同位角6. 已知⎩⎨⎧==21y x 是方程3=-ay x 的一个解,那么a 的值为A .1B . -1C .-3D .37. 为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中10是 A .个体B .总体C .总体的样本D .样本容量8. 如图,直线a ∥b ,直线l 与a ,b 分别交于点A ,B ,过点A 作AC ⊥b 于点C ,若1=50∠°,则2∠的度数为 A .130°B .50°21Ca A l BC.40°D.25°9. 为了解游客在野鸭湖国家湿地公园、松山自然保护区、玉渡山风景区和百里山水画廊这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在野鸭湖国家湿地公园调查400名游客;方案三:在玉渡山风景区调查400名游客;方案四:在上述四个景区各调查100名游客.在这四个收集数据的方案中,最合理的是A. 方案一B. 方案二C.方案三D.方案四10. 数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是A. 中位数和众数都是8小时B. 中位数是25人,众数是20人C. 中位数是13人,众数是20人,D. 中位数是6小时,众数是8小时二、填空题(每小题2分,本题共16分)11. 一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为.12 计算:2(36)3a a a-÷=.13. 分解因式:错误!未找到引用源。
2018-2019学年度下学期期末质量检测初一数学答案
2018~2019学年度初一下学期期末考试数学试题参考答案一、选择题:(本大题共10小题,每小题3分,共30分.)二、填空题:本大题共10小题,每小题3分,共30分.)11. 6 12.○3④ 13.1/2 、4 14.55° 15.116. 6 17.3 18.11或5 19.-14、-2、0 20.12-3x三、解答题(本大题共8小题,共60分.)21、作图:图略,(1)、(2)(3)各2分。
………………6分22、计算:(1)-45;………………5分(2)9.………………5分23、(1)-a3-3a2+4a+5;………………3分原式=-1 ………………3分(2)x=8 ;………………4分24、 (1)M=25/4 -………………4分(2) M=-4/3 ………………3分25、解:(1)10 …………………………2分(2)图略,每图各2分…………………………6分(3)32×5×5=800cm2 …………………………8分26、解:(1 )+5-3+10-8-9+12-10=-3 (厘米),所以小虫最后没有回到出发点,在出发点左3厘米处。
…………………………3分(2 )经计算比较得+5-3+10=12是最远的。
……………………6分(3 )│+5 │+ │-3 │+ │10 │+ │-8 │+ │-9 │+ │12 │+ │-10 │=57 厘米57 ×2=114( 粒) ,故小虫一共能得到114粒芝麻。
…………………9分27、解:(1)∵AB=16cm,C点为AB的中点∴AC=BC=8cm∵点D、E分别是AC和BC的中点∴CD=CE=4cm∴DE=8cm …………………3分(2)∵AB=16cm∴AC=4cm∴BC=12cm∵点D、E分别是AC和BC的中点∴CD=2cm,CE=6cm说明:如果学生有不同的解题方法。
只要正确,可参照本评分标准,酌情给分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一(下)期末数学试卷1040.0分)一、选择题(本大题共小题,共 1.下列各点中,在第二象限的点是A. B. C.D.A【答案】A 在第二象限,符合题意;、【解析】解:B 在第三象限,不符合题意;、C 在第一象限,不符合题意;、D 在第四象限,不符合题意;、A .故选:根据点的坐标特征求解即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,;第四;第二象限四个象限的符号特点分别是:第一象限;第三象限.象限下列各数属于无理数的是2.B. C. D. A.C【答案】是无理数,【解析】解:因为C .故选:根据无理数的定义即可判断.本题考查无理数、实数、算术平方根的定义,解题的关键是熟练掌握基本知识,属于中考基础题.下列调查中,适宜采用全面调查方式的是3.A. 调查电视剧人民的名义的收视率》《B. 调查重庆市民对皮影表演艺术的喜爱程度C. 调查某市居民平均用水量D. 调查你所在班级同学的身高情况D【答案】A、调查电视剧人民的名义的收视率,人数众多,应用抽样调查,故【解析】解:》《此选项错误;B、调查重庆市民对皮影表演艺术的喜爱程度,人数众多,应用抽样调查,故此选项错误;C 、某市居民平均用水量,人数众多,应用抽样调查,故此选项错误;D 、调查你所在班级同学的身高情况,人数较少,应用全面调查,故此选项正确.D .故选:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.下列方程组中,是二元一次方程组的是4. D. B. C. A.A【答案】A 、是二元一次方程组,故此选项错误;【解析】解:B 、是三元一次方程组,故此选项错误;C 、是二元二次方程组,故此选项错误;D 、是分式方程组,故此选项错误;A .故选:直接利用方程组的定义分析得出答案.此题主要考查了方程组的定义,正确把握次数与元的确定方法是解题关键.,,如图,5.的度数是,则A.B.C.D.B【答案】,,【解析】解:,,.B.故选:,再根据两直线平行,同位角相等解答.根据直角三角形两锐角互余求出本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.下列命题中,假命题是6.B. A. 同位角相等垂线段最短D. C. 邻补角一定互补对顶角相等B【答案】A是真命题;【解析】解:垂线段最短,B是假命题;两直线平行,同位角相等,C是真命题;对顶角相等,D是真命题;邻补角一定互补,B.故选:根据垂线段最短、平行线的性质、对顶角的性质、邻补角的定义判断即可.判断命本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题题的真假关键是要熟悉课本中的性质定理.若方程组7.kxy的值相等,则的解中为与A. B. C. D. 1423C【答案】,【解析】解:由题意得:,,,,把它代入方程得.解得C .故选:yxyx、然后求出的值,即根据题意得出的值代入方程与再把,可得到答案.解三元一次方程组的关键是消元.本题考查了三元一次方程组的解法把不等式组8.的解集表示在数轴上正确的是B.A.D.C.D【答案】,【解析】解:,得,解,解得,把解集表示在数轴上,.不等式组的解集为D .故选:先解不等式组,再把解集表示在数轴上.本题考查了一元一次不等式组的解法以及在数轴上表示不等式的解集,是基础知识比较简单.都有9.定义一种新的运算:对任意的有序数对和nym,则下列说法错误的是为任意实数,,A. xmyn互为相反数.互为相反数,,则若和和B.若,则C. ,使得存在有序数对 D. 存在有序数对,使得C【答案】A ,、【解析】解:,,myn 互为相反数,和和互为相反数,故本选项正确,不符合题意.B ,、,,,,则故本选项正确,不符合题意,,C、,故本选项错误,符合题意.D 时,满足条件,,、当故本选项正确,不符合题意,C .故选:计算即可;根据本题考查实数的运算、相反数的定义等知识,解题的关键是理解题意,学会根据新的定义计算,属于中考常考题型.变换成第一次将,,如图,,10.在直角坐标系中,,第三次将,;,第二次将变变换成,换成的横坐标为,则,D. C. B. A.D【答案】,【解析】解:的横坐标是D.故选:B,即可得出选项.、、对应的点的横坐标依次为、、本题考查了点的坐标,能根据已知得出规律是解此题的关键.24.06小题,共二、填空题(本大题共分)______511.表示表示,则号可以用排剧院里11.98号排【答案】115 表示,排【解析】解:号可以用98 号,表示则排98 号.故答案为:排的意义解答.根据本题考查的是坐标确定位置,理解有序数对的意义是解题的关键.ACABDE若上的点,分别是12.,如图,、、,______则50【答案】,【解析】解:,,又,50.故答案为:.依据,即可得到,可得,利用本题考查了平行线的性质和判定的应用,主要考查学生运用定理进行推理的能力.km3240km,设该船在静水中的速度,逆流航行每小时行一条船顺流航行每小时行13.______ykmxkm为每小时,水流速度为每小时.,则可列方程组为【答案】ykmxkm,【解析】解:设该船在静水中的速度为每小时,水流速度为每小时.根据题意得:.故答案为:ykmxkm,根据该船顺流速度及逆设该船在静水中的速度为每小时,水流速度为每小时yx的二元一次方程组,此题得解.流速度,即可得出关于、正确列出二元一次方程本题考查了由实际问题抽象出二元一次方程组,找准等量关系,组是解题的关键.______.,则14.已知6【答案】,【解析】解:根据题意得,,,,解得.6.故答案为:yx的值,然后代入代数式进行计算即可得解.、根据非负数的性质列式求出0,则每一本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0 列式是解题的关键.个算式都等于x的不等式组已知关于15.______a无解,则.的取值范围是【答案】得:【解析】解:由得,由,由于该不等式组无解,故故答案为:根据一元一次不等式组的解法即可求出答案.本题考查一元一次不等式的解法,解题的关键是熟练运用不等式组的解法,本题属于基础题型.n为正偶数且如果16.______.,那么,【答案】或n 为正偶数,【解析】解:由,,时,当,,时,,当时,当,时,当,或故答案为:根据有理数乘方即可求出答案.n 为正偶数,本题属于基础题型.本题考查有理数的乘方,解题的关键是正确理解216.0分)小题,共三、计算题(本大题共计算17.;原式【答案】解:原式.先计算算术平方根和立方根,再计算加法即可得;【解析】先取绝对值符号合括号,再计算加减可得.本题主要考查实数的混合运算,解题的关键是掌握算术平方根、立方根及绝对值的性质.18.解方程组:,【答案】解:,得,解得,把得,解得代入.所以方程组的解为【解析】利用加减消元法解方程组.本题考查了解二元一次方程组:用代入消元法或加减消元法解二元一次方程组.770.0分)四、解答题(本大题共小题,共解不等式组19.,并把解集表示在数轴上..【答案】解:;解不等式,得:.,得:解不等式.不等式组的解集为:将其表示在数轴上,如图所示.x的取值范围,取其公共部分即可得出不等式组的【解析】分别解不等式,找出解集,再将其表示在数轴上.通过解不等式组找出本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,x的解集是解题的关键.,20.已知:如图,;试说明若,求的度数.,,且【答案】证明:,;,解:,,.则.利用对顶角相等及已知角相等,等量代换得到一对内错角相等,利用内错【解析】角相等两直线平行即可得证;利用两直线平行同旁内角互补求出所求角度数即可.此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.中,已知完成推理填空:如图在21.,.,试说明____________,解:,邻补角定义______同角的补角相等______内错角相等,两直线平行____________等量代换已知______同位角相等,两直线平行______EF 两直线平行内错角相等【答案】已知DE 两直线平行同位角相等,邻补角定义已知,【解析】解:同角的补角相等内错角相等,两直线平行两直线平行内错角相等等量代换已知同位角相等,两直线平行.两直线平行同位角相等DEEF,,两直线平行内错角相等,,故答案为:已知,,,两直线平行同位角相等;即可;欲证明,只要证明解题的关键是灵活运用所学知余角补角的性质等知识,本题考查平行线的判定和性质、识解决问题,属于中考常考题型.”“抽取部分学生进行22.活动的喜欢程度,某校课外小组为了解同学们对学校阳光跑操四个一般、、不喜欢调查,被调查的每个学生按非常喜欢、比较喜欢是该小组采集数据后绘制的两幅统计图,经确认扇和图等级对活动评价,图请你根据统计图提供形统计图是正确的,而条形统计图尚有一处错误且并不完整的信息,解答下列问题:______ ;此次调查的学生人数为BCD ______A______;人数应改为,条形统计图中存在错误的是,,中的一个填,2 中条形统计图中不完整的部分;补画图6000“”“”的学生共有多名学生,那么对此活动和非常喜欢比较喜欢如果该校有少人?200 C 50【答案】,此次调查的学生人数为【解析】解:人200 .故答案为:C ,由扇形统计图可知,类型所占百分比为C ,则人类型人数为:C60 ,而条形图中类型人数为C50 ;,人数应改为条形统计图中存在错误的是C50 .,故答案为:,类型人数为:人补全条形图如下:,“”“”3600 人.和比较喜欢的学生共有答:对此活动非常喜欢ABAB、、的人数和所占的百分比求出抽取的学生人数,并判断出条形统计图根据长方形是正确的;CC所占的百分比计的计算判断出用调查的学生人数乘以的条形高度错误,根据算即可得解;D 的人数,然后补全统计图即可;求出AB 所占的百分比计算即可得解.用总人数乘以、读懂统计图,从不同的统计图中得本题考查的是条形统计图和扇形统计图的综合运用条形统计图能清楚地表示出每个项目的数据;扇形统到必要的信息是解决问题的关键计图直接反映部分占总体的百分比大小.在方格中,方格纸中的每个小方格都是边长为如图所示,三角形记作23.132个单位长度,向上平移再向右平移个单位的正方形,先将个单位长度,.得到__________________ ,三个顶点的坐标分别是:,,在图中画出;__________________ ;、、平移后的三个顶点坐标分别为:yPP______.轴有一点点的坐标为,使面积相等,则与若1 31 1 04 1 【答案】,,,,,或,;【解析】解:,观察图象可知,;,,故答案为如图即为所求;;、平移后、的三个顶点坐标分别为:;,,故答案为AyP ,交作如图,过点轴于,.,此时PBC ,关于直线,则点作点的对称点也满足条件,此时P .坐标为综上所述,满足条件的点或.或故答案为根据点在坐标平面中的位置写出坐标即可;ABC的对应点、根据平移要求,作出、即可;、、根据点在坐标平面中的位置写出坐标即可,AyP可得,如图,过点轴于作由交,作此时,PBC ;也满足条件,此时点的对称点关于直线,则点本题考查四边形综合题、平移变换、等高模型等知识,解题的关键是熟练掌握平移变换的性质,熟练掌握平面坐标系的有关知识,学会利用等高模型解决面积相等问题,属于中考常考题型.3倍,需要的跳绳数量是排球数量的24.购买的总费用某校决定购买一些跳绳和排球,22002500 元.不低于元,但不高于2050个,排球的售价为根,商场内跳绳的售价为按照学校所定的费用,元元有几种购买方案?每种方案中跳绳和排球数量各为多少?的方案中,哪一种方案的总费用最少?最少的费用是多少元?在根据题意得:【答案】解:,.解得为正整数,676668656361606264,,,,,,,,可取,也必需是整数,222120.,可取,有三种购买方案:6020 个;根,排球方案一:跳绳6321 个;根,排球方案二:跳绳6622 个.根,排球方案三:跳绳中,方案一购买的总数量最少,所以总费用最少,在.最少费用为:2200元.答:方案一购买的总数量最少,所以总费用最少,最少费用为xx 取整数.跳绳的数量为【解析】,根据题意列出不等式方程组,中可求出答案.根据本题主要考查了一次函数的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.OABCxy轴上,长方形轴和,25.的两边分别在如图,在平面直角坐标系中,PQOCPOAOA 方向以、同时出发,分别从上沿、,现有两动点在线段AQCOCO方向每秒在线段个单位长度的速度匀速运动,运动到点上沿停止,1Ot 秒.个单位长度的速度匀速运动,运动到点以每秒停止,设运动时间为t__________________的代数式表示,点的坐标为,用含t的面积?当的面积不小于为何值时,t36t的值;连接的面积与当的面积的和为为何值时,?请求出ACPQAC 之间的数量关系并说明理由.,试探究此时线段与【答案】OABC,四边形【解析】解:,是矩形,且,,由题意得:,,,;,,故答案为:,,,,OAOAA停止,个单位长度的速度匀速运动,运动到点方向以每秒上沿在线段.,,的面积;时,当的面积不小于,由题意得:,,,或舍36t4;的面积与为的面积的和为时,当,理由是:此时,时,如下图所示,当,OAOCQ的中点,和和分别是.B,可根据矩形的长和宽表示点,的坐标,根据速度和时间表示:得结论;t的值,并根根据的面积不小于的面积,列不等式,代入面积公式可得t 的取值范围;据已知确定36tPQ和先根据列方程解出的面积与的值,的面积的和为发现此时,OAOCACPQ 的关系.的中点,根据三角形中位线定理可得和和都是本题是四边形的综合题,考查了三角形的面积求解,矩形的性质,点的坐标特点,三角形的中位线定理及动点运动问题,难度适中,准确利用动点表示出线段的长度是解题的关键.。